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Abstract

Structured output feedback controller synthesis
is an exciting recent concept in modern control
design, which bridges between theory and prac-
tice in so far as it allows for the first time to ap-
ply sophisticated mathematical design paradigms
like H..- or H>-control within control architectures
preferred by practitioners. The new approach to
structured H.-control, developed by the authors
during the past decade, is rooted in a change
of paradigm in the synthesis algorithms. Struc-
tured design is no longer be based on solving al-
gebraic Riccati equations or matrix inequalities.
Instead, optimization-based design techniques are
required. In this essay we indicate why structured
controller synthesis is central in modern control
engineering. We explain why non-smooth opti-
mization techniques are needed to compute struc-
tured control laws, and we point to software tools
which enable practitioners to use these new tools
in high technology applications.
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Introduction

In the modern high technology field control
engineers usually face a large variety of concur-
ring design specifications such as noise or gain at-
tenuation in prescribed frequency bands, damp-
ing, decoupling, constraints on settling- or rise-
time, and much else. In addition, as plant mod-
els are generally only approximations of the true
system dynamics, control laws have to be robust
with respect to uncertainty in physical parame-
ters or with regard to un-modeled high frequency
phenomena. Not surprisingly, such a plethora of

constraints presents a major challenge for con-
troller tuning, due not only to the ever growing
number of such constraints, but also because of
their very different provenience.

The steady increase in plant complexity is ex-
acerbated by the quest that regulators should be
as simple as possible, easy to understand and
to tune by practitioners, convenient to hardware
implement, and generally available at low cost.
These practical constraints highlight the limited
use of Riccati- or LMI-based controllers, and they
are the driving force for the implementation of
structured control architectures. On the other
hand this means that hand-tuning methods have
to be replaced by rigorous algorithmic optimiza-
tion tools.

1 Structured Controllers

Before addressing specific optimization tech-
niques, we recall some basic terminology for con-
trol design problems with structured controllers.
The plant model P is described as

Xxp = Axp + Biw 4+ Bu

P:{ z = Cixp + Diyyw + Dipu (1)
y = Gxp + Dyw + Dxu

where A, Bj, ... are real matrices of appropriate

dimensions, xp € R™ is the state, u € R™ the con-
trol, y € R™ the measured output, w € R™ the ex-
ogenous input, and z € R the regulated output.
Similarly, the sought output feedback controller
K is described as
) %k = Agxk + Bky

K{ u = Cgxx + Dgy (2)
with xg € R" | and is called structured if the (real)
matrices Ak, Bg,Ck,Dg depend smoothly on a de-
sign parameter x € R", referred to as the vector
of tunable parameters. Formally, we have differ-
entiable mappings

Akx = Ak (x),Bgx = Bk(x),Cx = Ck(x),Dx = Dk (x),



and we abbreviate these by the notation K(x) for
short to emphasize that the controller is struc-
tured with x as tunable elements. A structured
controller synthesis problem is then an optimiza-
tion problem of the form

minimize  ||T,;(P,K(x))|
subject to  K(x) closed-loop stabilizing  (3)
K(x) structured, x € R”

where T,.(P,K) = F;(P,K) is the lower feedback
connection of (1) with (2) as in Fig. 1 (left),
also called the Linear Fractional Transformation
[Zhou et al, 1996]. The norm | -| stands for
the Ho-norm, the H>-norm, or any other system
norm, while the optimization variable x € R” re-
groups the tunable parameters in the design.

Standard examples of structured controllers
K(x) include realizable PIDs, observer-based,
reduced-order, or decentralized controllers, which
in state-space are expressed as:
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In the case of a PID the tunable parameters are
x = (T,kp,k;,kp), for observer-based controllers
x regroups the estimator and state-feedback
gains (Ky,K.), for reduced order controllers
ng < np the tunable parameters x are the
n%( + ngny + ngn, + nyn, unknown entries in
(Ak,Bk,Ck,Dk), and in the decentralized form
x regroups the unknown entries in Aki,...,Dgy.
In contrast, full-order controllers have the
maximum number N = ”123 + npny + npny, + nyny,
of degrees of freedom and are referred to as
unstructured or as black-box controllers.

+ e

P —)KlT Kg—) G
K

Figure 1: Black-box full-order controller K on the
left, structured 2-DOF control architecture with K =
diag(K1,K3) on the right.

More sophisticated controller structures K(x)
arise form architectures like for instance a 2-DOF
control arrangement with feedback block K; and a

set-point filter K; as in Fig. 1 (right). Suppose K]
is the Ist-order filter K;(s) =a/(s+a) and K, the
PI feedback Ky (s) = kp—+k;/s. Then the transfer
T,y from r to y can be represented as the feedback
connection of P and K(x,s) with
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Kix.5):= 0 Ko (s,kp,kr) |’
and gathering tunable elements in x = (a,kp,k;).
In much the same way arbitrary multi-loop in-
terconnections of fixed-model elements with tun-
able controller blocks K;(x) can be re-arranged
as in Fig. 2, so that K(x) captures all tunable
blocks in a decentralized structure general enough
to cover most engineering applications.

Z1 w1 21
z w2 )
2
<~ pO

B —
pM)

Kn

Kn

Figure 2: Synthesis of K = diag(Kj,...,Ky) against
multiple requirements or models P, ..., P(M) Each
K;i(x) can be structured.

The structure concept is equally useful to deal
with the second central challenge in control de-
sign: system uncertainty. The latter may be han-
dled with p-synthesis techniques [Stein and Doyle,
1991] if a parametric uncertain model is avail-
able. A less ambitious but often more practi-
cal alternative consists in optimizing the struc-
tured controller K(x) against a finite set of plants
PY ... PM) representing model variations due to
uncertainty, aging, sensor and actuator break-
down, un-modeled dynamics, in tandem with the
robustness and performance specifications. This
is again formally covered by Fig. 2 and leads to a
multi-objective constrained optimization problem
of the form

(k)
max Y (K(x
cesmax [T (K()|

k
max || 7! 3 ,
keHARD, jeJ, '

K(x) structured and stabilizing
xeR”?

minimize  f(x)
8(

subject to  g(x) = (K(x))|I<1

(4)



where Tygfz)i denotes the ith closed-loop robustness

or performance channel w; — z; for the k-th plant
model PX. SOFT and HARD denote index sets
taken over a finite set of specifications, say in
{1,...,M}. The rationale of (4) is to minimize

the worst-case cost of the soft constraints ||Tv552 II,
k € SOFT, while enforcing the hard constraints

HT&;}H <1, k eHARD, which prevail over soft
ones and are mandatory. In addition to local op-
timization (4), the problem can undergo a global
optimization step in order to prove global stabil-
ity and performance of the design, see Ravanbod

et al [2017]; Apkarian et al [2015a,b].

2 Optimization Techniques Over the
Years

During the late 1990s the necessity to de-
velop design techniques for structured regulators
K(x) was recognized [Fares et al, 2001], and the
limitations of synthesis methods based on alge-
braic Riccati equations or linear matrix inequal-
ities (LMIs) became evident, as these techniques
cannot provide structured controllers needed in
practice. The lack of appropriate synthesis tech-
niques for structured K(x) led to the unfortunate
situation, where sophisticated approaches like the
H., paradigm developed by academia since the
1980s could not be brought to work for the design
of those controller structures K(x) preferred by
practitioners. Design engineers had to continue
to rely on heuristic and ad-hoc tuning techniques,
with only limited scope and reliability. As an
example: post-processing to reduce a black-box
controller to a practical size is prone to failure.
It may at best be considered a fill-in for a rig-
orous design method which directly computes a
reduced-order controller. Similarly, hand-tuning
of the parameters X remains a puzzling task be-
cause of the loop interactions, and fails as soon
as complexity increases.

In the late 1990s and early 2000s, a change of
methods was observed. Structured Hp- and H.-
synthesis problems (3) were addressed by bilin-
ear matrix inequality (BMI) optimization, which
used local optimization techniques based on the
augmented Lagrangian method [Fares et al, 2001;
Noll et al, 2004; Kocvara and Stingl, 2003;
Noll, 2007], sequential semidefinite programming
methods [Fares et al, 2002; Apkarian et al, 2003],
and non-smooth methods for BMIs [Noll et al,
2009; Lemaréchal and Oustry, 2000]. However,

these techniques were based on the bounded real
lemma or similar matrix inequalities, and were
therefore of limited success due to the presence
of Lyapunov variables, i.e. matrix-valued un-
knowns, whose dimension grows quadratically in
np+ng and represents the bottleneck of that ap-
proach.

The epoch-making change occurs with the
introduction of non-smooth optimization tech-
niques [Noll and Apkarian, 2005; Apkarian and
Noll, 2006b, 2007, 2006¢] to programs (3) and (4).
Today non-smooth methods have superseded ma-
trix inequality-based techniques and may be con-
sidered the state-of-art as far as realistic applica-
tions are concerned. The transition took almost
a decade.

Alternative control-related local optimization
techniques and heuristics include the gradient
sampling technique of [Burke et al, 2005], and
other derivative-free optimization as in [Kolda
et al, 2003; Apkarian and Noll, 2006a], particle
swarm optimization, see [Oi et al, 2008] and ref-
erences therein, and also evolutionary computa-
tion techniques [Lieslehto, 2001]. All these classes
do not exploit derivative information and rely on
function evaluations only. They are therefore ap-
plicable to a broad variety of problems including
those where function values arise from complex
numerical simulations. The combinatorial nature
of these techniques, however, limits their use to
small problems with a few tens of variable. More
significantly, these methods often lack a solid con-
vergence theory. In contrast, as we have demon-
strated over recent years, [Apkarian and Noll,
2006b; Noll et al, 2008; Apkarian et al, 2016, 2018]
specialized non-smooth techniques are highly ef-
ficient in practice, are based on a sophisticated
convergence theory, capable of solving medium
size problems in a matter of seconds, and are still
operational for large size problems with several
hundreds of states.

3 Non-smooth optimization
techniques

The benefit of the non-smooth casts (3) and
(4) lies in the possibility to avoid searching for
Lyapunov variables, a major advantage as their
number (np +nk)?/2 usually largely dominates 7,
the number of true decision parameters x. Lya-
punov variables do still occur implicitly in the
function evaluation procedures, but this has no
harmful effect for systems up to several hundred



states. In abstract terms, a non-smooth optimiza-
tion program has the form

minimize  f(x)
subject to  g(x) <0 (5)
x ¢ R"

where f,g:R" — R are locally Lipschitz functions
and are easily identified from the cast in (4).

In the realm of convex optimization, non-
smooth programs are conveniently addressed by
so-called bundle methods, introduced in the late
1970s by Lemaréchal [Lemaréchal, 1975]. Bun-
dle methods are used to solve difficult problems
in integer programming or in stochastic optimiza-
tion via Lagrangian relaxation. Extensions of the
bundling technique to non-convex problems like
(3) or (4) were first developed in [Apkarian and
Noll, 2006b, 2007, 2006¢c; Apkarian et al, 2008;
Noll et al, 2009], and in more abstract form, in
[Noll et al, 2008]. Recently, we also extended
bundle techniques to the trust-region framework
Apkarian et al [2016, 2018]; Apkarian and Noll
[2018], which leads to the first extension of the
classical trust-region method to non-differential
optimization supported by a valid convergence
theory.

Fig. 3 shows a schematic view of a non-convex
bundle method consisting of a descent-step gen-
erating inner loop (yellow block) comparable to
a line search in smooth optimization, embedded
into the outer loop (blue box), where serious iter-
ates are processed, stopping criteria are applied,
and the acceptance rules of traditional trust re-
gion techniques is assured. At the core of the
interaction between inner and outer loop is the
management of the proximity control parameter
7, which governs the stepsize ||x —y*|| between
trial steps y* at the current serious iterate x. Sim-
ilar to the management of a trust region radius or
of the stepsize in a linesearch, proximity control
allows to force shorter trial steps if agreement of
the local model with the true objective function
is poor, and allows larger steps if agreement is
satisfactory.

Oracle-based bundle methods traditionally as-
sure global convergence in the sense of subse-
quences under the sole hypothesis that for ev-
ery trial point x the function value f(x) and one
Clarke subgradient ¢ € df(x) are provided. In au-
tomatic control applications it is as a rule possible
to provide more specific information, which may
be exploited to speed up convergence Apkarian
and Noll [2006b)].

Computing function value and gradients of
the Hp-norm f(x) = ||T,; (P,K(X)) |2 requires es-

Figure 3: Flow chart of proximity control bundle al-
gorithm

sentially the solution of two Lyapunov equations
of size np + ng, see [Apkarian et al, 2007]. For the
Ho-norm, f(x) =T, (P,K(X)) |/, function eval-
uation is based on the Hamiltonian algorithm of
[Benner et al, 2012; Boyd et al, 1989]. The Hamil-
tonian matrix is of size np + ng, so that function
evaluations may be costly for very large plant
state dimension (np > 500), even though the num-
ber of outer loop iterations of the bundle algo-
rithm is not affected by a large np and generally
relates to n, the dimension of x. The additional
cost for subgradient computation for large np is
relatively cheap as it relies on linear algebra [Ap-
karian and Noll, 2006b]. Function and subgradi-
ent evaluations for H. and H, norms are typically
obtained in O ((np+nk)?) flops.

4 Computational Tools

Our non-smooth optimization methods be-
came available to the engineering community
since 2010 via the MATLAB Robust Con-
trol Toolbox [Robust Control Toolbox 4.2,
2012; Gahinet and Apkarian, 2011]. Routines
HINFSTRUCT, LOOPTUNE and SYSTUNE
are versatile enough to define and combine tun-
able blocks K;(x), to build and aggregate mul-

tiple models and design requirements on TM(,]Z<> of
different nature, and to provide suitable valida-
tion tools. Their implementation was carried out
in cooperation with P. Gahinet (MathWorks).
These routines further exploit the structure of
problem (4) to enhance efficiency, see [Apkarian
and Noll, 2007] and [Apkarian and Noll, 2006b].

It should be mentioned that design prob-
lems with multiple hard constraints are inher-
ently complex and generally NP-hard, so that ex-



haustive methods fail even for small to medium
size problems. The principled decision made in
[Apkarian and Noll, 2006b], and reflected in the
MATLAB tools, is to rely on local optimization
techniques instead. This leads to weaker con-
vergence certificates, but has the advantage to
work successfully in practice. In the same vein,
in (4) it is preferable to rely on a mixture of soft
and hard requirements, for instance, by the use
of exact penalty functions [Noll and Apkarian,
2005]. Key features implemented in the men-
tioned MATLAB routines are discussed in [Ap-
karian, 2013; Gahinet and Apkarian, 2011; Ap-
karian and Noll, 2007].

5 Applications

Design of a feedback regulator is an inter-
active process, in which tools like SYSTUNE,
LOOPTUNE or HINFSTRUCT support the de-
signer in various ways. In this section we illus-
trate their enormous potential by showing that
even infinite-dimensional systems may be success-
fully addressed by these tools. For a plethora of
design examples for real-rational systems includ-
ing parametric and complex dynamic uncertainty
we refer to Ravanbod et al [2017]; Apkarian et al
[2016, 2015a]; Apkarian and Noll [2018]; Apkar-
ian et al [2018]. For recent applications of our
tools in real-world applications see also Falcoz
et al [2015], where it is in particular explained
how HINFSTRUCT helped in 2014 to save the
Rosetta mission. Another important application
of HINFSTRUCT s the design of the atmospheric
flight pilot for the ARIANE VI launcher by the
Ariane Group Ganet-Schoeller et al [2017].

5.1 Illustrative example

We discuss boundary control of a wave equation
with anti-stable damping,

xtt(é’;’t) :xﬁé(g?t)’ 1>0,8¢ [O’ 1]
xe(0,1) = —gx(0,2), ¢> 0,9 # 1 (6)
xe(1,1) = u(t).

where notations x;, xg are partial derivatives of x
with respect to time and space, respectively. In
(6), x(-,1),x(-,¢) is the state, the control applied
at the boundary & =1 is u(r), and we assume that
the measured outputs are

yl(t) :x<07t)7y2(t) :X(l,l‘)7y3(l‘) :xt(lat)' (7)

The system has been discussed previously in
Smyshlyaev and Krstic [2009]; Fridman [2014];
Bresch-Pietri and Krstic [2014] and has been pro-
posed for the control of slip-strick vibrations in
drilling devices Saldivar et al [2011]. Here mea-
surements yi,y, correspond to the angular posi-
tions of the drill string at the top and bottom
level, y3 measures angular speed at the top level,
while control corresponds to a reference velocity
at the top. The friction characteristics at the bot-
tom level are characterized by the parameter g,
and the control objective is to maintain a con-
stant angular velocity at the bottom.

Similar models have been used to control pres-
sure fields in duct combustion dynamics, see De-
Queiroz and Rahn [2002]. The challenge in (6),
(7) is to design implementable controllers despite
the use of an infinite-dimensional system model.

The transfer function of (6) is obtained from:

G(&, S) — x(i’s) — l . (1 _q)es§+ (1 +Q)ei~vé
’ u(s) s (I—gle—(1+q)e’
which in view of (7) leads to G(s) = [G1;G2;G3] =
[G(0,s);G(1,5);sG(1,s)].
Putting G in feedback with the controller Ky =
[00 1] leads to G = G/(1+ G3), where

1 l—e*

s(1—q) _5(1—‘1)

Gls)=| 12 | + _QUe) =: G(s) + D(s).
S
1 Q2,2
2 2

(8)
Here G is real-rational and unstable, while
® is stable but infinite dimensional. = Now
we use_the fact that stability of the closed
loop (G + ®,K) is equivalent to stability of
the loop (G,feedback(K,®)) upon defining
feedback(M,N) :=M(I+NM)~'. The loop trans-
formation is explained in Fig. 4.

Figure 4:  Stability of the closed-loop (G +
®,K) is equivalent to stability of the closed-loop

(G,feedback(K,®)). See also Moelja and Meinsma
2003].

Using (8) we construct a finite-dimensional
structured controller K = K(x) which stabilizes



G. The controller K stabilizing G in (8) is
then recovered from K through the equation K=
feedback(K,®), which when inverted gives K =
feedback(K,—®). The overall controller for (6)
is K* = Ko+ K, and since along with K only delays
appear in @, the controller K* is implementable.

Construction of K uses SYSTUNE with pole
placement via TuningGoal.Poles, imposing that
closed-loop poles have a minimum decay of 0.9,
minimum damping of 0.9, and a maximum fre-
quency of 4.0. The controller structure is cho-
sen as static, so that x € R3. A simulation with
K* is shown in Fig. 5 (bottom) and some ac-
celeration over the backstepping controller from
Bresch-Pietri and Krstic [2014] (top) is observed.

time

Figure 5: Wave equation. Simulations for K obtained
by backstepping control (top) Bresch-Pietri and
Krstic [2014] and K* = Ky + K obtained by optimiz-
ing feedback(G,K) via SYSTUNE (bottom). Both
controllers are co-dimensional, but implementable.

5.2 Gain-scheduling control

Our last study is when the parameter g > 0 is un-
certain or allowed to vary in time with sufficiently
slow variations as in Shamma and Athans [1990].
We assume that a nominal g9 > 0 and an uncer-

tain interval [g,g] with go € (¢,9) and 1 & [g,q] are
given. B B B

The following scheduling scenarios, all lead-
ing to implementable controllers, are possi-
ble. (a) Computing a nominal controller K
at go as before, and scheduling through ®(gq),
which depends explicitly on ¢, so that K1) (¢q) =
Ko + feedback(K, —®(g)). (b) Computing K(g)
which depends on ¢, and using K(Z)(q) = Ko+
feedback(K(q), —®(q)).

While (a) uses (3) based on Apkarian and Noll
[2006Db,c] and available in SYSTUNE, we show
that one can also apply (3) to case (b). We use
Fig. 4 to work in the finite-dimensional system
(G(q),K(q)), where plant and controller now de-
pend on ¢, which is a parameter-varying design.

For that we have to decide on a parametric
form of the controller K(g), which we choose as

K(q,x) = K(q0) + (¢ — q0)Ki1 (x) + (¢ — 90)* K2 (x),

and where we adopted the simple static form
Ki(x) = [x1 x5 x3], K2 = [X4 X5 X¢|, featuring a to-
tal of 6 tunable parameters. The nominal K(go)
is obtained via (3) as above. For go = 3 this leads
to K(qo) = [—1.049 —1.049 —0.05402], computed
via SYSTUNE. B

With the parametric form K(g,x) fixed, we
now use again the feedback system (G(g),K(q)) in
Fig. 4 and design a parametric robust controller
using the method of Apkarian et al [2015a], which
is included in the SYSTUNE package and used by
default if an uncertain closed-loop is entered. The
tuning goals are chosen as constraints on closed-
loop poles including minimum decay of 0.7, min-
imum damping of 0.9, with maximum frequency
2. The controller obtained is (with go = 3)

K(g.x") = K(q0) + (¢~ q0)K1 (x") + (g~ q0)* K2 (x"),

with K, = [-0.1102,—0.1102,—0.1053], K, =
[0.03901,0.03901,0.02855], and we retrieve the fi-
nal parameter varying controller for G(g) as

k@ (q) =Ko+ feedbac:k(l?(q,x*)7 —®(q)).

Nominal and scheduled controllers are compared
in simulation in Figs. 6, 7, and 8, which indi-
cate that K?)(g) achieves the best performance
for frozen-in-time values g € [2,4]. All controllers
are easily implementable, since only real-rational
elements in combination with delays are used.
The non-smooth program (5) was solved with
SYSTUNE in 30s CPU on a Mac OS X with
2.66 GHz Intel Core i7 and 8 GB RAM. The
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Figure 6: Synthesis at nominal gy = 3. Simulations
of nominal K = K + feedback(K,®(3)) for ¢ =2,3,4.
Nominal controller is robustly stable over [g,7].

reader is referred to the MATLAB Control Tool-
box 2018b and higher versions for additional ex-
amples. More details on this study can be found
in Apkarian and Noll [2019].
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Figure 7: Method 1. K obtained for nominal g =3,
but scheduled K(g) = Ko + feedback(K,®(g)). Simu-
lations for ¢ =2 top, ¢ =3 middle, g =4 bottom
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