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SUMMARY

Feedback controllers with specific structure arise frequently in applications because they are easily
apprehended by design engineers and facilitate on-board implementations and re-tuning. This work is
dedicated to H1 synthesis with structured controllers. In this context, straightforward application of
traditional synthesis techniques fails, which explains why only a few ad hoc methods have been developed
over the years. In response, we propose a more systematic way to design H1 optimal controllers with fixed
structure using local optimization techniques. Our approach addresses in principle all those controller
structures which can be built into mathematical programming constraints. We apply non-smooth
optimization techniques to compute locally optimal solutions, and provide practical tests for descent and
optimality. In the experimental part we apply our technique to H1 loop-shaping proportional integral
derivative (PID) controllers for MIMO systems and demonstrate its use for PID control of a chemical
process. Copyright # 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Considerable efforts have been made over the past two decades to develop new and powerful

control methodologies. H1 synthesis [1] is certainly the most prominent outcome of this search.

In spite of its theoretical success, it turns out that structured controllers such as proportional

integral derivative (PID), lead-lag, observed based, and others, are still preferred in industrial
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control. The reason is that controllers designed with modern control techniques are usually of

high order, difficult to implement and often impossible to re-tune in case of model changes. But

those are precisely the properties which make structured controllers so popular for practitioners.

Easy to implement and to understand, and easy to re-tune whenever performance or stability

specifications change. The trade-off may be roughly described as high performance combined

with low flexibility versus lower performance combined with high flexibility. The question we

ask here is how the performance properties of structured controllers may be improved.

Structured control design is generally a difficult problem. Even the simple static output

feedback stabilization problem is known to be NP-hard [2]. Due to their importance for

practice, a number of innovative techniques and heuristics for structured control have been

proposed in the literature. Some authors use branch-and-bound techniques to construct globally

optimal solution to the design problem [3]. In the same vein, Wong and Bigras [4] proposed

evolutionary optimization to reduce the computational overhead, while still aiming at globally

optimal solutions. These approaches are certainly of interest for small problems, but quickly

succumb when problems get sizable.

A fairly disparate set of heuristic techniques for structured control design was developed in

the realm of linear matrix inequalities (LMIs) [5]. Alternating projection techniques were

proposed in [6] for static controller and for the more specific structured control design problem

in [7]. In the same vein, coordinate descent schemes were proposed in [8, 9, 10]. In [11], the

authors suggest using a BMI formulation for solving a variety of problems including structured

control. These techniques may be useful in practice, but they bear the risk of missing a local

solution, because convergence to a local minimum is rarely ensured. Iterative solving of SDPs

based on successive linearizations is yet another idea, but often leads to prohibitive running

times. In [12], 2 h cputime was necessary to compute a decentralized PID controller for a 2� 2

process on a Pentium II 333 MHz computer. Even longer cputimes are reported in [13] for

medium size PID design problems.

A relatively rich literature addresses specific controller structures such as decentralized or PIDs.

In [14], Miyamoto and Vinnicombe discuss a coordinate scheme for H1 loop-shaping with

decentralized constraints. In [15], again in the loop-shaping context, the authors adopt a

truncation procedure to reduce a full-order controller to a PID controller. Those are heuristic

procedures, because closed-loop performance is not necessarily inherited by the final controller. In

[16], Saeki addresses sufficient conditions under which PID synthesis reduces to solving LMIs.

In a recent interesting work, Rotkowitz and Lall [17] fully characterize a class of problems for

which structured controller design can be solved using convex programming. They introduce the

concept of quadratic invariance and show that for problems having this property, optimal

structured controllers may be efficiently synthesized. In a different but related work [18], the

authors identify various control structures that are amenable to convex optimization by an

appropriate choice of coprime factors in the Youla–Kucera parametrization [19]. A similar

analysis is made by Scherer in [20] both for structured controller design and multi-objective H1

control. Unfortunately, these concepts and tools only apply to very particular problem classes

and controller patterns and do not easily lend themselves to generalization when finer controller

structures are required.

In our opinion local optimization is the approach best suited for these difficult design

problems. It should whenever possible be used in tandem with heuristic methods, as those may

be useful to compute good initial points for the optimization. We mention that early approaches

to structured design based on tailored optimization techniques can be traced back to the work of
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Mäkilä and Toivonen [21] for parametric LQ problems, or Polak and Wardi [22] for problems

with frequency domain singular value inequalities. In the latter reference, many design problems

are recognized as non-differentiable, and in consequence, techniques from non-smooth analysis

are employed. More recently, we have used non-smooth analysis to fully characterize the

subdifferential properties of closed-loop mappings of the form jj � jj18Tw!z acting on the

controller space, where Tw!zðKÞ denotes the closed-loop transfer function from w to z at a given

controller K ; Figure 1. These results are used to develop non-smooth descent algorithms for

various design problems [23–25]. Here, we extend our results to structured controller design and

elaborate the case of multi-input multi-output (MIMO) PID controllers. We then demonstrate

how the proposed technique can be used in the context of PID loop-shaping as introduced in

[13, 26]. We conclude with an application to chemical process control.

2. NON-SMOOTH H1 DESIGN TECHNIQUE

Consider a plant P in state-space form

PðsÞ :

’x

z

y

2

6
6
4

3

7
7
5
¼

A B1 B2

C1 D11 D12

C2 D21 D22

2

6
6
4

3

7
7
5

x

w

u

2

6
6
4

3

7
7
5

ð1Þ

where x 2 R
n is the state vector of P; u 2 R

m2 the vector of control inputs, w 2 R
m1 the vector of

exogenous inputs, y 2 R
p2 the vector of measurements and z 2 R

p1 the controlled or

performance vector. Without loss, it is assumed throughout that D22 ¼ 0:
The focus is on H1 synthesis with structured controllers, which consists in designing a

dynamic output feedback controller KðsÞ with feedback law u ¼ KðsÞy for the plant in (1) having

the following properties:

* Controller structure: KðsÞ has a prescribed structure.
* Internal stability: KðsÞ stabilizes the original plant PðsÞ in closed-loop.
* Performance: Among all stabilizing controllers with that structure, KðsÞ minimizes the H1

norm jjTw!zðKÞjj1: Here Tw!zðKÞ denotes the closed-loop transfer function from w to z:

2.1. Subdifferential of the H1 map

For the time being we leave apart structural constraints and assume that KðsÞ has the frequency

domain representation

KðsÞ ¼ CK ðsI ÿ AK Þ
ÿ1BK þDK ; AK 2 R

k�k ð2Þ

T
w→z

(K) :=

G

K

yu

w z

Figure 1. Standard interconnection.

P. APKARIAN, V. BOMPART AND D. NOLL1322

Copyright # 2007 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2007; 17:1320–1342

DOI: 10.1002/rnc



where k is the order of the controller, and where the case k ¼ 0 of a static controller KðsÞ ¼ DK

is included. A further simplification is obtained if we assume that preliminary dynamic

augmentation of the plant PðsÞ has been performed

A !
A 0

0 0k

" #

; B1 !
B1

0

" #

; etc

so that manipulations will involve a static matrix

K :¼
AK BK

CK DK

" #

ð3Þ

With this proviso, the following closed-loop notations will be useful:

AðKÞ BðKÞ

CðKÞ DðKÞ

" #

:¼
A B1

C1 D11

" #

þ
B2

D12

" #

K½C2 D21� ð4Þ

Owing to its special composite structure, the function f ¼ jj � jj18Tw!z; which maps the set

D � R
ðm2þkÞ�ðp2þkÞ of stabilizing controllers into R

þ; is Clarke subdifferentiable [23, 27, 28]. Its

Clarke subdifferential can be described as follows. Introduce the set of active frequencies at a

given K

OðKÞ :¼ fo 2 ½0;þ1� : %sðTw!zðK; joÞÞ ¼ f ðKÞg ð5Þ

We assume throughout that OðKÞ is a finite set and we refer the reader to [29] for a justification

of this hypothesis. We shall also need the notation

Tw!zðK; sÞ G12ðK; sÞ

G21ðK; sÞ $

" #

:¼
CðKÞ

C2

" #

ðsI ÿAðKÞÞÿ1½BðKÞ B2� þ
DðKÞ D12

D21 $

" #

ð6Þ

This leads to the following result.

Theorem 2.1

Assume the controller KðsÞ stabilizes PðsÞ in (1), that is, K 2 D: With notations (5) and (6),

let Qo be a matrix whose columns form an orthonormal basis of the eigenspace of

Tw!zðK; joÞTw!zðK; joÞH associated with the largest eigenvalue l1ðTw!zðK; joÞ
Tw!zðK; joÞHÞ ¼ %sðTw!zðK; joÞÞ2: Then, the Clarke subdifferential of the mapping f at K 2

D is the compact and convex set @f ðKÞ ¼ fFY : Y 2 SðKÞg; where

FY ¼ f ðKÞÿ1
X

o2OðKÞ

RfG21ðK; joÞ Tw!zðK; joÞHQoYoðQoÞ
HG12ðK; joÞgT ð7Þ

and SðKÞ is the spectraplex set

SðKÞ ¼ fY ¼ ðYoÞo2OðKÞ : Yo ¼ ðYoÞ
H
k0;

X

o2OðKÞ

TrYo ¼ 1g ð8Þ

Proof

The proof is based on the chain rule for the Clarke gradient of the composite mapping

f ¼ jj � jj1 8 Tw!z and we refer the reader to [30] and [23, 28, 31] for a proof and further

details. &
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In geometric terms, the subdifferential of f is a linear image of the spectraplex set SðKÞ: We

shall see later that it reduces to a more familiar geometric set under additional assumptions on

the multiplicity of the singular values.

2.2. Structured controllers

Note that we have assumed so far that controllers have no specific structure. We now extend the

results in Section 2.1 to structured controllers using chain rules.

Assume K defined in (3) depends smoothly on a free parameter k 2 R
q; that is, K ¼ KðkÞ;

where Kð�Þ is smooth. Then the subgradients with respect to k of the mapping

g ¼ jj � jj1 8 Tw!zð�Þ 8Kð�Þ at k are obtained as K0ðkÞn@f ðKÞ; where @f ðKÞ is given in Theorem

2.1, K0ðkÞ is the derivative of Kð�Þ at k; and where K
0ðkÞn is its adjoint. This is a direct

application of the chain rule in [30]. Note that the adjoint K
0ðkÞn acts on elements F 2

R
ðm2þkÞ�ðp2þkÞ via

K
0ðkÞnF ¼ Tr

@KðkÞ

@k1

T

F

� �

; . . . ;Tr
@KðkÞ

@kq

T

F

� �� �T

We infer the following.

Corollary 2.2

Assume the controller KðkÞ stabilizes PðsÞ in (1), that is, KðkÞ 2 D: With the notations of

Theorem 2.1, the Clarke subdifferential of the mapping g ¼ jj � jj1 8 Tw!zð�Þ 8Kð�Þ at k 2 R
q is

the compact and convex set

@gðkÞ ¼

(

Tr
@KðkÞ

@k1

T

FY

� �

; . . . ;Tr
@KðkÞ

@kq

T

FY

� �� �T

: FY 2 @f ðKðkÞÞ

)

: ð9Þ

Using vectorization, the subgradients in (9) can be rewritten as

vec
@KðkÞ

@k1
; . . . ; vec

@KðkÞ

@kq

� �T

vecFY ð10Þ

An important special case in practice is when the maximum singular values %sðTw!zðKðkÞ; joÞÞ
have multiplicity one for every o 2 OðKðkÞÞ: Then, the subgradients FY reduce in vector form

to vecFY ¼ Cx where
P

o2OðKðkÞÞ xo ¼ 1; xo50;8o 2 OðKðkÞÞ and matrix C is constructed

columnwise as

C :¼ ðvecRfG21ðK; joÞ Tw!zðK; joÞHQoðQoÞ
HG12ðK; joÞgTÞo2OðKðkÞÞ

Combining this expression with (10), the subdifferential @gðkÞ at k admits a simpler

representation in the form of a linear image of a simplex

@gðkÞ ¼

�

vec
@KðkÞ

@k1
; . . . ; vec

@KðkÞ

@kq

�T

Cx :

X

o2OðKðkÞÞ

xo ¼ 1; xo50;8o 2 OðKðkÞÞ

( )
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2.3. PID controllers

In this section we specialize the above results to PID controllers. A common representation of

MIMO PID controllers is

KðsÞ ¼ Kp þ
Ki

s
þ

Kds

1þ Es
ð11Þ

where Kp; Ki and Kd are the proportional, the integral and the derivative gains, respectively.

The PID gains Kp; Ki and Kd all belong to R
m2�m2 for a square plant with m2 inputs and

outputs. E is a small scalar which determines how close the last term in (11) comes to a pure

derivative action. Using partial fraction expansion, an alternative representation can be

obtained in the form

KðsÞ ¼ DK þ
Ri

s
þ

Rd

sþ t
ð12Þ

with the correspondence

DK :¼ Kp þ
Kd

E
; Ri :¼ Ki; Rd :¼ ÿ

Kd

E2
; t :¼

1

E

Note that these two representations are in one-to-one correspondence via

Kd ¼ ÿE2Rd; Kp ¼ DK þ ERd; Ki ¼ Ri; E ¼
1

t

From (12) we obtain a linearly parameterized state-space representation of a MIMO PID

controller

K ¼
AK BK

CK DK

" #

¼

0 0 Ri

0 ÿtI Rd

I I DK

2

6
6
4

3

7
7
5
; AK 2 R

2m2�2m2 ð13Þ

Since the state-space representation of the PID controller is affine in the parameters t; Ri; Rd

and Dk; the same is true for its vectorized form and we can write

vec
AK BK

CK DK

" #

¼ vec

0 0 0

0 0 0

I I 0

2

6
6
4

3

7
7
5
þ T

t

vecRi

vecRd

vecDK

2

6
6
4

3

7
7
5

zfflfflfflfflfflffl}|fflfflfflfflfflffl{
k

for a suitable matrix T 2 R
ðkþm2Þðkþp2Þ�ð3m2

2
þ1Þ: The linear part of (13) can be expanded as

0

ÿI

0

0

B
B
@

1

C
C
A
tI

0

I

0

0

B
B
@

1

C
C
A

T

þ

I

0

0

0

B
B
@

1

C
C
A
Ri

0

0

I

0

B
B
@

1

C
C
A

T

þ

0

I

0

0

B
B
@

1

C
C
A
Rd

0

0

I

0

B
B
@

1

C
C
A

T

þ

0

0

I

0

B
B
@

1

C
C
A
DK

0

0

I

0

B
B
@

1

C
C
A

T
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In consequence, using the Kronecker product to convert matrix products into vectors, we obtain

the transformation

T ¼

0

I

0

0

B
B
@

1

C
C
A




0

ÿI

0

0

B
B
@

1

C
C
A
vec I

0

0

I

0

B
B
@

1

C
C
A




I

0

0

0

B
B
@

1

C
C
A

0

0

I

0

B
B
@

1

C
C
A




0

I

0

0

B
B
@

1

C
C
A

0

0

I

0

B
B
@

1

C
C
A




0

0

I

0

B
B
@

1

C
C
A

2

6
6
4

3

7
7
5

Finally, the subdifferential of the mapping g ¼ jj � jj1 8 Tw!zð�Þ 8Kð�Þ at k; where KðkÞ

describes a MIMO PID controller (11) or (12) above, is the compact and convex set of

subgradients

@gðkÞ ¼ fTT vecFY : FY 2 @f ðKðkÞÞg ð14Þ

For a decentralized MIMO PID controller, Ri; Rd and DK reduce to diagonal matrices.

Introducing the linear transformation

J :¼ ½e1 
 e1 . . . em2

 em2

�

where ðeiÞi¼1;...;m2
is the canonical basis of Rm2 ; it is easily verified that

vecM ¼ J½M11;M22; . . . ;Mm2m2
�T

for any square matrix M of size m2: This leads to

t

vecRi

vecRd

vecDK

2

6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
5

¼

1 0 0 0

0 J 0 0

0 0 J 0

0 0 0 J

2

6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
5

zfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflffl{
L

t

vec diagRi

vec diagRd

vec diagDK

2

6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
5

zfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflffl{
k

with the new parameter vector k as indicated above. Again by the chain rule for Clarke

subdifferentials, we obtain that the subdifferential of the mapping g ¼ jj � jj1 8 Tw!zð�Þ 8Kð�Þ at

k; where KðkÞ describes a MIMO decentralized PID controller stabilizing (1), is the compact

and convex set of subgradients

@gðkÞ ¼ fLTTT vecFY : FY 2 @f ðKðkÞÞg

We emphasize that the outlined procedure to determine subdifferentials of various types of

PID controllers is general and encompasses most controller structures. In particular, this

includes all structures K ¼ KðkÞ with a differentiable parametrization Kð�Þ: In addition, in

some cases the parameter k 2 R
q may be restricted to a constraint subset of Rq:

2.4. Setpoint filter design

Despite the improvement in performance achieved by our new technique, using PID feedback

alone may not be sufficient to meet suitable time-domain constraints. Traditionally, this

difficulty is overcome by using a two-degree of freedom strategy including feedback and
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prefiltering or setpoint filtering. Setpoint filters operate on the reference signals to improve

responses properties such as settling-time, overshoot and decouplings. In Figure 2, a typical

model following strategy is shown. The setpoint filter FðsÞ is used in such a way that the

responses of the feedback controlled plant GðsÞ match as closely as possible those of a reference

model Gref ðsÞ: Finding such a filter could also be cast as an H1 synthesis problem, where the

transfer function from the reference signal r to the tracking error e is minimized

minimize
FðsÞ

jjTr!eðFÞjj1 ð15Þ

To solve the setpoint filter design problem, we suggest once again the use of non-smooth

optimization methods. In order to illustrate the construction, consider the case of a two-input

two-outputs system. To achieve decoupling and good quality responses, the setpoint filter is

sought in the form [15]

FðsÞ ¼

1

t1sþ 1

a1s

b1sþ 1

a2s

b2sþ 1

1

t2sþ 1

2

6
6
4

3

7
7
5

ð16Þ

Setting

k1 ¼
1

t1
; k2 ¼

1

b1
; k3 ¼

a1

b1

k4 ¼
1

t2
; k5 ¼

1

b2
; k6 ¼

a2

b2

a state-space representation of the filter is obtained as

FðkÞ :¼
AF BF

CF DF

" #

¼

ÿk1 0 0 0 k1 0

0 ÿk2 0 0 0 ÿk3

0 0 ÿk4 0 0 k4

0 0 0 ÿk5 ÿk6 0

1 k2 0 0 0 k3

0 0 1 k5 k6 0

2

6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
5

+

e

r
F (s)

Gref (s)

K (s)
+

G (s)
−

−

Figure 2. Setpoint filter design.
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This means there exists a matrix U such that

vecFðkÞ ¼ vecFð0Þ þUk; k 2 R
6

We immediately deduce the relevant subgradient formulas for program (15). With v :¼

jj � jj1 8 Tr!eð�Þ 8Fð�Þ; the subdifferential of v at k; where FðkÞ is a setpoint filter, is the compact

and convex set of subgradients

@vðkÞ ¼ fUT vecFY : FY 2 @ðjj � jj1 8 Tr!eÞðFðkÞÞg ð17Þ

The remaining expression for the subdifferential is directly obtained from Theorem 2.1.

2.5. Non-smooth descent method

In this section we briefly present our non-smooth optimization technique for composite

functions of the H1-norm. For a more detailed discussion we refer the reader to [23, 24]. We

start by representing the composite functions f ¼ jj � jj1 8 Tw!z or more generally g ¼

jj � jj1 8 Tw!z 8Kð�Þ under the form

gðkÞ ¼ max
o2½0;þ1�

gðk;oÞ

where each gðk;oÞ is a composite maximum singular value function

gðk;oÞ ¼ %sðGðk; joÞÞ

Here Gðk; joÞ ¼ Tw!zðKðkÞ; joÞ: At a given parameter k; we can compute the set OðkÞ :¼

OðKðkÞÞ of active frequencies, which is either finite, or coincides with ½0;þ1� in those rare cases

where the closed-loop system is all-pass. Excluding this case, we assume OðkÞ finite and

construct a finite extension OeðkÞ by adding frequencies according to the strategy presented in

[23, 24]. See Figure 3 for a typical choice.

Following the general trend of Polak [32], we now define the optimality function

yeðkÞ :¼ min
h2Rq

max
o2OeðkÞ

max
Yok0;TrðYoÞ¼1

ÿgðkÞ þ gðk;oÞ þ hTfYo
þ 1

2
hTQh ð18Þ

where for every fixed o; fYo
is a subgradient of gðk;oÞ at k obtained as

fYo
:¼ Tr

@KðkÞ

@k1

T

FYo

� �

; . . . ;Tr
@KðkÞ

@kq

T

FYo

� �� �T

cut

active frequencies

extended set

ω ω

(T
w→z

(K)) (T
w→z

(K))

Figure 3. Selection of frequencies: (1) LHS active only and (2) RHS active and secondary peaks.
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where

FYo
¼ gðk;oÞÿ1

RG21ðK; joÞ Tw!zðK; joÞHQoYoðQoÞ
HG12ðK; joÞ; Yok0; TrYo ¼ 1

The model of the objective function represented by ye is in principle of first order, but the

quadratic term hTQh may in some cases be used to include second-order information. In [23, 24]

we had worked with the basic choice Q ¼ dIg0; but we shall propose a more sophisticated

choice here using BFGS updates.

Note that independently of the choices of Qg0 and the finite extension OeðkÞ of OðkÞ

used, the optimality function has the following property: yeðkÞ40 and yeðkÞ ¼ 0 if and

only if 0 2 @gðkÞ; that is, k is a critical point of g: In order to use ye to compute descent steps,

it is convenient to obtain a dual representation of ye: To do this we use Fenchel duality to

swap the max and min operators in (18). This means that we first replace the first inner

supremum by a supremum over a convex hull which does not alter the value of ye: Then,
after swapping max and min, the now inner infimum over h 2 R

q becomes unconstrained and

can be computed explicitly. Namely, for fixed Yo and to in the outer program, we obtain the

solution of the form

hðY ; tÞ ¼ ÿQÿ1
X

o2OeðkÞ

tofYo

 !

ð19Þ

Substituting this back we obtain the dual expression

yeðkÞ ¼ max
to50;

P

o2OeðkÞ
to¼1

max
Yok0;TrðYoÞ¼1

toðgðk;oÞ ÿ gðkÞÞ

ÿ
1

2

X

o2OeðkÞ

tofYo

 !T

Qÿ1
X

o2OeðkÞ

tofYo

 !

ð20Þ

Note that in its dual form, computing yeðkÞ leads to a semi-definite program. Indeed,

substituting Zo ¼ toYo; program (20) becomes

yeðkÞ ¼ max
Zok0;

P

o2OeðkÞ
TrðZoÞ¼1

TrðZoÞðgðk;oÞ ÿ gðkÞÞ ÿ
1

2

X

o2OeðkÞ

fZo

 !T

Qÿ1
X

o2OeðkÞ

fZo

 !

ð21Þ

The latter program is converted to an LMI problem using a Schur complement argument.

As a byproduct we see that yeðkÞ40 and that yeðkÞ ¼ 0 implies k is critical that is,

0 2 @gðkÞ:

What is important is that the direction hðY ; tÞ ¼ hðZÞ in (19) is a descent direction of g at k in

the sense that the directional derivative satisfies the decrease condition

g0ðk; hðZÞÞ4yeðkÞ ÿ
1

2

X

o2OeðkÞ

fZo

 !

Qÿ1
X

o2OeðkÞ

fZo

 !
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where Z is the dual optimal solution. See [24, Lemma 4.3] for a proof. In conclusion, we obtain

the following algorithmic scheme:

Non-smooth descent method for mink gðkÞ

Parameters 05a51; 05b51; 05d{1

1. Initialization. Find a structured closed-loop stabilizing controller KðkÞ:
2. Active frequencies. Compute gðkÞ using the algorithm of [33] in its refined version [28] and

obtain set of active frequencies OðkÞ:
3. Add frequencies. Build finite extension OeðkÞ of OðkÞ as proposed in [23, 24], and choose

QkdI :
4. Step computation. Compute yeðkÞ by the dual SDP (20) and thereby obtain direction hðZÞ in

(19). If yeðkÞ ¼ 0 stop. Otherwise:

5. Line search. Find largest t ¼ bk such that gðkþ thðZÞÞ5gðkÞ ÿ atyeðkÞ and such that Kðkþ

thðZÞÞ remains stabilizing.

6. Step. Replace k by kþ thðZÞ and go back to step 2.

Note that the line search in step 5 is successful because tÿ1ðgðkþ thðZÞÞ ÿ gðkÞÞ ! g0ðk; hðZÞÞ

as t ! 0þ; and because yeðkÞ50 and 05a51: Choosing t under the form t ¼ bk with the largest

possible k comes down to doing a backtracking line search, which safeguards against taking too

small steps.

The final elements to be provided is computation of the matrixQÿ1: SinceQ is supposed to carry

second-order information on the objective function, it may seem appropriate to do a BFGS update

Qþ ¼ Qþ
yyT

yTs
ÿ

QssTQ

sTQs

where s ¼ kþ ÿ k and y ¼ fþ ÿ f; where f is the subgradient of minimal norm in @gðkÞ; gþ

the subgradient of minimal norm in @gðkþÞ: Here, the notation xþ and x stands for the current

and past iterates, respectively. Since the inverse Qÿ1 is required, an alternative is to use the

inverse BFGS update. Here we maintain the matrix P � Qÿ1 in step 4 of the algorithm through

Pþ ¼ Pþ
ðsÿ PyÞsT þ sðsÿ PyÞT

sTy
ÿ

yTðsÿ PyÞssT

ðsTyÞ2

As is well-known, Pg0 is guaranteed as long as sTy > 0: If this fails, or if P 6� 0 for numerical

reasons, we modify Pþ or restart the procedure.

Note that computing minimal norm elements f 2 @gðkÞ amounts to computing minimal norm

elements in the LMI set (9) and therefore reduces to an LMI problem. Finally, we emphasize the

important fact that when singular values %sðGðk; joÞÞ are simple on OeðkÞ; which is the rule in

practice, we have Zo ¼ TrZo so that SDP (21) simplifies to a much faster convex QP. A fact

that can also be exploited for computing minimal norm elements.

3. NON-SMOOTH LOOP-SHAPING DESIGN

In this section we recall some key facts from the loop-shaping design technique introduced by

McFarlane and Glover [26], and we discuss how it can be merged with our non-smooth

framework to arrive at a new practical PID loop-shaping design method.
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3.1. Loop-shaping design

Loop-shaping design is an efficient and practical technique which has been applied

successfully to a variety of difficult design problems, see [34–36] to cite a few. It proceeds

as presented in Figure 4. Firstly, the open-loop plant G is altered by pre- and post-compensators

W1 and W2; respectively, to achieve the desired open-loop shapes. Roughly speaking, the

shaped plant W2GW1 should have large gains at low frequencies for performance and

small gains at high frequencies for noise attenuation. Also, the roll-off rate should not

be too large in the mid-frequency range. Secondly, an H1 synthesis is performed to minimize

the objective

jjTðw1;w2Þ!ðz1;z2ÞðKÞjj1 :¼
K

I

" #

ðI ÿW2GW1Þ
ÿ1½G I �

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�
1

ð22Þ

which yields a controller K : The final controller is then implemented in the form W1KW2 and

has no specific structure. Note that the H1 norm in (22) is greater than one for the optimal

controller K : Put differently, e :¼ 1=g is bounded above by unity. The scalar e is therefore an

indicator of success of the procedure. Usually values greater than 0.2 or 0.3 are deemed

acceptable in the sense that the controller K does not significantly alter the desired loop shape

W2GW1 [26]. Moreover, in this situation, the closed-loop system will be robust against coprime

factor uncertainties [26]. A smaller e; on the contrary, tells us that the desired loop shape is

incompatible with robustness requirements, and the pre- and post-compensators must be

modified to reflect less ambitious performance requirements. A central element of the design

technique is therefore to select appropriate compensators for the trade-off between performance

and robustness. In practice, this is generally accomplished by trials-and-errors.

3.2. PID loop-shaping design

For loop-shaping design with a PID controller we have adopted the strategy introduced in [13].

In this approach, the controller K is sought in the form K ¼ Wÿ1
1 KPID; assuming that the pre-

compensator W1 is invertible and KPID is a PID controller. The synthesis problem is then of the

form

minimize
KPID stabilizing

Wÿ1
1 KPID

I

" #

ðI ÿW2GKPIDÞ
ÿ1½W2GW1 I �

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�
1

ð23Þ

z2 z1

w2 w1

W2
W1G

K

Figure 4. Loop-shaping H1 design.
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Note that this scheme retains all the benefits of the H1 loop-shaping design technique of

Section 3.1. As before e :¼ 1=g; where g is the optimal H1 cost in (23), will serve to diagnose

whether performance and robustness requirements have been achieved. The final controller is

obtained as the series connection of the post-compensator W2 and the PID controller in the

form KPIDW2: An immediate consequence is that the final controller has better noise attenuation

in the high-frequency range than a pure PID controller, whenever W2 is strictly proper. To sum

up, we have to solve program (23), see also Figure 5, for a PID controller structure and the non-

smooth technique and tools discussed in Sections 2 will be used to that purpose.

4. APPLICATION TO A SEPARATING TOWER

In this section, we consider the application of the non-smooth technique to the control design

for a chemical process from the literature [13]. It consists of a 24-tray tower for separating

methanol and water. The transfer function for controlling the temperature on the fourth and

17th trays is given as

t17

t4

" #

¼

ÿ2:2eÿs

7sþ 1

1:3eÿ0:3s

7sþ 1

ÿ2:8eÿ1:8s

9:5sþ 1

4:3eÿ0:35s

9:2sþ 1

2

6
6
6
4

3

7
7
7
5

u1

u2

" #

ð24Þ

Settling times of about 10 s are desired for the closed-loop process in response to step inputs, as

well as good decoupling between the temperatures t17 and t4: A good robustness margin is also

required to account for process model uncertainties. The latter will be assessed using the

coprime factor uncertainty margin e as defined in Section 3. The actual plant in (24) is

approximated by a rational model using second-order Pade approximation of the delays. This

leads to a 12th-order model. Pre- and post-compensators are taken from [13]

W1ðsÞ ¼

5sþ 2

sþ 0:001
0

0
5sþ 2

sþ 0:001

2

6
6
4

3

7
7
5
; W2ðsÞ ¼

10

sþ 10
0

0
10

sþ 10

2

6
6
4

3

7
7
5

z
1

W
1

W
1

−1

Kpid

w
1

z
2

w
2

GW
2

Figure 5. PID loop-shaping H1 design.

P. APKARIAN, V. BOMPART AND D. NOLL1332

Copyright # 2007 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2007; 17:1320–1342

DOI: 10.1002/rnc



The standard form of Figure 5 incorporating the compensators is therefore of 18th order.

For comparison, we have synthesized an unstructured full-order controller, whose associated

step responses and singular-value frequency responses are displayed in Figures 6 and 7,

respectively. For full order the robustness was found to be e :¼ 1=g ¼ 0:361: This is very

satisfactory in terms of stability and gives good agreement with the prescribed open-loop

shapes. This is confirmed by the fast and well-damped step responses in Figure 6. We also

observe short-term couplings between t17 and t4; an unpleasant behaviour which we try to

reduce later when dealing with PID controllers. For future use, we keep in mind that the optimal

g ¼ 2:77 achieved at this stage is globally optimal if controller structural constraints are

disregarded.

In Reference [13], a state-space BMI formulation is used to characterize PID solutions of the

H1 synthesis problem in (23). The proposed algorithmic strategy is a coordinate descent

scheme, which alternates between minimizing over Lyapunov variables and over PID controller

parameters. Such techniques are often referred to as D–K or V–K iterations, see [8] and

references therein. Unfortunately, coordinate descent does not come with any convergence

guarantee [37] and breakdown is often observed in practice. In our case, Reference [13] reported

38 min of cputime to obtain the following solution with such a technique:

E ¼ 0:060; Kp ¼
2:4719 ÿ1:2098

ÿ1:1667 ÿ2:4766

" #
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Figure 6. Time-domain simulations of H1 controller.
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Ki ¼
0:4657 ÿ0:31

ÿ0:2329 ÿ0:487

" #

; Kd ¼
0:0534 ÿ0:0072

ÿ0:015 ÿ0:0434

" #

The corresponding robustness margin is e ¼ 1
4:02 ¼ 0:249: Time domain and frequency responses

are shown in Figures 8 and 9, respectively. Using the tools from Section 2.5, we now show that

this PID controller is not a local minimum of program (23). Our local optimality certificate y

evaluated at the PID controller above takes a negative value y ¼ ÿ0:119; revealing failure of the

D–K iteration scheme to reach local optimality. This also indicates that further progress can be

achieved by running our non-smooth method initialized at the point of failure. Ultimately, the

following PID controller is obtained:

E ¼ 0:1527; Kp ¼

2:6047 ÿ0:6543

ÿ1:1253 ÿ2:3226

2

4

3

5

Ki ¼

0:8527 ÿ0:2591

0:0701 ÿ0:9362

2

4

3

5; Kd ¼

0:7414 ÿ0:2551

ÿ1:5610 ÿ0:0331

2

4

3

5

This represents 38% improvement of the robustness margin over the value e ¼ 1
2:91 ¼ 0:343:

Better time responses are also observed, see Figure 10. The optimal PID controller also exhibits
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Figure 7. Frequency response of H1 controller.
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higher gains in the low and medium frequency ranges, Figure 11. On the other hand, it can be

seen in Figure 10 that step responses of t17 and t4 are strongly coupled, which is undesirable in

this application. To reduce the coupling we added a setpoint filter using the model reference

approach discussed in Section 2.4, with the filter structure in (16). The reference model was

selected as

Gref ðsÞ :¼

1

sþ 1
0

0
1

sþ 1

2

6
6
4

3

7
7
5

Solving program (15) using our non-smooth technique produced the following setpoint filter:

FðsÞ ¼

1:045

sþ 1:045

ÿ0:3428s

sþ 2:25

ÿ0:3666s

sþ 0:6147

3:675

sþ 3:675

2

6
6
6
4

3

7
7
7
5

Step responses with PID controller in tandem with the setpoint filter are presented in Figure 12.

In a second experiment, we do not use the result in [13] and initialize the algorithm

from scratch, by first computing a stabilizing PID controller, using an extension of our

method to minimize the spectral abscissa [38]. Note that with a different initial seed, there is no
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Figure 8. Time-domain simulations of PID controller in [13].
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reason why we would reach the same local solution. And indeed, a new local minimum is

reached

E ¼ 0:3780; Kp ¼

2:4798 ÿ0:5153

ÿ0:8850 ÿ2:1737

2

4

3

5

Ki ¼

0:7428 ÿ0:1873

ÿ0:0455 ÿ0:7698

2

4

3

5; Kd ¼

0:2640 ÿ0:2347

ÿ2:1424 0:0723

2

4

3

5

The robustness margin is now e ¼ 1
3:05 ¼ 0:3279; which is only marginally worse than the

previously synthesized PID controller and again improves the solution given in [13] by 24%.

Time- and frequency-domain evaluations are given in Figures 13 and 14. As before, a setpoint

filter was computed using the reference model
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Figure 9. Frequency response of PID controller in [13].
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Figure 10. Time-domain simulations of first PID controller.
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Figure 11. Frequency response of first PID controller.

NON-SMOOTH STRUCTURED CONTROL DESIGN 1337

Copyright # 2007 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2007; 17:1320–1342

DOI: 10.1002/rnc



0 10 20 30

0

0.2

−0.2 −0.2

0.4

0.6

0.8

1

1.2

 time (sec.)

 o
u
tp

u
t 
#
1

0 10 20 30

0

0.2

0.4

0.6

0.8

1

1.2

 time (sec.)

o
u
tp

u
t 
#
2

Figure 12. Time-domain simulations of first PID controller with setpoint filter.
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Figure 13. Time-domain simulations of second PID controller.

P. APKARIAN, V. BOMPART AND D. NOLL1338

Copyright # 2007 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2007; 17:1320–1342

DOI: 10.1002/rnc



The setpoint filter is described as

FðsÞ ¼

0:7333

sþ 0:7333

35:81s

sþ 297:7

ÿ0:5452s

sþ 0:31

215:1

sþ 215:1

2

6
6
6
4

3

7
7
7
5

and step responses are given in Figure 15.

As one might expect for a local optimization technique, our experiment underlines that

different local solutions are generally obtained when different initial guesses are used. Such

guesses may be obtained by heuristic techniques developed in PID synthesis. If many local

optima are observed, using semi-global techniques may be indicated. Such methods try to

improve on a given set of local solutions [39].

A strong point of our method is that it practically always finds local optimal solutions, as

theoretically expected. Also, the running times are very fast. In fact, in our test we never

exceed a minute cputime. This is in strong contrast with state-space sequential LMI or

BMI approaches, which require substantial numerical efforts. In those cases where a local

minimum is not satisfactory, we have to do restart with different initial seeds, to explore

whether further improvements is possible. How this can be organized in general will be

investigated in the future.
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Figure 14. Frequency response of second PID controller.
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5. CONCLUSION

We have presented and discussed a non-smooth optimization technique for the synthesis of

finely structured controllers with an H1 objective. Our approach is general and encompasses

most controller structures of practical interest. The proposed technique is endowed by an

easily tractable convergence certificate, which may either serve to validate a given controller,

or to drive the iterative descent method to termination. A specialization to loop-shaping

design with MIMO PID controllers is also introduced. Application to a process system

indicates that the technique is a practical and effective numerical tool in structured controller

design.

NOTATION

Let R
n�m be the space of n�m matrices, equipped with the corresponding scalar product

hX ;Yi ¼ TrðXTYÞ; where XT is the transpose of the matrix X ; TrðXÞ its trace. For complex

matrices XH stands for its conjugate transpose. For Hermitian or symmetric matrices, XgY

means that X ÿ Y is positive definite, XkY that X ÿ Y is positive semi-definite. We use the

symbol l1 to denote the maximum eigenvalue of a symmetric or Hermitian matrix. Given an

operator T ; Tn is used to denote its adjoint operator on the appropriate space. The notation vec

applied to a matrix stands for the usual column-wise vectorization of a matrix. The operator

diag applied to a matrix produces a vector whose entries are the diagonal elements of the matrix.

We use concepts from non-smooth analysis covered by Clarke [30]. For a locally Lipschitz

function f : Rn ! R; @f ðxÞ denotes its Clarke subdifferential at x:
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Figure 15. Time-domain simulations of second PID controller with setpoint filter.
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