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Abstract—Consider a stable linear time-invariant system G(x)
with tunable parameters x ∈ Rn, which maps inputs w ∈
L2(Rm) to outputs z ∈ L2(Rp). Our goal is to find a choice of
the tunable parameters x∗ which avoids undesirable responses
of the system to past excitations known as system ringing. We
address this problem by minimizing the Hankel norm ‖G(x)‖H
of G(x), which quantifies the influence of past inputs on future
outputs.

I. INTRODUCTION

Ringing generally designates undesired responses of a sys-
tem to a past excitation. In electronic systems ringing arises
under various forms of noise, such as gate ringing in convert-
ers, undesired oscillations in digital controllers, or input ring
back in clock signals. In mechanical systems ringing effects,
when combined with resonance, may accelerate breakdown.
In audio systems ringing may cause echoes to occur before
transients.

In more abstract terms, ringing may be understood as a
tendency of the system to store energy, which is retrieved later
to produce undesired effects. One way to quantify this capacity
uses the Hankel norm of a transfer function, which measures
the effect of past inputs on future outputs.

Consider a stable LTI system

G :

{
ẋ = Ax+Bw

z = Cx
(1)

with state x ∈ Rnx , input w ∈ Rm, and output z ∈ Rp. If we
think of w(t) as an excitation at the input which acts over the
time period 0 ≤ t ≤ T , then the ring of the system after the
excitation has stopped at time T is z(t) for t > T . If signals
are measured in the energy norm, this leads to the definition

‖G‖H = sup
T>0

{(∫ ∞
T

z(t)2dt

)1/2

:

∫ T

0

w(t)2dt ≤ 1, w(t) = 0 for t > T

}
. (2)

Here our interest is in systems (1) with tunable parameters
x ∈ Rn, that is, systems of the form

G(x) :

{
ẋ = A(x)x+B(x)w

z = C(x)x
(3)

where A(x), B(x), C(x) depend smoothly on a design
parameter x varying in Rn or in some constrained subset of
Rn. Our goal is to tune x such that system ringing is avoided or

reduced. This leads to the Hankel norm optimization program

minimize ‖G(x)‖H
subject to G(x) internally stable

x ∈ Rn.
(4)

We will discuss instances, where program (4) may be of
interest. Then we present an algorithm to solve (4) based on
techniques from eigenvalue optimization. We present a non-
smooth optimization method, and a smooth relaxation based
on work of Y. Nesterov [7]. Applications are then presented
in the final sections.

II. HANKEL FEEDBACK SYNTHESIS

A first instance of (4) is Hankel feedback synthesis. Con-
sider an LTI plant P (s) in standard form

P :

ẋz
y

 =

A B1 B2

C1 D11 D12

C2 D21 0

xw
u

 , (5)

where x ∈ Rnx is the state, u ∈ Rm2 the control input, w ∈
Rm1 the exogenous input, y ∈ Rp2 the measured output, and
z ∈ Rp1 the regulated output,

P (s) =

[
C1

C2

]
(sI −A)−1

[
B1 B2

]
+

[
D11 D12

D21 0

]
.

Let u(s) = K(s)y(s) be a dynamic output feedback control
law for (5). Then, the closed-loop transfer function of the
performance channel channel w → z is obtained as

Tw→z(K) = P11 + P12K(I − P22K)−1P21.

Substituting u = Ky into (5), we get

Tw→z(K) :

[
ẋ
z

]
=

[
A(K) B(K)
C(K) D(K)

] [
x
w

]
, (6)

where

A(K) =

[
A+B2DKC2 B2CK

BKC2 AK

]
,

B(K) =

[
B1 +B2KKD21

BKD21

]
,

C(K) := [C1 +D12DKC2 D12CK ] ,

D(K) := D11 +D12DKD21.

We assume that D(K) = 0, which can be arranged e.g. by
standard assumption, e.g., D11 = 0 and either D21 = 0 or
D12 = 0 or K strictly proper.



Minimizing the effects of past inputs on future outputs
by way of an appropriate feedback may now be cast as the
optimization program

minimize ‖Tw→z(K)‖H
subject to K stabilizes (5)

K = K(x),x ∈ Rn.
(7)

Here K(x) refers to a controller which is structured in the
sense of [1], and x stands for the tunable parameters of K(x).
Typical examples of structured controllers include PIDs

Kpid(x) =

 0 0 ri
0 −τ rd
1 1 dK

 ,
where x regroups the parameters ri, rd, dK , τ , or observer-
based controllers, decentralized, fixed reduced order con-
trollers, and more generally, control architectures combining
basic building blocks like PIDs with filters, feed forward
blocks, and much else (see [1], [5]). It is convenient to write
A(x) = A(K(x)), etc., and Tw→z(x) = Tw→z(K(x)).

III. SYSTEM REDUCTION

System reduction is the most widely known application of
Hankel norm optimization (4). It may be considered a special
case of Hankel controller synthesis (7). Given a stable system

G :

{
ẋ = Ax+Bw

z = Cx+Dw
(8)

of order n, we wish to find a stable system

Gred :

{
ẋ = Aredx+Bredw

z = Credx+Dw
(9)

of reduced order nred < n with input-output behavior as close
as possible to the original system G. If the model matching
error e = (G−Gred)w is measured in the Hankel norm

minimize ‖G−Gred‖H
subject to G−Gred internally stable

x = (Ared, Bred, Cred),
(10)

then (10) is a special case of (7), where we define plant and
controller as

P :

 A B 0
C D −I
0 I 0

 K :

[
Ared Bred

Cred D

]
, (11)

the tunable parameters x being the entries of Ared, Bred, Cred.
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Glover [6] has shown how to compute an explicit solution
to (10) when the matrices Ared, Bred, Cred are not further
restricted to have specific pattern. Here we use this as a blind
test of algorithm 2 by applying it to problem (10).

Recall that the use of the Hankel norm in system reduction
(10), (12) is to some extent artificial and mainly motivated by
the fact that it leads to a linear algebra solution. The more
natural approach would be H∞-system reduction

minimize ‖G−Gred‖∞
subject to G−Gred internally stable

x = (Ared, Bred, Cred, Dred),
(13)

which is usually considered too demanding algorithmically.
This has changed with the solution of the structured H∞-
control problem in [1]. The tool hinfstruct developed
since [1], [2], [8] and made available through [14] since
2010, allows to perform H∞-system reduction as a special
case of structured H∞-synthesis using (11). Solving (13) by a
nonsmooth optimization method was first proposed in [1], and
in section IX we will present tests related to (10) and (13).

IV. MAXIMIZING THE MEMORY OF A SYSTEM

Within the present framework it is also possible to maximize
the memory of a system G via feedback if a reference system
Gref with desirable memory properties is used. As an example
we consider a 2-DOF synthesis scheme of the following form:

-q
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−

- Gref
yref

6
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(14)

Assuming that Gref has desirable memory features which do
not lead to ringing, the idea is to tune the parameters in feed-
forward filter F and controller K in such a way that G in
closed loop follows Gref , independently of the input w. In
other words, the undesirable part of the memory of G, which
contributes to the mismatch z1 = y − yref , is reduced by
minimizing ‖Tw→z1(F,K)‖H . It may be beneficial to arrange
this by adding a constraint ‖z2‖H 6 γH or ‖z2‖∞ 6 γ∞,
where z2 = u+v, in order to avoid exceedingly large controller
actions. If ‖z2‖H 6 γH is used, this problem can be cast as
a special case of (7), where plant and decentralized controller



structure are:

P :


A 0 0 B B
0 Aref Bref 0 0
C −Cref −Dref D D
0 0 0 I I
−C 0 I −D −D
0 0 I 0 0

 ,

K :


AF 0 BF 0
0 AK 0 BK
CF 0 DF 0
0 CK 0 DK

 .
Notice that

F :

{
ẋF = AFxF +BFw

v = CFxF +DFw
,K :

{
ẋK = AKxK +BKe

u = CKxK +DKe

can be further structured if we wish. In our experiment we
will use a reduced-order filter F , and a PID structure for K.

V. HANKEL OPERATOR

As is well known, a representation of the Hankel norm
‖G‖H amenable to computations, is obtained through the
observability and controllability Gramians. Using x(−∞) = 0,
the solution of (1) satisfies

y(t) =

∫ t

−∞
CeA(t−τ)Bu(τ)dτ,

and if we focus on input signals u− that live for times t < 0
and vanish for t > 0, then the output restricted to t > 0 is

y+(t) =

∫ 0

−∞
CeA(t−τ)Bu−(τ)dτ, t > 0.

Now the Hankel operator ΓG : L2(−∞, 0] −→ L2[0,∞),
defined by

(ΓGu)(t) =

∫ 0

−∞
CeA(t−τ)Bu(τ)dτ, t > 0,

maps past inputs u− to future outputs y+ = ΓGu−. Using

〈u,Γ∗Gy〉L2(−∞,0] = 〈ΓGu, y〉L2[0,∞)

=

∫ ∞
0

(∫ 0

−∞
u>(τ)B>eA

>(t−τ)C>dτ

)
y(t)dt

=

∫ 0

−∞
u>(τ)

(∫ ∞
0

B>eA
>(t−τ)C>y(t)dt

)
dτ,

it follows that

(Γ∗Gy)(τ) =

∫ ∞
0

B>eA
>(t−τ)C>y(t)dt, τ 6 0.

Let X and Y be the controllability and observability Gramians
of the system, i.e.

X =

∫ ∞
0

eAtBB>eA
>tdt, Y =

∫ ∞
0

eA
>tC>CeAtdt.

Suppose that σ is a nonzero singular value of ΓG and u is a
eigenvector corresponding to the eigenvalue σ2 of Γ∗GΓG, i.e.
Γ∗GΓGu = σ2u. Set y(t) = (ΓGu)(t) = CeAtx0 with

x0 =

∫ 0

−∞
e−AτBu(τ)dτ.

Then

σ2u = Γ∗Gy = B>e−A
>τ

∫ ∞
0

eA
>tC>y(t)dt

= B>e−A
>τ

∫ ∞
0

eA
>tC>CeAtx0dt

= B>e−A
>τY x0.

Therefore,

σ2x0 =

∫ 0

−∞
e−AτBσ2u(τ)dτ

=

∫ 0

−∞
e−AτBB>e−A

>τY x0dτ = XY x0.

We see that x0 6= 0 since otherwise σ2u = 0 which is
impossible. Thus, σ2 is an eigenvalue of XY . Conversely,
if σ2 6= 0 is an eigenvalue and x0 6= 0 is a corresponding
eigenvector of XY , i.e. XY x0 = σ2x0, then by setting
u = B>e−AτY x0 we obtain u 6= 0 and Γ∗GΓGu = σ2u.
Hence,

σ2
i (ΓG) = λi(XY ),

where σi(T ) denotes the ith singular value of T and λi(A)
denotes the ith eigenvalue of A. In particular, since Γ∗GΓG is
self-adjoint,

‖ΓG‖ = sup
06=u−∈L2(−∞,0]

‖y+‖2
‖u−‖2

= σ1(ΓG) =
√
λ1(XY ). (15)

This agrees with the definition (2) of the Hankel norm ‖G‖H
of the stable LTI system G if we truncate the input signal
at −T < 0, introduce a supremum over T , and use time-
invariance to move to the right.

VI. CLARKE SUBDIFFERENTIALS OF THE HANKEL NORM
IN CLOSED-LOOP

In this section we prepare our non smooth optimization
approach by computing Clarke subgradients of the closed-loop
objective function

f(x) = ‖Tw→z(x)‖2H = λ1(X(x)Y (x))

of (4). Here λ1 denotes the maximum eigenvalue of a sym-
metric or Hermitian matrix, and X(x) and Y (x) are the
controllability and observability Gramians that can be obtained
from the Lyapunov equations

A(x)X +XA>(x) + B(x)B>(x) = 0, (16)

A>(x)Y + YA(x) + C>(x)C(x) = 0, (17)

with A(x), etc. denoting closed loop data (6). Notice that
despite the symmetry of X and Y the product XY need not



be symmetric, but stability of A(x) in closed-loop guarantees
X � 0, Y � 0 in (16), (17), so that we can write

λ1(XY ) = λ1(X
1
2Y X

1
2 ) = λ1(Y

1
2XY

1
2 ),

which brings us back in the realm of eigenvalue theory of
symmetric matrices.

Using the spectral abscissa α(A) = max{Re(λ) :
λ eigenvalue of A} of a square matrix A, we can replace
program (7) by the following program

minimize f(x) := ‖Tw→z(x)‖2H
subject to c(x) := α(A(x)) + ε 6 0

(18)

for some fixed small ε > 0. We have X(x) � 0 and Y (x) � 0
on the feasible set C = {x : c(x) 6 0}, so that f is well-
defined and locally Lipschitz on C.

Let Mn,m be the space of n ×m matrices, equipped with
the corresponding scalar product 〈X,Y 〉 = Tr(X>Y ). The
space of m×m symmetric matrices is denoted Sm. We define

Bm := {X ∈ Sm : X is positive semidefinite,Tr(X) = 1}.

Set Z := X
1
2Y X

1
2 , Zi(x) := ∂Z(x)

∂xi
, i = 1, . . . , n and pick Q

to be a matrix whose columns form an orthonormal basis of
the t-dimensional eigenspace associated with λ1(Z). By [9,
Theorem 3], the Clarke subdifferential of f at x is the set

∂f(x) = {(Tr(QUQ>Z1(x)), . . . ,Tr(QUQ>Zn(x))) : U ∈ Bt}.

It now remains to compute Zi(x). We have

Zi(x) = DKZ(x)Ki(x) = ϕiY X
1
2 +X

1
2ψiX

1
2 +X

1
2Y ϕi,

(19)
where Ki(x) := ∂K(x)

∂xi
, ϕi := DKX

1
2Ki(x), ψi :=

DKY Ki(x). From (16) and (17), and putting φi :=
DKXKi(x), we obtain

Aφi + φiA> = −B2Ki(x)C2X −X(B2Ki(x)C2)>

−B2Ki(x)D21B> − B(B2Ki(x)D21)> (20)

A>ψi + ψiA = −(B2Ki(x)C2)>Y − Y B2Ki(x)C2

− (D12Ki(x)C2)>C − C>D12Ki(x)C2, (21)

using DKAKi(x) = B2Ki(x)C2, DKBKi(x) =
B2Ki(x)D21, DKCKi(x) = D21Ki(x)C2. Since
X

1
2X

1
2 = X ,

X
1
2ϕi + ϕiX

1
2 = φi. (22)

Altogether, we obtain algorithm 1 to compute subgradients
of f at x. Here, depending on the controller structure K(x),
which is usually affine in x, the Ki(x) may be pre-calculated
to accelerate the algorithm. Similar pre-calculations are pos-
sible in (19)-(22).

VII. PROXIMITY CONTROL ALGORITHM

In this section we present the main algorithm 2 to solve (4),
respectively, (7), where the constraint of internal stability in
(4) is addressed through (18). Our approach uses a progress
function at the current iterate x,

F (·,x) = max{f(·)− f(x)− µc(x)+, c(·)− c(x)+},

Algorithm 1. Computing subgradients.

Input: x ∈ Rn. Output: g ∈ ∂f(x).
1: Compute Ki(x) = ∂K(x)

∂xi
, i = 1, . . . , n and X,Y solu-

tions of (16), (17), respectively.
2: Compute X

1
2 and Z = X

1
2Y X

1
2 .

3: For i = 1, . . . , n compute φi and ψi solutions of (20) and
(21), respectively.

4: For i = 1, . . . , n compute ϕi solution of (22) and Zi(x)
using (19).

5: Determine a matrix Q whose columns form an orthonor-
mal basis of the t-dimensional eigenspace associated with
λ1(Z).

6: Pick U ∈ Bt, and return g :=
(Tr(QUQ>Z1(x)), . . . ,Tr(QUQ>Zn(x))), a
subgradient of f at x.

which is successively minimized. Antecedents of this idea
can for instance be found in [10] , [11], and in our own
contributions [5], [8].

In [7] Nesterov proposes a relaxation which solves specific
convex nonsmooth programs by a smooth relaxation with a
lower complexity than the convex bundle method. His method
replaces f(x) = λ1(Z(x)) by the smooth approximation

fµ(x) := µ ln

[
m∑
i=1

eλi(Z(x))/µ

]

with a tolerance parameter µ > 0. We see that

f(x) 6 fµ(x) 6 f(x) + µ lnm.

Therefore, to find an ε-solution x̄ of problem (18), we find an
ε
2 -solution of the smooth problem

min{fµ(x) : c(x) 6 0} (23)

with µ = ε
2 lnm . We have used this idea to initialize the non

smooth algorithm 2. The smoothed problem (23) can be solved
using standard NLP software.

VIII. EXPERIMENT 1: HANKEL FEEDBACK SYNTHESIS

In this section we apply program (7) to a classical 1-DOF
control system design, using an example from [4, Chapter 2].
The open-loop system G, exogenous input w and regulated
output z, are given by

G =
10− s

s2(10 + s)
, w =

 dny
r

 , z =

[
yp
u

]
.

The corresponding plant is

P :

 A B1 B2

C1 0 D12

C2 D21 0

 ,



Algorithm 2. Proximity control with downshifted tangents

Parameters: 0 < γ < γ̃ < 1, 0 < γ < Γ < 1, 0 < q < ∞,
0 < c <∞.

1: Initialize outer loop. Choose initial iterate x1 and matrix Q1 =
Q>1 with −qI � Q1 � qI . Initialize memory control parameter
τ ]1 such that Q1 + τ ]1I � 0. Put j = 1.

2: Stopping test. At outer loop counter j, stop if 0 ∈ ∂1F (xj ,xj).
Otherwise, goto inner loop.

3: Initialize inner loop. Put inner loop counter k = 1 and initialize
τ1 = τ ]j . Build initial working model

F1(·,xj) = g>0j(· − xj) + 1
2
(· − xj)>Qj(· − xj),

where g0j ∈ ∂1F (xj ,xj).
4: Trial step generation. Compute

yk = argminFk(y,xj) +
τk
2
‖y − xj‖2.

5: Acceptance test. If

ρk =
F (yk,xj)

Fk(yk,xj)
> γ,

put xj+1 = yk (serious step), quit inner loop and goto step 8.
Otherwise (null step), continue inner loop with step 6.

6: Update working model. Generate a cutting plane mk(·,xj) =
ak + g>k (· − xj) at null step yk and counter k, where

gk ∈ ∂1F (yk,xj)−Qj(y
k − xj),

ak = tk(xj)− sk,
tk(·) = F (yk,xj)− 1

2
(yk − xj)>Qj(y

k − xj)

+ g>k (· − yk),

sk = tk(xj)+ + c‖yk − xj‖2.

Compute aggregate plane m∗k(·,xj) = a∗k + g∗>k (· − xj) at yk,
where

g∗k = (Qj + τkI)(xj − yk),

a∗k = Fk(yk,xj)− 1
2
(yk − xj)>Qj(y

k − xj)

+ g∗>k (xj − yk).

Build new working model

Fk+1(·,xj) = max {Fk(·,xj),mk(·,xj) + F [2](·,xj),

m∗k(·,xj) + F [2](·,xj)
}
,

with F [2](·,xj) = 1
2
(· − xj)>Qj(· − xj).

7: Update proximity control parameter. Compute secondary
control parameter

ρ̃k =
Fk+1(yk,xj)

Fk(yk,xj)

and put

τk+1 =

{
τk if ρ̃k < γ̃,

2τk if ρ̃k > γ̃.

Increase inner loop counter k and loop back to step 4.
7: Update Qj and memory element. Update matrix Qj → Qj+1

respecting Qj+1 = Q>j+1 and −qI � Qj+1 � qI . Then store
new memory element

τ ]j+1 =

{
1
2
τk+1 if ρk < Γ,

1
4
τk+1 if ρk > Γ.

Increase τ ]j+1 if necessary to ensure Qj+1+τ ]j+1I � 0. Increase
outer loop counter j and loop back to step 2.

where

A =

−10 0 0
1 0 0
0 1 0

 B1 =

1 0 0
0 0 0
0 0 0

 B2 =

1
0
0


C1 =

[
0 −1 10
0 0 0

]
D12 =

[
0
1

]
C2 =

[
0 1 −10

]
D21 =

[
0 −1 1

]
.

Following [4], we use the controller structure

K(x) =
as2 + bs+ c

s3 +ms2 + ns+ p
=


−m −n −p 1

1 0 0 0
0 1 0 0
a b c 0

 ,
where x = [m,n, p, a, b, c]> regroups the unknown tunable
parameters. This allows us to compare our results with the
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Fig. 1. White noise (left), sinc (middle), and 0-1 signal, truncated at T = 3.
Plots show ringing for controllers Kb (blue), KH (red), and K∞ (green)..

methods in [4], e.g. with the controller

Kb =
219.6s2 + 1973.95s+ 724.5

s3 + 19.15s2 + 105.83s+ 965.95

synthesized in that reference. We also compare the optimal
Hankel controller KH to the optimal H∞ controller K∞ with
the same structure,

K∞ =
7941.9s2 + 13028.4s+ 3611.6

s3 + 3206.2s2 + 12528.3s+ 11078.3
,

which we computed using the Matlab function hinfstruct
based on [1].

In order to compute KH , we start algorithm 2 at an initial
stabilizing controller

x1 = [3206.2, 12528.3, 11078.3, 7941.9, 13028.4, 3611.6]>

with f(x1) = 11.0658, using the stability constraint c(x) =
α(A(x))+ε with ε = 10−8. We used the following two-stage
stopping test. If the inner loop at xj finds a serious iterate
xj+1 satisfying

|f(xj+1)− f(xj)|
1 + |f(xj)|

< 10−5,

then xj+1 is accepted as the final solution. On the other hand,
if the inner loop is unable to find a serious step and provides
three consecutive unsuccessful trial steps yk satisfying∥∥xj − yk

∥∥
1 + ‖xj‖

< 10−5



or if a maximum number of 50 allowed steps k in the inner
loop is reached, then we decide that xj is already optimal.
Both tests are based on the observation that 0 ∈ ∂1F (xj ,xj)
if and only if yk = xj is solution of the tangent program in
the trial step generation (see [5] for theoretical results). The
optimal controller obtained was

x∗ = [3202.0, 12990.8, 11497.7, 7650.0, 12408.9, 3513.9]>

with f(x∗) = 10.7494 meaning ‖Tw→z(P,KH)‖H = 3.2786,
where

KH := K(x∗) =
7650.0s2 + 12408.9s+ 3513.9

s3 + 3202.0s2 + 12990.8s+ 11497.7
.

IX. EXPERIMENT 2: HANKEL SYSTEM REDUCTION

Our tests use a 15th order Rolls-Royce Spey gas tur-
bine engine model, decribed in [12, Chapter 11], with data
available for download on I. Postlethwaites’s homepage as
aero0.mat. For k = 1, 2, . . . , 14, using algorithm 2, we
computed reduced-order systems Gred,k of order k, and com-
pared the achieved objective value in (7), which in this case
is f(x) = ‖G − Gk(x)‖H , with the theoretically known
optimal Hankel norm approximation error ‖G−Gred,k‖H =
σk+1(G), the (k + 1)-st Hankel singular value of G. This
error is equal to the error obtained by using the Hankel norm
approximation algorithm.

For illustration we also used the gas turbine engine model to
test H∞-norm system reduction (13) by computing a model
Gred,∞ of reduced order k = 6 for the 15th order model
G. After defining P according to (11), we use the function
hinfstruct [14], built on the prototype [1], to compute
‖G−Gred,∞‖∞ = 0.169. The procedure may be accelerated
by choosing a Hankel norm reduction Gred to initialize the
optimization, so that the minimum is reached very fast. It is
interesting to notice that ‖G − Gred‖∞ = 0.181, so contrary
to what is often claimed in the literature, in the present case
the Hankel norm reduction Gred is not a good approximation
of Gred,∞, as can also be seen in Fig. 2.
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Fig. 2. Impulse responses for three channels of G (continuous lines),
compared with with reduced models (dashed): Match DC (left), truncated
(middle left), Hankel (middle right), H∞ (right).

X. EXPERIMENT 3: MAXIMIZING MEMORY

Here we use an illustrative example (14), where G and Gref

are defined as

G(s) =
1

s− 1
, Gref =

11.11

s2 + 6s+ 11.11
.

Filter F and controller K are structured as:

F (s) =
as+ b

s2 + cs+ d
, K(s) =

m

s+ n
.

We have added a low-pass filter W1(s) = 0.25s+0.6
s+0.006 to the

tracking signal z1, and a weighting filter W2 = 0.01 on
the control output z2 = u + v. The Hankel controller KH

computed by algorithm 2 delivers

FH(s) =
−10.3967s− 337.9222

s2 + 152.5995s+ 337.8865
,KH(s) =

14.7058

s+ 7.0369
.

For comparison, we have also synthesized the optimal H∞
control architecture of the same structure, which leads to

F∞(s)=
−10.3956s− 337.9303

s2 + 152.6028s+ 337.8770
,K∞(s) =

14.7358

s+ 6.9270
.

The achieved H∞ norms are ‖Tw→(W1z1,W2z2))(K∞)‖∞ =
0.0193 < ‖Tw→(W1z1,W2z2))(KH)‖∞ = 0.0200 while
the achieved H∞ norms are ‖Tw→(W1z1,W2z2))(KH)‖H =
0.0158 < ‖Tw→(W1z1,W2z2))(K∞)‖H = 0.0175.

XI. CONCLUSION

We have proposed a new methodology to reduce unwanted
ringing effects in a tunable system G(x). The problem was
addressed by minimizing the Hankel norm ‖G(x)‖H of G(x),
cast as an eigenvalue optimization program for the associated
Hankel operator. We have proposed a non-smooth algorithm,
which was shown to solve a variety of test problems success-
fully, and whose convergence to a critical point was previously
established [5]. A smooth heuristic, based on work of Nesterov
[7], was added and used to initialize the algorithm with a
favorable initial seed.
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