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Abstract: The linear quadratic Gaussian-loop transfer recovery procedure is a classical method to desensibilise a system
in closed loop with respect to disturbances and system uncertainty. Here an extension is discussed, which avoids the usual
loss of performance in LTR, and which is also applicable for non-minimum phase systems. It is also shown how the idea
can be extended to other control structures. In particular, it is shown how proportional integral derivative controllers can be
desensibilised with this new approach. The method is tested on several examples, including in particular the lateral flight
control of an F-16 aircraft.

1 Introduction

It became apparent during the late 1960s that linear quadratic
Gaussian (LQG) controllers often lack robustness with
regard to system uncertainty. In 1966 Kwakernaak [1]
proposed loop transfer recovery (LTR) as a means to
overcome this deficit in practical situations. LTR was later
re-discovered and popularised in a series of papers by Stein
and Athans [2], Doyle and Stein [3, 4]. Even today LQG-
LTR is still used by practitioners to desensibilise LQG
controllers to enhance the robustness of a design.

Unfortunately, LTR has three main limitations. First, the
price for the enhanced robustness may be a considerable
loss of performance. Second, LTR is limited to controllers
with observer structure. And third, its application to non-
minimum phase systems is not obvious. Here we propose
a new method, which avoids these difficulties. Our new
approach can be cast as a constraint optimisation program
offering a trade-off between performance and robustness

minimise P(K)

subject to R(K) ≤ r

K structured controller

(1)

where P(K) is the performance of the closed-loop system,
expressed by an H2 norm, whereas R(K) is the robustness,
represented by a possibly frequency weighted H∞ norm of
the input or output sensitivity function ‖(I + KG)−1‖∞ or
‖(I + GK)−1‖∞. The crucial point is to choose the degree
of robustness r in the constraint in such a way that a
satisfactory compromise is achieved. As we shall show,
for minimum phase systems and observer-based controllers,
the LQG-LTR procedure allows us to calibrate r in (1) in

a natural way. The mixed H2/H∞-controller obtained by
solving (1) is then as robust as the corresponding LQG-LTR
controller, but has better performance.

In the case of non-minimum phase systems program (1)
remains fully in effect. What needs to be modified is the
LQG-LTR procedure, at least if one still wishes to use it
to calibrate r. This can be done, for example, by working
with frequency-weighted sensitivity functions. For more
details see [5] and special issue on LTR of the International
Journal of Robust and Nonlinear Control, especially [6].
In [2] it is also shown that a similar trade-off between
sensitivity and complementary sensitivity can be cast as
an optimisation problem over the Hardy space of stable
transfer functions with 2-norm, that is, an H2- optimisation
problem, which under some restrictions can be solved by
LQG-LTR.

For more general controller structures, program (1) can
be used in much the same way, but one needs a new way
to calibrate the robustness parameter r in the constraint. We
present a general method that provides a range [r∗, r∗] in
which the parameter r should be chosen. The validity of
our method is tested for the proportional integral derivative
(PID) controller structure.

The structure of the paper is as follows. In Sections 2
and 3, the essential features of LQG-LTR are recalled,
presented for the case of the input loop breaking point.
The improved LTR procedure for this case is presented
in Section 4. Section 5 briefly discusses LTR at the
output loop breaking point. Section 6 gives a dual
mathematical programming approach, where the roles
between performance and robustness in the trade-off are
changed. More general controller structures are discussed in
Section 7, and a new procedure to calibrate r is introduced.
Experiments are presented in Section 8.
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2 Preparation

Let us briefly recall the set-up for H2-synthesis. Given an
open-loop plant in state-space form

P :

[ ẋ
z2

y

]

=
[ A B2 B

C2 0 D2u

C Dy2 0

] [ x
w2

u

]

(2)

the goal of H2 synthesis is to find a dynamic output feedback
controller in state-space form

K :
[

ẋK

u

]
=

[
AK BK

CK DK

] [
xK

y

]
(3)

which stabilises P in closed loop and minimises the H2 norm
(cf. [7])

min
K

‖Tw2→z2(P, K)‖2 (4)

of the closed-loop performance channel w2 → z2. We call
P(K) = ‖Tw2→z2(P, K)‖2 the performance of the closed-loop
system. It is well known that the optimal solution K∗ of (4)
has observer-based structure

K∗ =
[

A − B2Kc − Kf C2 Kf

−Kc 0

]
(5)

and that Kf , Kc can be computed via AREs or LMIs [8].
In order to assure the existence of K∗ we use standard
assumption like (i)–(iv) on page 384 of [8], or (A1)–
(A5) on page 387 of [9], which include stabilisability and
detectability of the plant (2).

It is convenient to consider LQG control as a special case
of H2 synthesis. Following [9], consider the LQG problem

GLQG :
{

ẋ = Ax + Bu + !w
y = Cx + v

where w and v are white noise with covariance matrices W
and V , respectively. Let Q = Q' ( 0 and R = R' ) 0 and
build a plant of form (2) by setting

PLQG =




A B2 B
C2 0 D2u

C Dy2 0





=





A
(
!W!')1/2

0 B
Q1/2 0 0 0

0 0 0 R1/2

C 0 V 1/2 0



 (6)

If the original inputs v, w and outputs x, u of LQG are
encoded as w2 and z2 and recovered from the relations

[
w
v

]
=

[
W 1/2 0

0 V 1/2

]
w2, z2 =

[
Q1/2 0

0 R1/2

] [
x
u

]

then LQG becomes a special case of H2-synthesis in the
sense that

J = E
{

lim
T→∞

1
T

∫ T

0
(x(t)'Qx(t) + u(t)'Ru(t))dt

}

= ‖Fl(PLQG, K∗)‖2
2

for the LQG controller K∗. This confirms that the optimal
LQG controller K∗ has the observer structure (5). The
plant PLQG satisfies the standard assumptions for controller
synthesis if (A, (!W!')1/2, C) and (A, B, Q1/2) are assumed
stabilisable and detectable [9, 10].

3 Loop transfer recovery

This section continues with a rapid flashback on the LQG-
LTR procedure [10, 11]. Using the embedding PLQG → P,
the situation is interpreted in the context of H2 optimal
control.

Along with its excellent performance p∗ = P(K∗) =
‖Tw2→z2(P, K∗)‖2, the optimal LQG controller K∗ may be
highly sensitive and therefore lack robustness with respect to
system uncertainty. This is where the LQG-LTR procedure
sets in. In its input-sensitivity form it provides a one-
parameter family of observer-based controllers

K(ρ) =
[

A − B2Kc − Kf (ρ)C2 Kf (ρ)
−Kc 0

]

indexed by 0 < ρ ≤ 1, such that

1. K(ρ) is the LQG controller of the modified LQG plant

PLQG(ρ) =





A
(
!W!')1/2

0 B
Q1/2 0 0 0

0 0 0 R1/2

C 0 ρ1/2V 1/2 0



 (7)

the nominal case (6) being ρ = 1. In particular, K∗ = K(1).
Explicitly

K(ρ) = −Kc(sI − (A − BKc − Kf (ρ)C))−1Kf (ρ) (8)

2. As ρ → 0, the LTR controller K(ρ) gets less and less
sensitive in so far as the H∞ norm of the LQG sensitivity
function S(G, K(ρ)) = (I + K(ρ)G)−1 approaches the H∞
norm of the so-called target sensitivity function SLQ = (I +
KcGLQ)−1, which has provable good gain and phase margins
[12]. Here

G(s) = C(sI − A)−1B

SLQ = (I + Kc(sI − A)−1B)−1 = (I + KcGLQ)−1

3. ρ1/2Kf (ρ) → V −1/2 as ρ → 0, so K(ρ) has no limit in
controller space as ρ → 0. In consequence, performance
of K(ρ) degrades in the sense that P(K(ρ)) = ‖Tw2→z2(P,
K(ρ))‖2 → ∞ as ρ → 0, where P is the nominal plant (6).

Altogether the family of LTR controllers K(ρ) in (8)
represents a trade-off between performance (4) with respect
to the original LQG plant (6), and robustness with respect to
the input sensitivity function S(G, K) = (I + KG)−1. Each
K(ρ) is conveniently obtained by solving a modified LQG
synthesis program based on (7). The procedure leaves Kc

fixed and adapts the Kalman filter gain Kf (ρ) to the noise
level ρV .

Remark 1: A variant of the described LTR procedure is
obtained by fixing V = V0 and letting W = W0 + ρ−1BBT,
where W0 is nominal.

The quest addressed in this paper is now how to
prove robustness ‖S(G, K)‖∞ → ‖SLQ‖∞ =: r∗ just as in
LTR, but at the same time avoid the loss of performance
P(K(ρ)) → ∞ caused by the LTR controller.
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4 Improved LQG-LTR procedure

In order to emphasise the terms performance and robustness,
we continue to use the notations

P(K) = ‖Tw2→z2(P, K)‖2, R(K) = ‖S(G, K)‖∞

As was observed before, R(K(ρ)) → r∗ := ‖SLQ‖∞, while
P(K(ρ)) → ∞ when ρ → 0. Note that r∗ is the best
robustness we can possibly achieve, so it serves as a lower
bound for the parameter r in (1).

Let r∗ := ‖S(G, K∗)‖∞ = R(K∗) be the robustness of the
nominal H2 (respectively LQG) controller K∗. As K∗ is too
sensitive with regard to S(G, K), the value r∗ is too large.
So r∗ is an upper bound for r. Now every intermediate value
r with r∗ < r ≤ r∗ = R(K∗), can be realised as r = r(ρ) =
R(K(ρ)) for some ρ ∈ (0, 1]. In other words, for every r ∈
(r∗, r∗] we can find an LQG-LTR controller K(ρ), which has
precisely the robustness r.

Naturally, one aims at a compromise r = r(ρ) somewhere
in between the two extrema r∗, r∗. This is now where
LQG-LTR has its limitations. Namely, it can only propose
to stop at some K(ρ), where r = r(ρ) is as desired.
However, it can then no longer influence the corresponding
performance p(ρ) = P(K(ρ)). The value p(ρ) := P(K(ρ))
is just somewhere in between the lower bound p∗ = P(K∗)
and the upper bound p∗ = ∞, and has to be accepted as
such. The present work claims that one can do better.
Having identified the appropriate robustness level r =
r(ρ) = R(K(ρ)) of the LTR controller K(ρ), the following
structured mixed H2/H∞ optimisation program, a special
instance of (1), is proposed.

(Pρ)
minimise P(K) = ‖Tw2→z2(P, K)‖2

subject to R(K) = ‖S(G, K)‖∞ ≤ r(ρ)
K has observer structure (5)

(9)

Its decision variable is x = (vec(Kc), vec(Kf )). For the
following, the solution of (9) is denoted as K2,∞(ρ),
indicating that a mixed H2/H∞ synthesis problem is solved.
The robustness level r(ρ) = R(K(ρ)) imposed in the
constraint is taken to be the robustness level of the LQG-
LTR controller (8) with parameter ρ. Program (9) is the key
element of Algorithm 1 in Fig. 1.

Fig. 1 Algorithm 1: Trade-off between robustness and
performance for LQG

Remark 2: Note that in (9) the Kalman gain Kf and the
state feedback gain Kc are optimised simultaneously. The
principle of separation of observation and control is no
longer valid. In particular, the optimal Kc, Kf are no
longer characterised by algebraic Riccati equations (AREs).
Nonetheless K2,∞(ρ) is an observer-based controller. Note
that without the structural constraint (5) the H2/H∞ program
(9) has an infinite-dimensional solution [13], which need not
even be realisable. And even when realisability is imposed
as the sole structural constraint, the optimal solution need
not be observer-based.

Remark 3: The fact that the r(ρ) cover the range (r∗, r∗]
does not mean that r(ρ) ∈ (r∗, r∗] for all ρ. Typically, for ρ
close to the nominal value 1 it may happen that r(ρ) > r∗.
This means LTR is not a monotone procedure, as can be seen
from the graph of 100r(ρ) in Fig. 2. Naturally, the ρ with
r(ρ) > r∗ are of no use in Algorithm 1 in Fig. 1. Similarly,
for a given r only the largest ρ with r = r(ρ) is of interest.

The central property of the solution K2,∞(ρ) of (9) is the
following:

Proposition 1: The optimal H2/H∞ controller K2,∞(ρ)
computed in Step 3 of Algorithm 1 in Fig. 1 is
as robust as the LTR controller K(ρ) in the sense
that ‖S(G, K2,∞(ρ))‖∞ = ‖S(G, K(ρ))‖∞, but it has better
performance P(K2,∞(ρ)) ≤ P(K(ρ)).

Proof: The first part of the statement claims that the
constraint R(K) ≤ r(ρ) in (9) is active at the locally optimal
solution K2,∞(ρ). Suppose this is not the case, that is,
P(K2,∞(ρ)) < r(ρ). Then K2,∞(ρ) is also a local minimum
of the unconstrained H2 program (4). However, program
(4) is strictly convex and its unique global minimum
is the LQG controller K∗. In particular, there are no
other local minima, hence K∗ = K2,∞(ρ). This implies r∗ =
P(K∗) < P(K(ρ)) = r(ρ). However, according to Step 2 of
Algorithm 1 in Fig. 1, ρ is such that r∗ < r(ρ) ≤ r∗ and
values ρ with r(ρ) > r∗ are not considered. This shows that
the constraint is active.
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Fig. 2 LQG-LTR study: performance of K(ρ) and K2,∞(ρ) in
logarithmic scale
Lower bound is the performance of the nominal LQG controller. The
curve 100r(ρ) shows the robustness profile over the same abscissa. As
a by-product, it can be seen that LTR is not a monotone procedure
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The second claim, the improvement of the performance,

is due to the fact that K(ρ) is a feasible point in (9) and
that optimisation is started at K(ρ). This assures that the
(locally) optimal solution K2,∞(ρ) has a lower objective
value P(K2,∞(ρ)) ≤ P(K(ρ)). !

Remark 4: Mixed H2/H∞-programs had originally been
proposed by Haddad and Bernstein [14], who characterise
the solution in the full-order case (in the absence of
constraint (5)) by a system of coupled algebraic Riccati
equations. A homotopy method is proposed to compute the
solutions. The first numerically efficient way to solve (9)
with the constraint (5) was presented in [15] and is based
on non-smooth optimisation techniques. Tables 8.3 and 8.4
of [15] give a comparison between the method of Haddad
and Bernstein and ours in cases where both are applicable.
Note that program (9) is no longer convex owing to the
structural constraint on K .

5 Other LTR procedures

There exists a dual-LTR procedure, which generates a family
K(q) of LQG controllers parametrised by q ≥ 0 such that
K(0) = K∗, and such that K(q) now gets less sensitive as
q → ∞ [3]. Consider the deformed LQG system

P(q) :





A
(
!W!')1/2

0 B
Q1/2(q) 0 0 0

0 0 0 R1/2

C 0 V 1/2 0





where Q(q) = Q + qC'C, and q = 0 corresponds to the
nominal case (6). The LQG-LTR controller is then obtained
by an LQG synthesis for P(q) and has the form

K(q) =
[

A − B2Kc(q) − Kf C2 Kf

−Kc(q) 0

]
(10)

where now Kf is fixed and Kc(q) tuned. Limiting
results now hold with respect to the output sensitivity
function S̃(G, K) = (I + GK)−1. Namely ‖S̃(G, K(q))‖∞ →
‖S̃LQ‖∞, where S̃LQ = (I + C(sI − A)−1Kf )

−1 = (I +
GLQKf )

−1, which again has guaranteed margins as q → ∞.

Remark 5: Note that K(q) is obtained by artificially
increasing the cost term x'Qx in the LQG objective,
replacing the nominal Q by Q + q C'C. As q → ∞
increases, this obviously forces the trajectories x(t) to decay
faster to 0 as t → ∞, hence a gain in robustness. In [2] a
variant is discussed, where in the cost term x'Qx + µu'Ru
the parameter µ is driven to zero.

The new type of controller K2,∞(q) associated with
the family K(q) is constructed as follows: Fix q > 0
and compute r̃(q) = ‖S̃(G, K(q))‖∞. Then solve the mixed
H2/H∞ program

minimise P(K) = ‖Tw2→z2(P, K)‖2

subject to R(K) = ‖S̃(G, K)‖∞ ≤ r̃(q)

K observer-based

(11)

the solution being K2,∞(q). The link between the dual LQG-
LTR controller K(q) and its associated H2/H∞ controller
K2,∞(q) is the following:

Proposition 2: The mixed H2/H∞ controller K2,∞(q) is
as robust as the LQG-LTR controller K(q) in the sense
that ‖S̃(G, K2,∞(q))‖∞ = ‖S̃(G, K(q))‖∞, but it has better
performance.

Remark 6: It is straightforward to propose an algorithm
similar to Algorithm 1 in Fig. 1 based on (11). The details
are left to the reader.

6 Trade-off with performance certificate

There is a second approach to (9), which can be interpreted
as setting aside some of the good performance in order
to buy some robustness. Suppose the unconstrained H2

program has p∗ = P(K∗), where K∗ solves (4). We refer
to p∗ as the nominal performance. As soon as K∗ is overly
sensitive and lacks robustness, p∗ is too small. Assuming
that we are working with the sensitivity function R(K) =
‖S(G, K)‖∞, let us consider the following mixed H∞/H2

program

(Dα)
minimise R(K) = ‖S(G, K)‖∞
subject to P(K) = ‖Tw2→z2(P, K)‖2 ≤ (1 + α)p∗

K has observer structure (5)
(12)

Here we accept a loss of 100α% in nominal performance p∗,
and use this freedom to buy as much robustness as possible.

It turns out that there is a close relationship between
programs (Pρ) and (Dα).

Proposition 3: Let K2,∞(ρ) be a Karush–Kuhn–Tucker
(KKT) solution of (Pρ), where r(ρ) is such that the LQG
controller is not feasible for (Pρ). Then there exists α =
α(ρ) such that K2,∞(ρ) = K∞,2(α(ρ)), that is, K2,∞(ρ) is
also a KKT solution of a suitable program (Dα(ρ)). One
simply has to set α(ρ) := [P(K2,∞(ρ)) − p∗]/p∗.

Conversely, let K∞,2(α) be a KKT solution of (Dα), which
is not a critical point of R alone and is more robust than the
LQG controller. Then K∞,2(α) = K2,∞(ρ(α)) for a suitable
ρ = ρ(α), that is, K∞,2(α) is also a KKT of (Pρ(α)). One has
r(ρ(α)) = R(K∞,2(α)).

Proof:
1. Let K := K2,∞(ρ) be a KKT-point of (Pρ), respectively,
of (9). Then there exists a Lagrange multiplier λ ≥ 0 and a
Clarke subgradient % ∈ ∂R(K) such that (see [16, Ch. 6])

(KKT)ρ 0 = ∇P(K) + λ%, λ (R(K) − r(ρ)) = 0

R(K) ≤ r(ρ)

We argue that λ > 0. Suppose we had λ = 0. Then
∇P(K) = 0. By convexity of the LQG program K is
then the unique minimum of P , which means it is the
LQG controller K∗. On the other hand, R(K) ≤ r(ρ) by
(KKTρ), which means the LQG controller K∗ is feasible
in (Pρ). Since this was excluded by hypothesis, we have a
contradiction, proving λ > 0.

Let us now compare this with the KKT-condition for
program (Dα), that is, for (12). Note that K̃ := K∞,2(α) is a
KKT-point of (Dα) if there exists a subgradient % ∈ ∂R(K̃)
and a Lagrange multiplier µ ≥ 0 such that

(KKT)α 0 = % + µ∇P(K̃), µ(P(K̃) − (1 + α)p∗) = 0

P(K̃) ≤ (1 + α)p∗

4 IET Control Theory Appl., pp. 1–10
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All we have to do now is tune α and µ such that K also
satisfies (KKTα). We simply let µ = 1/λ, then the first
equation of both conditions is the same. For the constraint,
all we have to do is choose α such that P(K) = (1 + α)p∗.
This is possible, because as we have seen, K is not the
LQG controller, hence it satisfies P(K) > p∗. Therefore
α(ρ) = P(K)/p∗ − 1 as claimed.
2. Conversely, let K̃ := K∞,2(α) be a KKT-point of (Dα).
Then condition (KKTα) is satisfied. We argue that µ > 0.
Indeed, µ = 0 gives 0 = % ∈ ∂R(K̃), which means that K̃ is
a critical point of R. Since this was excluded by hypothesis,
we must have µ > 0.

Now we have to fix ρ and λ in such a way that K̃ satisfies
(KKT)ρ . We simply put λ = 1/µ, then the first equations
is satisfied. For the constraint, let us put r̃ := R(K̃). Then
r̃ < r∗ = r(1), as by hypothesis K̃ is more robust than the
LQG controller. Since r̃ > r∗, and since the curve r(ρ) fills
the interval (r∗, r∗], there exists ρ such that r̃ = r(ρ), hence
R(K̃) = r(ρ). This ρ is our ρ(α). !

Remark 7: While programs (Pρ) and (Dα) are at least locally
in one-to-one correspondence via ρ -→ α(ρ) and α -→ ρ(α),
it is beneficial to have both at our disposition. For instance,
in some cases it may be easier to calibrate the value α,
that is, the accepted loss of performance, than to guess
an appropriate ρ in (Pρ). On the other hand, LTR can
be used more directly to calibrate the procedure in the
primal approach based on (Pρ). Note, however, a difference
between (Dα) and (Pρ). In (Dα) it may happen that the
constraint P ≤ (1 + α)p∗ is inactive. In that case a local
minimum of the robustness function R alone is found.
This is possible, because the H∞-program min{‖S(G, K)‖∞ :
K observer-based} is not a convex program and may
therefore have local minima.

Remark 8: The LQG-LTR procedure encounters difficulties
for non-minimum phase systems G. The target sensitivity
function SLQ can no longer be approached at all frequencies,
and a weaker result of the form S(G, K(ρ)) → SLQ(I + E)
for some frequency-dependent error term E holds instead
[5]. In this situation, it may be advantageous to work with
weighted sensitivity functions W1SW2 or W1S̃W2 in order
to preserve some of the properties of LTR in the minimum
phase case, as proposed in [2]. In contrast, program (9),
respectively, it dual (12), do not really depend on G
being minimum phase. For instance, in (12) we have still
interest to minimise sensitivity as much as we can, non-
minimum phase being just a warning that we might be
less successful. In general we may decide to follow Athans
[17] and use LTR despite the limitations of non-minimum
phase, or we could use a robustness constraint of the
form R(K) = ‖W1S(K)W2‖∞ ≤ r, respectively, R(K) =
‖W1S̃(K)W2‖∞ ≤ r, using a frequency-weighted sensitivity
function within a modified LTR procedure to calibrate
r(ρ). A third possibility is to use the method proposed
in the next section to calibrate the robustness parameter r
differently.

7 Extension to more general controller
structures

In this section, we propose an extension of Algorithm 1 in
Fig. 1 to general controller structures. In Section 8.1.2 this
will be applied to controllers with PID structure.

A controller in state-space form (3) is called structured if
the matrices AK , BK , CK , DK depend smoothly on a design
parameter vector x, that is

AK = AK(x), BK = BK(x), CK = CK(x), DK = DK(x)

It is assumed that x varies in some parameter space Rn,
or in a constrained subset of Rn. Here n = dim(x) is
typically smaller than dim(K) = n2

K + m2nK + p2nK + m2p2,
where m2 is the number of inputs, p2 the number of outputs,
nK the order of K . It is also expected that nK . nx. Full order
controllers are en abus de langue referred to as unstructured.

A first controller structure was already encountered,
namely, observer-based controllers, where x = (vec(Kc),
vec(Kf )) ∈ Rnxm2+nxp2 . Other useful controller structures
are for instance reduced-order controllers (nK . nx),
decentralised or PID controllers. For PIDs the structure is

Kpid(x) =
[ 0 0 Ri

0 −τ Im2 Rd

Im2 Im2 DK

]

(13)

where x = (τ , vec(Ri), vec(Rd), vec(DK)) has dim(x) =
3m2p2 + 1, and a constraint τ ≥ ε (for some ε > 0) is
typically added in parameter space.

Armed with this, the following algorithm is proposed:
The difference with Algorithm 1 in Fig. 1 is that LTR
is no longer available to calibrate the procedure. Instead,
the lower bound r∗ is computed in Step 2, based on a
structured H∞-synthesis with objective R. This can be
obtained via the matlab function hinfstruct [18]. The
mixed H2/H∞-program is solved via [15], using the matlab
function fmincon [19] as a presolver.

In order to solve (16) efficiently, the solution x∗ of Step 1,
or the solution x∞ of Step 2, can be used as starting points.
It is also possible to obtain a starting point xr by stopping
the minimisation in (15) at the moment when R(xr) ≤ r
is activated. This feature is indeed available in the matlab
function hinfstruct [18]. The controller K(xr) is then a
favourable initial guess in (16), because it already satisfies
the constraint. The result extending Proposition 1 is as the
following:

Proposition 4: Suppose xr with R(xr) = r is obtained as
intermediate solution in Step 2 of Algorithm 2 in Fig. 4
and used as initial guess in solving program (16). Then
the locally optimal solution K(x2,∞(r)) of (16) is at least
as robust as K(xr) and has better H2 performance.

Proof: The first statement says R(K(x2,∞(r))) ≤ r =
P(K(xr)) which is clear, because a locally optimal solution
is also feasible.

The second statement follows from the fact that xr is
used as initial guess. Then a descent method will produce a
locally optimal solution, which has better performance than
K(xr). !

Remark 9: Note that solutions to (14), (15) and (16) may
no longer be computed by algebraic Riccati equations or
linear matrix inequalities (LMIs). While (14) can be solved
by smooth optimisation technique, see for example, [20],
programs (15) and (16) are non-smooth and require specific
bundle techniques. (bilinear matrix inequality (BMI) solvers
could at least in principle be used, but they suffer from the
presence of Lyapunov variables, which lead to numerical
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trouble.) For non-smooth H∞ synthesis [21], and also [22–
24], can be cited. A recent implementation is hinfstruct
in [18], which is based on [21]. Constrained programs
like (16) are discussed in [15, 25]. General mathematical
background is given in [26, 27]. A recent approach to
combine non-smooth techniques with classical non-linear
programming techniques is discussed in [28].

Remark 10: In Algorithm 2 in Fig. 4 we assume that P is
stabilisable and detectable. However, we need to be able
to stabilise the plant internally with a controller K(x) of
the imposed structure. Interestingly, deciding whether or not
such controllers exists is nondeterministic polynomial (NP)-
complete for many practical structures like PID, reduced-
order, static, decentralised controller; see [29]. Practical
ways to compute a stabilising K(x) are discussed in [30].

8 Numerical experiments

In this section, we present three studies in which the
proposed trade-off based on mixed structured H2/H∞-
control is tested. In each study performance of the nominal
system is evaluated in the H2-norm, which is optimised
subject to a constraint on the controller structure (observer-
based, respectively, PID). In the first and second study the
input sensitivity function, S, and in the third the output
sensitivity function, S̃, is used to assess robustness.

8.1 Mass-spring system

Our first study uses the mass-spring system [10] of Fig. 3,
which can be considered as a prototype of a flexible
system. Considering the positions and the velocities of the
two mass as the states x = [x1 x2 ẋ1 ẋ2]T, the state-space
representation is

ẋ =





0 0 1 0
0 0 0 1

− k
m1

k
m1

− f
m1

f
m1

k
m2

−k
m2

f
m2

−f
m2




x +





0
0
1

m1

0




u

y = [0 1 0 0]

8.1.1 Linear quadratic Gaussian-loop transfer
recovery: According to Algorithm 1 in Fig. 1 the
procedure starts with a nominal LQG synthesis. The nominal
LQG controller KLQG is obtained with the covariance
matrices W = BB' and V = 1, while Q = C'C and R = 1;
see [10]. This results in (Kf , Kc) = ([0.94 0.06 0.97 0.75],
[1.491.93 0.13 1.87]) with performance p∗ = P(KLQG) =

Fig. 3 Mass-spring system: nominal data are m1 = m2 = 0.5 kg,
k = 1 N/m, f = 0.0025 Ns/m. Measured output is y = x2, control
force u acts on m1

3.99. Following Algorithm 1 in Fig. 1, the LTR procedure
is now applied to generate a curve (Kf (ρ), Kc). This is done
by keeping W fixed and letting V = ρI = ρ → 0, which
corresponds to using the input sensitivity function R(K) :=
S(K) = (I + KG)−1 as robustness index. The LQG-LTR
procedure is compared to our H2/H∞ trade-off model (9)
of Section 4. Fig. 2 compares performance and robustness
of the different controllers. The graph r(ρ) represents the
robustness of both the LTR and the H2/H∞ controller,
which are matched through the constraint in program (9). As
can be seen, performance is considerably improved without
degrading robustness.

The parametric robustness of the LTR and the mixed
H2/H∞-controller have also been compared when mass
m2 and spring coefficient k undergo changes around their
nominal values, k0 and m0

2, in the square (k0 ± 30%k0, m0
2 ±

30%m0
2). Fig. 5 compares the stability regions for ρ =

0.001. The performance P(K(0.001)) = 27.85 of the LTR
controller corresponds to a degradation of α = 597% of
the nominal performance p∗ = 3.99. Image (c) shows what
the mixed H2/H∞ controller K2,∞(ρ) achieves at the same
ρ = 0.001. On top of having significantly better performance
P(K2,∞(0.001)) = 4.23, corresponding to α = 6%, it has
also better parametric robustness. Fig. 6 displays the
relative performance (P(G, K) − P(G0, K))/(P(G0, K)) for

Fig. 4 Algorithm 2: Trade-off between robustness and
performance for structured H2-synthesis
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the controllers K of Fig. 5 when the same variation of
the nominal parameters is considered. Since LQG and
LQG-LTR controllers are both not stabilising over the
entire square, their graphs are restricted to their closed-
loop stability regions. As can be seen, the mixed controller
K2,∞(ρ) performs best with regard to this criterion over the
square.

8.1.2 H2-optimal PID controller: In this section, a
desensibilised H2-optimal PID controller is searched for the
mass-spring system. As LTR is no longer available, the
procedure follows Algorithm 2 in Fig. 4, which starts by
computing the solution of the nominal program (14) for the
structure (13). The H2-optimal PID controller Kpid,2 has p∗ =
P(Kpid,2) = 12.61 and r∗ = R(Kpid,2) = 17.23. Continuing
with Algorithm 2 in Fig. 4, program (15) for the structure
(13) is solved, which provides the most robust PID controller
with regard to the sensitivity function S. This robustified PID
has performance p∗ = P(Kpid,∞) = 152.8, which is clearly
degraded (p∗ . p∗), while naturally r∗ = R(Kpid,∞) = 6.39
is improved (r∗ < r∗). Finally, the compromise is achieved
by solving program (16), which it is initialised with Kpid,∞.
Several choices r ∈ [r∗, r∗] were tested, and finally r =
17 was chosen, because it achieved parametric robustness
of Kpid,2,∞ over the 40% square of variation in m2, k .
Comparison with the two other PIDs is made in Fig. 7,
where it can be seen that the mixed controller shows the
best trade-off between performance and robustness (in the
sense of the input sensitivity and parametric robustness).

8.2 Lateral flight control of an F-16 aircraft

In our last study, the improved LTR procedure was
applied to lateral flight control of an F-16 aircraft. The
non-linear F-16 lateral model was linearised using the
F-16 simulation program [31]. The high-fidelity model
is evaluated at altitude h = 4575 m and velocity v =
152.5 m/s, considering steady wings-level flight conditions
for trimming. The state variables are side slip angle β, bank
angle φ, roll rate p and yaw rate r. Using a 6-DOF flat-earth,
body-axis aircraft model

%̇ = cos γ0

cos θ0
ps + sin γ0

cos θ0
rs

β̇ = Yβ

V
β + Yr

V
rs + g cos θ0

V
% − rs

ṗs = Lββ + Lpps + Lrrs + δl(ps, rs) + Lδa (β, δa) + Lδr (β, δr)

ṙs = Nββ + Npps + Nrrs + δn(ps, rs) + Nδa (β, δa) + Nδr (β, δr)

where

ps = p cos α0 + r sin α0

rs = r cos α0 − p sin α0

δr and δn are incremental rolling and yawing moment owing
to ps and qs. Lδa , Lδr , Nδa and Nδr are rolling and yaw
moments because of aileron and rudder deflections. θ0, γ0
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Fig. 5 LQG-LTR study: stability regions as a function of the parameters variation
LQG controller has P = 3.99, which is too low. LQG/LTR controller shows enhanced robustness, but does not give parametric robustness. In addition,
P = 27.85 is strongly degraded. Mixed H2/H∞ controller is parametrically robust, and has better performance P = 4.23

Fig. 6 LQG-LTR study: each graph shows relative performance as a function of the parameters variation
Left: LQG controller, middle: LQG-LTR controller, right: mixed H2/H∞
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Fig. 7 PID study: stability regions as a function of the parameters variation
Nominal controller (a) is not parametrically robust over the square. PID H∞-controller (b) is overly robust with degraded performance and provides lower
bound. H2/H∞-PID-controller (c) is parametrically robust and achieves good compromise between performance and robustness

and α0 are the trimmed pitch angle, angle of attack and side
slip where α0 = θ0 − γ0. For more details see [32, 33].

8.2.1 Performance channel: As in [34], state
variables δa and δr representing deflection of aileron and
rudder actuators are included in the model, each with
approximate transfer function 20.2/(s + 20.2). The goal of
the study is to make the bank angle φ follow a reference
command rφ , while simultaneously keeping the side slip
angle β as close to rβ = 0 as possible. The plant has
u = [uφ uβ] as control input and y = [φ β] as measured
output and is of type-0 with constant steady-state error.
To eliminate this error, the dynamics are augmented by
integrators in each control channel. Moreover, to balance
the singular values at dc, the system was augmented again
by the inverse of the dc gain of the system [34]. The overall
state vector including aircraft state variables, actuators
and integrators is then x = [β, φ, p, r, δa, δr , εφ , εβ]. The
model for synthesis is shown in Fig. 8, G(s). In this
figure the precompensator block represents the inverse of
the dc gain. This figure also demonstrates the observer
structure K(s).

8.3 LTR procedure

In this study, LTR recovery at the output breaking
point is used, that is, robustness is measured via the
output sensitivity function S̃, and an observer-based
controller is computed. Using V = I2 and W = diag

fK cK−I
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Fig. 8 Model of F16 aircraft lateral control system and the
observer structure
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Fig. 9 Singular values of the loop transfer function
L(s) = G(s)K(s) for LQ, LQG and LTR controller

([0.1 0.1 0.1 0.1 0 0 10 10]) × 100, we first fix the Kalman
gain Kf such that the target loop gain C(sI − A)−1Kf has
the desired performance. That this goal is achieved can be
seen in the singular value plot in Fig. 9, and through the
step responses of Fig. 10 (solid lines).
LTR is now applied with Q = C'C and R = ρI2, where
ρ → 0, and Kc(ρ) is tuned. With q = 1/ρ this corresponds
to the case discussed in Section 5. Fig. 9 compares the
singular values σ and σ of the loop transfer functions of
LQ (target) with those of LQG and LTR(ρ = 1e − 10).
In other words, the singular values of C(sI − A)−1Kf are
compared with the singular values of G(s)Kc(ρ)(sI − (A +
BKc(ρ) + K'

f C))−1Kf for ρ = 1 and ρ = 1e − 10. As can
be seen, forcing ρ → 0 brings the singular values of the
LTR controller near those of the target. In addition, this
also drives the system output responses towards the model
responses of the target, as shown in Figs. 10a and b. In
Figs. 10c and d, the control input signals of LQ, LQG and
LTR are compared.

Unfortunately, the LTR controller causes a large control
input, which results in a large (degraded) performance.
This loss of performance increases with ρ−1 as Fig. 11
shows. In the same figure the robustness index RLTR =
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a b

c d

Fig. 10 Step responses with different controllers
Step responses of LTR and of H2/H∞ controllers a: controlled output,
b: command input

‖S̃‖∞ = ‖(I + GKLTR(ρ))−1)‖∞ is displayed. As can be
seen, at the beginning (going from right to left) R increases
and then decreases before stabilising around RLQ = ‖(I +
GKLQ(ρ))−1)‖∞. This proves that LTR with recovery at the
output breaking point is not a monotone procedure either.
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Fig. 11 F-16 study: comparison of performance of LTR
and H2/H∞ controller when robustness according to
R(K) = ‖S̃(G, K)‖∞ is used

8.3.1 Mixed synthesis: In order to overcome the
loss of performance of the LTR controller, we apply
Algorithm 1 in Fig. 1, where in program (16) the output

a b

c

Fig. 12 Comparing LTR and H2/H∞ controllers against the system variations
a and b Step responses
c Performance
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sensitivity function S̃ replaces S. An appropriate parameter
range is ρ ∈ [10−4 10−1.3], where robustness R decreases
monotonically with ρ, while performance P increases.
Fig. 11 compares performance after matching robustness
of the H2/H∞ and LTR controllers via Proposition 1. A
substantial improvement in performance can be observed.

The efficiency of this new method is checked by
considering changes of the flight parameters. h = h0 ± /h
and v = v0 ± /v are considered with /h = 305 m and /v =
7.625 m/s, the nominal flight point being h0 = 4575 m and
v0 = 152.5 m/s. The LTR controller and the corresponding
mixed controller are evaluated at ρ = 1.438e − 4. Figs. 12a
and b compares the first output and the first control input
of the eight neighbouring flight points around the nominal
flight point. The diagram in Fig. 12c shows the improvement
in performance obtained with the mixed controller.

9 Conclusion

We have used mixed H2/H∞ synthesis with structured
control laws to obtain a quantified trade-off between
performance and robustness. Within the class of observer-
based controllers our method leads to an improvement of the
LQG-LTR procedure. The latter is still useful to calibrate
and initialise the procedure. For other controller structures
a different idea is used to calibrate the mixed program.
The new method was applied to a mass-spring benchmark
example and also to lateral flight control of an F-16 aircraft.
Experiments indicate that the new technique can also be
useful to enhance the parametric robustness of a design. In
our tests the achieved degree of parametric robustness was
satisfactory.
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