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Abstract

Maximum entropy spectral density estimation is a technique for reconstructing an unknown
density function from some known measurements by maximizing a given measure of entropy
of the estimate. Here we present a variety of new entropy measures which attempt to con-
trol derivative values of the densities. Our models apply among others to the inference
problem based on the averaged Fisher information measure. The duality theory we develop
resembles models used in convex optimal control problems. We present a variety of exam-
ples, including relaxed moment matching with Fisher information and best interpolation
on a strip.
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1 Introduction

We consider the problem setting of spectral density estimation, where we wish to reconstruct an
unknown density function z(t) > 0 from a set of known measurements

(1.1) /ai(t)(l’?(t) it = b, i=1,...,N.
T
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Here the b; might be known Fourier coefficients or Hausdorff moments of 2(t). Such problems
occur in various applications such as time series analysis, problems of image reconstruction,
speech processing, or in crystallography. See E.T. Jaynes [20], J. Skilling [34], G.J. Erickson, C.R.
Smith [35], or J. Navaza [24] for background information. In analogy with the Maximum Entropy
Principle we give preference to a solution x(t) of (1.1) which maximizes a given measure of
entropy, H(x), or equivalently, minimizes the corresponding information measure, I(x) = —H(x),
usually an integral of the form

(1.2) Ie) = /T oz (t)) dt.

Here ¢ : R — RU{+00} is a proper lower semi-continuous convex function. The entropy/information
measures most frequently encountered in practice are the Boltzmann-Shannon and the Burg en-
tropy/information measures, defined respectively by

R o _ [ wlogr x>0 oy _ [ —=logx x>0

We refer the reader [2, 3, 4, 10, 35, 22, 34] for a presentation of the corresponding mathematical
models.

The purpose of our present investigation is to discuss extended entropy/information models,
which include entropies like (1.3), and at the same time allow for objectives that attempt to
control derivative values of the densities 2(t). In particular, our aim was to include the averaged
Fisher information measure, which is related to the Fisher information known in the realm of
statistical decision making. This requires models of the form

(1.4) Iy(x) = /T(/b(a:(t)./;’l;'(t))dt,

where ¢ : R? — RU {400} is now proper lower semi-continuous and convex on R?. For instance,
the averaged Fisher information Ir = I, is then defined as

2

= yr >0
(1.5) op(x,v) = { 0 ,r=v=0.

400, elsewhere

The Fisher information has been introduced by R.A. Fisher [15] in the realm of Maximum
Likelihood Estimation, while its multidimensional version has first been considered by J.L. Doob
[11]. We refer to the Appendix I for a brief outline of the origin of these information functions
and their relation to what we call the averaged Fisher information. The idea of using the model
(1.4), (1.5) for the inference type problems (1.1) has been proposed by R.N. Silver [36].

The basic mathematical model we are discussing is the following:

minimize Iy(v) = / a(t), 2! (1)) dt
(

(P) subject to @ € A T),
(T = =1,...,N,
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where A(T) is the space of absolutely continuous functions on a finite interval T = [ty, ], and
where a; € L(T). Notice that from a modelling viewpoint, it seems not entirely logical that
the inclusion of the derivative values of the densities extends only to the objective, and not to
the constraints. However, our approach applies equally well to more general constraints, some
of which are discussed among the examples in Section 5. Mainly for the sake of simplicity, we
restrict our general outline to constraints of the form Ax = 0.

Similar to the case of the information models (1.3), the key idea in analyzing problem (P)
lies in applying convex programming duality theory. The details are presented in the principal
Sections 3 and 4. It turns out that the duality we obtain resembles models occurring in optimal
control and variational problems such as discussed for instance by R.T. Rockafellar [30, 31, 32],
or W.W. Hager and S.K. Mitter [17], and we therefore make our arguments as general as possible
in order to indicate how to include these situations.

The principal aim of our presentation is to obtain explicit dual models for the spectral density
estimation problem (1.1) which in particular allow for an easy numerical treatment. It should
be emphasised that despite the different nature of the constraint structure and the fact that our
objectives (1.4) are autonomous, the principal difference with more standard optimal control
problems lies in the fact that the integral functionals I, typically take on finite values only on
very small subsets of the underlying space A(T). As we shall see, this has the effect that some
of the standard techniques and results from optimal control theory do not apply directly in our
situation.

As will be seen, duality eventually provides the clue to translating problem (P) into a numer-
ically tractable formulation (see Section 4). The presentation of numerical results for the case of
the Fisher information will be presented in [6].

Notation

Throughout the paper we will use the following notations. The interval T" will be fixed as [0, 1].
We denote the space of absolutely continuous functions having derivatives in £,(7) by A,(T),
that is, A (T) = {x € L(T") : 2" € L,(T)}, and with A(T) = A (T"). The function ¢(x,v)
will always be proper lower semi-continuous and convex, ¢ : R* — RU {+oc}. In order to avoid
pathological cases, we assume that dom (¢) has nonempty interior. In particular, ¢ is then a
normal convex integrand in the sense of [28]. We define the integral functional I4(-) on the space

A(T) by .
I(@) = [ ola(t)o/(t)dt, re AT).

where dt refers to Lebesgue measure. Similarly, on separating the variables x and 2/, we obtain
the integral functional J, (2, y) defined by

Tlw.y) = [ oalthyt)dt,  x e Lu(T). y € Li(T)

It follows from the results in [28, I, §2] that J,(-,-) is a proper lower semi-continuous convex
integral functional on the



space Loo(T) X L1(T'). As Jy(x,2") = I4(x) for the » € A(T), it is now routine to check that
I, is proper lower-semi continuous and convex on the space A(T).

2 Existence and Convergence

In this section we first consider the problem of existence and uniqueness of solutions and a
Lagrangian duality theory for problem (P), formulated as follows:

minimize  I,(x) = / o(a(t), 2 (t))dt
Jr
(P)
subject to Ax =0, x¢€ A(T),

where b = (b;)~,. and where A denotes the operator A : £,(T) — RY, defined as Ar =
(fra;(H)x(t)dt)X, a; € Loo(T). Here Iy(x) = +00 outside the set

dom Iy(x)={x € A(T): o(x(-),2'(-)) € L1(T)}.

We assume throughout that problem (P) is feasible, that is, that there exists zy € dom I, fitting
the data Axy = b. In the standard cases where the a; represent either algebraic or trigonometric
moments, a method for testing feasibility of the data has been presented in [2]. The value of (P)
is then defined as V(P) = inf{I,(x) : Ax = b} € RU{—oc}.

In the case of the Fisher-information function we have the following result.

Theorem 2.1 Consider the problem (P) for the Fisher information Ir(-). Suppose 1 is in the
linear hull of ay,... ay, i.e., 1 € lin {ay,...,ay}. Then (P) has a unique optimal solution

T € Ay(T).

Proof. Instead of solving problem (P) directly, we consider the transformation x = y* 2/ =
2yy’, which turns (P) into the equivalent and more standard nonconvex problem

minimize  ||y/||3 = /1 Y (t)2dt
(P)
subject to y € Ao(T), Ay? =b.
Observe here that v € dom Ip, ie., 2/x € L£y(T) if and only if ¥/ € Lo(T), or rather, if
y € Ay(T), and that the transformation makes sense since 2'(t) = 0 for almost all ¢ in the set
{t € T : 2(t) = 0}. Therefore, an optimal solution 7 for (P) gives rise to an optimal solution
T =7 for (P).

The existence of a solution for (P) follows from standard techniques of variational calculus,
once it becomes clear that any minimizing sequence {y,, } must be bounded. To prove this, all we
have to check that the sequence {y,,(0)} is bounded. Assume on the contrary that |y,,(0)] — +oc.
By assumption we have 1 € lin {ay,...,ax}, and we may therefore assume for simplicity that
a; =1 on T. Then we have



|Yun ()]

vV

13
Y (0)] — ‘/0 Y (s )(]s‘
> [y (0)] = [lgn |t = +o0,

vV

since ||y, ]l1 < M < 4o by uniform boundedness, and this contradicts

) 1/2 1/2
/ |y |t < ( / :l/:;,df) < / df)
T T T

= n/?. meas(T)'/? < 4o0.

SO ¥, (0) must be bounded, and this provides the tool for proving the existence of an optimal
solution. Since this is now a standard argument, we leave the details to the reader.

Returning to the original problem (P), we show that its solution is unique. Let xy, x5 be two
optimal solutions of (P), then by convexity, %(([] + x9) is again an optimal solution of (P). This

implies
/ / () +75)°
T Il N T+ xo ’

so together with the fact that 2/(¢) =0 almost everywhere on the set {t € T : z(t) = 0}, we get

ahwo — aha)?
/T( 12 — Xy 1) —0,

r1r9(2) + 2)

and this implies 2} 2o = 242y, a.e. Since [, x| = [; 29 by assumption, we have x; = x,. O

Remark. The present technique for proving the existence of a solution for the Fisher problem
(P) does not apply to more general situations. Equally, the usual control type existence proofs
do not work since they either require an objective ¢(x,v) which is everywhere defined, or at
least need some form of directional Lipschitz behaviour of ¢(x,v) or other types of regularity
conditions which are typically violated for the type of functionals considered here; see [23], or
[7, 8] for a state of the art discussion. Section 4 will present a method for proving existence for
more general objectives.

Let us now consider the problem of convergence. Suppose the sequence {a;} is weak star
densely spanning in £,(7T), or equivalently, that there is at most one function 7 € £4(T)
satisfying [, a;(6)7(t)dt = b; for i = 1,2,.... For fixed N € N let (Py) denote the problem so
far denoted by (P), and suppose each (Py) has a unique optimal solution . The convergence
problem asks whether xy converges to the unknown underlying density 7 as N — 400, and if
so, in which sense.

Theorem 2.2 For the Fisher information Ip(-), and with a; = 1, suppose every (Py ) is feasible
with unique optimal solution xy. Suppose (i) the values V(Py) are bounded. Then there exists
a unique T € dom Ip(-) satisfying [p a;T = b; for alli =1,2,..., and we have ||xy — Z||oc — 0
and |2’y — ¥l = 0 as N — oo. Conversely, (ii), if the values V(Py) tend to 400, there is no
function x € dom Ip(-) satisfying [, a;x =b; for alli=1,2,....

Ut



Proof. Working in the transformed problems ( Py ) as formulated in the proof of Theorem 2.1,

let YN be the unique nonnegative solutionwof (Pj\/’) satisfying xy = y?\r. Clearly 0 < V(Ry) <
V(Pyy1) < oo. Assume first (i) that V(Py) < M < oo. Then the sequence (yy) is weakly
relatively compact, and therefore has a weakly convergent subsequence in Lo(T'), denoted (v )

again. But yx(0) is bounded by the argument presented in the proof of Theorem 2.1, so by

Arzela-Ascoli, yx has a || - [|o-convergent subsequence. Say yy — yoo it ||« ||loo, With gy — ¢

weakly in Lo(T). Tt follows from norm convergence that [, a;y> = b; for every i, so y2 =: T,

and y._ € Lo(T) gives T € dom Ip. Tt follows from the Kadec-Klee property of the norm || - |2

in Lo(T) that vy — vy weakly in tandem with lim sup||y/y|le < ||v4ll2 imply ¥y — ¢/ in || - ||
v

This proves 2y = 2ynyy — T = 2y ¥, in || - ||2. Notice here that y.. is feasible for (Py), hence
¥ ll2 < ||¥]|2. Thus the entire sequence converges as claimed.

On the other hand (ii), if V/(Py) — 400, then no x € dom Ip may satisfy all the moment
conditions, for otherwise x would be feasible for all (Py), giving V(Py) < Ip(z) < o0. O

Remarks. 1) As we will see later on, much more can be said about the optimal solution & for
the Fisher moment matching problem. For instance, Z will turn out to be an analytic function
if the a; are chosen as analytic, and 7 will be at least of class C? even when the a; are only
assumed continuous.

2) For the algebraic or trigonometric moments «;, and under an additional smoothness as-
sumption on the solution ¥ € dom I, one may give rates of convergence for |2’y — 7|2 — 0 and
|zn — Z||ac — 0. See [26].

The averaged Fisher - information (1.5) may be considered as a special case of a more general
class of integrands of the form

vp(2)  fora >0
(2.1) d(x,v) =< 0TY(v) fora =

i

+o0 for x < 0.

Here ¢ : R — RU{+o00} is lower semi-continuous proper convex, its domain includes the half line
[0,400), and 07¢) denotes its recession function (see [27]). The class (2.1) was considered in [3]
in a different context, and it was referred to as the Csiszar - distances. The case of the Fisher-
information is recovered by choosing ¢(t) = #>. In order to obtain results for the integrands (2.1)
which extend Theorems 2.1 and 2.2., we need to impose the following assumptions on :

1. 7 is strictly convex on its domain;
2. 1 is coercive, that is (1) /[t|] — o0 as |t| — +oo.

Notice that condition (2) here simplifies the definition of ¢ in (2.1) above, since we then have
0 (v) = +oo for v # 0, 01(0) = 0. As we will see in Section 4, Theorem 2.1 may be extended
to the Csiszar class by means of the bidual approach.

In the second part of this Section, we address the duality of problem (P) when considered
as an infinite dimensional convex optimization program. This requires introducing a Lagrangian
formulation for (P). Let us consider the following first Lagrangian



Li(x;N) = Iy(x)+ (N, Az —b)
N

(2.2) = /j o(a(t), 2'(t)) dt—i—Z)\ </ z‘)a()dt—bi)7

with @ € A(T),\ € RY, taking on values in RU {+o00}. The duality arising from L;(x; \) will
be discussed presently. There is, however, a second possibility for a Lagrangian duality, which
arises from separating the variables @ and 2/. The corresponding second Lagrangian is

Lo(x,y;w, N) = Ju(a,y) + (w2’ —y) + (A, Av —b)
(2.3) = / Ha(t), y(t)) dt —I—/ w( ) —y(t))dt + Z/\ (/ (t)dt — b)

with o € A(T), y € Li(T), w € L(T)* = L(T), A € RY. The corresponding duality will be
discussed in Section 3.

Let us start by considering the first Lagrangian Ly(x; A). Since the associated duality resem-
bles more standard techniques, we shall be very brief here, pointing out only the major difference
of our type of programs (P) with optimal control type situations.

Notice first that the primal program (P) admits the equivalent formulation

(P) minimize  sup Li(x;A) subject to x € A(T).
AerN

We define the corresponding dual program as

(Py) maximize 1/141(1“1 Li(x;)\) subject to A eRY
re
It is clear that inf,sup, Li(x; ) > supyinf, L (2, A), (weak duality) that is, VI(P) > V(P;). We
show that under the mild constraint qualification hypothesis given below we get a strong duality
result, which tells us that the values of (P) and (P;) are the same, and moreover, that (P})
admits an optimal solution:

(CQy) b e riA(domI,).

Here 1i(M) denotes the interior of M relative to the affine subspace it generates in RY. Equiv-

alently, (C'Q1) means that A(dom I,) — b is absorbing in the linear subspace it generates in
N

R’

Theorem 2.3 Suppose (CQ,) is satisfied. Then problem (P;) admits an optimal solution X,
satisfying

infearyLi(z; \) = V(P).
In particular, V(P) = V(Py).

=~I



Proof. The proof is standard, see for instance [1] or [25]. Indeed, let S be the linear subspace
of RY generated by A(dom I,) — b, and define a convex function f: S — RU {+o0} by

f(0) =inf{l,(x): Ax —b=20}, 6€S.

It follows that 9 f(0) # 0 since f is lower semi-continuous and dom f is absorbing as a consequence
of (CQy). Now —\ € 9f(0) gives the required Lagrange multiplier A. O

As (CQq) may not be easy to check directly, let us formulate the following condition, which
is sufficient to imply (C'Q1), as some standard arguments will show:

There existsz € C}(T) N domI, such that Az = b and
(z(t),2'(t)) € int(dom ¢) for every tin some interval (o, 3) C T.

This condition may be weakened considerably in many concrete examples. For instance in the
case of the averaged Fisher information we have the following:

Example 2.1. Assume for simplicity that the a; form a pseudo-Haar system, which is to say
that they are linearly independent on any set of positive measure, (cf. [2]). Now consider the
Fisher information Iy, or more generally any integrand ¢(x,2") of the class (2.1). Then the
following is sufficient to imply the constraint qualifications (C'Qy):

(CQr) There exists & € £,(T),z >0, a.e., &#0, suchthat Az =0b.

Indeed, by [2], Theorem 2.9, (CQ ) implies that there exists an T € L.(T),T > ¢ > 0 for some
e > 0, satisfying AT = b. Now consider a sequence {x, } of positive C! functions which converges
to T in £y norm. So Awx, — b(n — oo). We may assume that x, > /2 > 0 on T. Due to the
fact that A is open as an operator mapping C'(T') onto RV, there exists ) > 0 such that, given
any || <, i=1,...,N, we find v € C'(T) such that ||v]|. < /4 and Av = (1;)~,. Choose
n so large that & = b; — (Ax,); satisfies || < /8. Now let || < /8 be fixed. We find v € C!
such that Av = (&) — (). Then A(x, +v) = b— (&) + Av = b+ ((;), proving the desired
b+[—¢/8,2/8] C A(dom Ir). Indeed, we have z,, +v € C', x, +v > /8, hence x, +v € dom Ip,
(and 2, +v € dom I, for the integrands (2.1) correspondingly), and we use that (; € [—2/8.2/8§]
was chosen arbitrarily. ad

Let us now consider the following consequences of the constraint qualification in the case of
the Fisher information, which we state explicitely due to its relevance to the second part [6] of
this paper.

Theorem 2.4 Let Ip(-) be the Fisher information (1.5). Suppose the constraint qualification
(CQr) is satisfied, and let X be the dual optimal solution for (P}). Suppose 1 € lin {ay,...,ax},
and b # 0, then:

(1) The unique optimal solution T for (P) is strictly positive on T = [0,1];



(2) ForT € Ay(T) to be the unique optimal solution for (P) it is necessary and sufficient that
T be strictly positive, fit the data Ax = b, and satisfy the Euler-Lagrange equation

N
(2.4) — 27 T +T?+ Y N, T =0,
i=1
with boundary conditions T'(0) = 7 (1) = 0.
Proof. Let us prove (1). Let Z be the unique solution for (P) guaranteed by Theorem 2.1,

and let A be the Lagrange multiplier which exists by Theorem 2.3. First observe that (T,)\) is a
saddle point for Li(x; \), that is

(2.5) 0€ d.Li(T,\) and 0€ O\Li(T; \).

(Notice here that 0, is a subderivative, 0y a superderivative).
The second condition in (2.5) simply means AT = b, while the first condition is equivalent to

1 . 1 N .
(26) 0< —(Lq(;r—,+ Thi ) — Ly (T )\)) - —(IF(T-I— h) — IF(T)) +/ S Nty h < 4o
T T;0

7 T

for any h € A(T) such that T + 7h € dom Iy for small 7 > 0.

Take h = 1, which is certainly admitted in (2.6). Since #'(t) = 0 for almost all ¢ in the set

{t € T :x(t) =0}, we may restrict the integral over the set {t € T': #(t) > 0}. Then (2.6) gives
—7'? -
0< [ Al <4
{7>0} (T 4 7)
The integrand is nondecreasing in 7 > 0, so monotone convergence allows us to pass to the
limit 7 — 0T under the integral sign, showing that #'?/72, and hence 2’/ = (log¥)’, must be
integrable on {t : T(t) > 0}. Now observe that by assumption b # 0, so & = 0 could not be
optimal, and hence {Z > 0} is nonempty. We show that this implies # > 0 on all of T'. Indeed,
suppose for instance there exists an interval («, 5) C {Z > 0} is such that Z(a) = 0 and Z(3) > 0.
Then ;
// 5(1()g:7;)'(f) dt =logZ(3) —logF(a+8) — +o0 (6 — 07),

a+
contradicting the integrability of (logz) on {z > 0}. This proves statement (1).

With the fact > 0 on T established, we are now back in a standard control type situation,
the integrand ¢(z(t),#'(t)) now being locally Lipschitz in the first variable along the optimal
path. The rest of statement (2) therefore follows via standard arguments in control theory (see
e.g. [23]). Notice that convexity as usual gives the sufficiency in statement (2). O

Example 2.2 Consider problem (P) with the Fisher information and N = 1,a; = 1,b; = 1.
Then the primal optimal T is ¥ = 1, which has I»(T) = 0. So the Lagrange multiplier \; must
be A1 = 0. Now under the transform @ = y?, equation (2.4) takes the form:

4y" =Ny, ¥ (0)=y(1)=0.



This problem has the "negative” eigenvalues \y = 0, A\, = —4k*7?, k = 1,2,.... The correspond-
ing eigensolutions are yo = 1 resp. yi(t) = ¢ cosknt, giving xg = 1, 24(t) = ¢} cos? knt. Fitting
the data [,z =1 gives ¢; = V2. But the z, for k = 1,2,...are not the optimal solutions of (P)
since xk(%) = 0, and we know that x has to be strictly positive. This follows from Ip(xy) > 0 as
well as from the fact that A; # 0 could not be optimal for the dual program.

This shows that a pair (x, A\) may be both, a solution of the boundary value problem and
a feasible pair, but fail to be a saddle point for Li(x;\), since > 0 is violated. The reason
is of course that without the condition @ > 0, even though (x,\) satisfies the Euler-Lagrange
equation and Ax = b, we may not argue that the first condition in (2.5) is satisfied. O

Remark. We have seen that the duality associated with the first Lagrangian

led to a Euler-Lagrange equation in the case of the averaged Fisher information measure
Ir(-). It may be seen from Example 5.1 that this need not be the case for other objectives I,(-).
In fact, since we restrict the domain of the I,(-) to functions = > 0, it may happen that the
class of h which we are allowed to use for our variation is not rich enough in order to apply the
Dubois-Reymond Lemma. Typically, the method presented in this section will then only lead to
a variational inequality. As we will see in the next two sections, the duality theory associated
with the second Lagrangian is generally better suited to deal with this phenomenon.

3 Duality

In this section we consider the duality theory based on the second Lagrangian Ly(z, y;w, \) (see
(2.3)) which we introduced by separating the variables x and 2’. The formulation resembles
the duality theory for convex control problems, as for instance presented in R.T. Rockafellar
[28, 29, 30], W.W. Hager and S.K. Mitter [17], or A. Dontchev and B.S. Kalchev [9]. The main
difference to more standard optimal control type problems lies in the fact that in spectral density
estimation the objectives Jy are defined on small sets (compare with [31]), where interiority type
assumptions are not satisfied. Even more, standard results from nonsmooth optimal control
theory will not always be applicable, as we already pointed out in the previous Section. On the
other hand, our models have the nice feature that the objectives are jointly convex, and this
enables us to present a fairly concrete and explicit duality.

Let us start by observing that the primal problem may be stated in terms of the Lagrangian

(2.3):

(P) minimize sup Lo(z,y;w, )
re AT) we Ly(T)

yeL(T) NerY
The corresponding dual program is then
(Py) maximize  inf Ly(x,y;w, A)

we Lo(T) e AT)

A eRrY Yy € ﬁ](T)
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One immediately has infwsupw,ALz(x./;l Jw, ) > sup/\’winfrﬂng(Ly: w, A) (weak duality). In
order to prove strong duality, we need a constraint qualification:

(0,b)is an algebraic interior point of
(CQ-) (D @ A)(dom Jy) in the closed affine subspace
it generates in £4(T) x RY.

Here the operator D : A(T) X L(T) — L£4(T) is defined as D(x,y) = 2" —y, and A : L(T) —
RY is the usual Av = (fp ax)Y,, and (D @ A)(x,y) = (2 —y, Ax).
Before discussing this condition in detail, let us formulate its main consequence.

Proposition 3.1 Suppose (CQs) is satisfied. Then there exist @ € Loo(T) and X € RY such
that

(3.1) inf,e Ay yec, Lo(x, y; W, A) = inf(P).

In particular, the values of (P) and (Pj) are the same.

Proof. We sketch the argument, which is standard and follows e.g. from results in [1] or [25].
Let S =lin ((D @ A)(dom Jy4) —b) C L£1(T) x RY. Define a convex function f: S — RU {4}
by

f(z,0) =inf{Jy(x,y): 2 =a2" —y,0 = Aw — b}.

We have to show that f has a subgradient at (0,0) in S. Since the constraint qualification
guarantees that (0,0) is an interior point of dom f, this follows either directly from [25], or from
[1] using the fact that J, is lower semi-continuous.

Let an element of df(0,0) be represented by —(@, \) € Lo x RY, then it is routine to check
that @ and A are the desired Lagrange multipliers. a

Example 3.1. We show that in the case of the Fisher information Jp, resp. the Csiszar
objectives (2.1), the constraint qualification (C'Qr), with the {a;} being pseudo-Haar, implies
(CQ2).

Indeed, we have already seen in Example 2.1 that (CQp) provides © € C'(T) such that
&> >0and A% = b. Now given any z € £(T),0 € R", we have to show that, for some
p>0,(pz,b+ pb) € (D@ A)(dom Jp).

First observe that A : CHT) — RY is surjective and hence open at &, so for some § > 0,
every € B(0,8) may be represented as = Ax = A(z + x) — b for some x € CHT) having
|zl < /4, say. Let v € A(T), with v = =z be fixed. Choose p > 0 so small that |[pv||, < /4
and |[p(Av — 0)]|e < é. By the above we find x;, € CHT) having ||zo|l < £/4 such that
pi=pl0 — Av) = A(Z + x9) — b. Let x := & 4 29+ pv, then & > /2 > 0. Let y = &' + af, €
C(T) C Lo(T). Then o' —y = pv' = pz and Az — b = At — b+ Awxy + pAv = pb, as desired.
Since (x,y) € dom Jp, this proves (CQ2). The same argument also shows that (CQp) implies
(C'Q>) for any of the Csiszar distances (2.1). O
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So far we know that under the constraint qualification hypothesis (C'Q), problem (P*) has
an optimal solution (w, \) € L,(T) x R, a Lagrange multiplier, and that the values of (P) and
(Py) are the same. We shall now pursue two ideas.

We will show (I) that in many cases W is in fact an absolutely continuous function. This will
require several steps, and will eventually be proved in Section 4, Propositions 4.1 and 4.2. Then
(IT) we will provide a method to recover the primal optimal solution (7,7) = (7,7') (if any) from
the dual (@, \). This will be established in Theorem 4.3. Let us start with our program (I). The
first step is provided by the following:

Proposition 3.2 Suppose (CQy) is satisfied, and let (0, \) be the dual optimal solution guar-
anteed by Proposition 3.1. Then w € BV(T). More generally, let (w,\) € Loo(T) x RY be any
pair such that inf{Lao(x, y;w, \) € A(T),y € L1(T)} > —oo. Then w € BY(T).

Proof. Since @, w are elements of £,(7'), the statement is to be understood in the sense that
some realization of @ or w is of bounded variation.

Recall our general assumption that dom ¢ has nonempty interior. Hence there exists a fixed
(,y) € dom J, such that, for some € > 0, every (2 + x,y) with ||2||» < € is contained in the
domain of J,. Since Lo(x, y; w, A) > ¢ > —oo by assumption, we deduce that (w.2’) is bounded
on the set of {x € A(T) : ||z||» < €}. This means that the functional (w, 2’) is a Radon measure,
that is, there exists a finite Borel measure p having

(w, 2"y = /TJ(S) du(s), r e A(T).

Let u have the distribution function v € BV(T), then v = —w a.e., up to a constant. This proves
the statement. O

Remark. A more elementary proof for this result could be obtained using the kind of argument
used by W.W. Hager and S.K. Mitter [17]. If we wish to prove an analoguous result for non-
autonomous objectives ¢(t, x, 2'), their technique seems to be better suited than the one presented
above.

Let us keep the notation (@, ) for the dual optimal pair. Since w € BY[0,1], we may now
apply the integration by parts formula for functions of bounded variation (see [14]) in order to
write

(3.2) (w,2) = '/01 w(s)a'(s)ds = x(1)w(1) — z(0)w(0) — '/01 x(s)dw(s).

Here we may and will assume that w is continuous from the right, so that the meaning of w(0) is
clear. But then, by choosing x = 1, we obtain w(1) = w(0) + ]0] dw, which clarifies the meaning
of w(1).

As we will see, it turns out that in many cases W is in fact absolutely continuous. This will
then permit us to write the Riemann-Stieltjes integral on the right hand side of (3.2) in the form

/] x(s)dw(s) = /0] a(s)w'(s)ds.

0
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Definition 3.1. For a function w € BV(T), let w = v + u be the Lebesgue decomposition of
w € BY(T), that is v € A(T), ' = 0 a.e., and w(0) = v(0), (cf. [19], [33]). We will occasionally
use the notation v = w,, u = w,. Furthermore, let v = u* — u~ for nondecreasing u™, u~, with
u™(0) = u(0) = 0, which is called the Hahn decomposition of . O

With these definitions, and after some manipulations, the second Lagrangian (2.3) takes on
the form

Lo(z,y;w, \) = Jy(x,y) — (0 — A\, 2) — (w,y) + w(l)z(1) — w(0)x(0) — (du,x) — (\,b).

3)

D

(:

We need to calculate the conjugate of Lo(x,y;w, A), considered as a function of v € A(T),y €

Ly(T). 7

&

Theorem 3.3 The Young-Fenchel conjugate L(-,-;w,\) of Lao(-,;w,\) : A(T) x L(T) —
R U {+oo} with respect to the incomplete dual pairing (A(T) X L4(T), L1(T) x Loo(T)) equals

N N
Li(r,siw, A) = Jge(r + 0" = > Nag, s + w) + > Niby — Pw(1) + Qu(0) + Mu™ (1) — mu (1),
i=1 i=1

(3.4) r € Ly(T), s € L(T)

where M = sup{& : In @&, n) < +oo}, m =inf{&: In @&, n) < +ox}, and

M if w ‘ < M 1f )
(3.5) p:{‘[ﬁ w(1) <0 Q:{Wlﬁ w(0) >0

m if w(l)>0" m if w(0)<0°

The proof of the Theorem will be mainly based on the following result whose proof may be
found in the Appendix II:

Lemma 3.4 The Young-Fenchel conjugate of J, : A(T) x L1(T) — RU {+o0} with respect to
the dual pairing (A(T) x L1(T), L1(T) X L) equals Jy.

Proof of Theorem 3.3 We have to show that
(5.6) sup {r,2) + (5, 4) — Lo(, g0, M)
2€A(T)yeL(T)

equals the right hand side of (3.4). Observe that the » € A(T) occurring in the supremum in
(3.6) may be decomposed into two terms. Firstly, if the singular measure du is concentrated on
the Lebesgue null set Q, say, consider the part of € A(T) which vanishes on an open set G
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of arbitrarily small Lebesgue measure containing 2 U {0,1}. Then according to Lemma 3.4, the
supremum over such x in (3.6) yields the expression

N N
Jor(r+ 0" =Y Nai, s + w) + > \iby,

i=1 =1

leaving the other terms in (3.3) unaffected in the limit meas(G) — 0. Secondly, consider the
part of © € A(T") which vanishes outside the set G above. Then the corresponding contribution
to the term Jy(x,y) — (r+ ¢ — A"\, 2) may be made arbitrarily small by letting meas (G) — 0,
while on the other hand the contribution to

sup ((— w(1)a(1) + w(0)z(0) + (du, x))
x€A(T)

yields the term —Pw(1) + Quw(0) + Mdu™(T) — mdu=(T), where P,(Q have the meaning (3.5).
Now du™(T) =u*(1), du (T)=u (1) finally gives rise to (3.4). O

Remark. Notice that we intend 0-(Z00) = 0 in formula (3.4), so the cases M = +o00,m = —c0
are not excluded. For instance, M = +o0 simply implies that «™(1) = 0, and so ut = 0, and
similarly for the other terms occurring in (3.4). Let us mention that the typical case for the
moment matching problem is M = 4oo,m = 0. This means for instance that the positive
singular part u™ vanishes, while the negative singular part v~ might be left over. Usually
additional arguments are needed in order to show that «~ vanishes.

In summary, the results obtained so far allow us to state the dual program (Pj) in the
following form:

N N
(Py) maximize —Jy (v — Z it w) — E Aib;
i=1 i=1
—Pw(l) 4+ Quw(0) + M(w — v)" (1) — m(w —v)~(1)
subject to w € BV(T), v = w,, v(0) = w(0),\ € RY.

4 Special Cases

In this section we show that the general dual scheme we obtained in Section 3 may be simplified
in many cases. Before presenting the most typical case in spectral density estimation, let us
recall the meaning of the Lebesgue and Hahn decompositions w = v +u and v = u* — u~ given
in Definition 3.1.

Proposition 4.1 Let (w0, \) be the dual optimal solution for (Py) guaranteed by (CQs). Suppose
(a) M = +oco. Thenut =0, w(l) >0, @(0) <0. In particular, if
(b) M = 400 and m =0, then the conjugate Lagrangian equals

(4.1) Ly(r, 53w, \) = Jge(r +0 — A'X s + @) + (), D).
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Proof. Since M = +oc implies 77(1) = 0, and since we always have u*(0) = 0, we obtain
ut = 0. This impliesw = u~. Also w(1) < 0 would imply P = M = 400, and then the finiteness
of Pw(1) would force w(1) = 0, a contradiction. So w(1) > 0, and similarly, w(0) < 0.

Now according to (3.4), the conjugate Lagrangian equals

Ly(r,s;W,\) = Jge(r +7 — AN, s + W) + (A, D)
(4.2) +m (u—;m) —w(1) - m‘))

and the last term cancels when m = 0. a
Similar reasoning shows that 7~ = 0 and w(1) < 0,w(0) > 0 in case m = —o0, so that we
immediately deduce that w = 7, wW(0) = w(1) = 0 if both M = +o00,m = —oo are satisfied.

However, for the density reconstruction type problems we typically have m = 0, M = 400, so
we cannot always deduce that the negative singular part @~ of w vanishes. This may be the case
under some extra conditions, for instance if we know that the optimal solution  does not hit
the lower boundary (that is #(t) > m for all t). Here the following result whose proof may be
found in Appendix II, provides some help:

Proposition 4.2 Suppose the primal program (P) admits an optimal solution T. Then the
singular measure du~ is supported on {t € T : T(t) = m}.

The final step in our duality theory will give a method for reconstructing the primal optimal
solution T from the Lagrange multipliers (@, \).

Theorem 4.3 Suppose the constraint qualification (CQs) is satisfied, and let (w0, \) be a dual
optimal solution guaranteed by (CQs). Suppose (P) admits an optimal solution T. Then

N

(4.3) (;ﬁ(f)7:f’(t)> € J¢" (u_;(f) = Aiai(t), '17;(75)) for almost allt.
i=1
Proof. (a) Let us first consider the following modified Lagrangian function (compare with
Lo(w,yiw, \) = Jy(,y) — (0 — AN ) — (w,y) — (\, D)
(4.4) —Mut(1)+ mu (1) + Pw(l) — Qu(0) ,

where x € A(T), y € L(T), w € BY( ) w=v+uveAT), v =0ae., v(0)=w0), and
where u = ut — u~ zﬁ(O =u (0) = 0. Here P, Q have the same meaning as in Theorem 3.3.
From the definition of Ly we obtain

Lo(z,y;w, N) < Lo(a, y;w, \)
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for all z € A(T),y € L1(T),w € BV(T), A € RY. However, by the argument given in Theorem
3.3, the values

illfmeA('T),yeﬁl (T) L‘Z(*T', Y w, )\) = infﬂtEA(T),yGL‘,l(T) L’Z(‘rv Yy, w, )\)

coincide, and hence the primal and dual programs

(P) minimize sup Lo(z,y;w,\)  subject to € A(T),y € £L(T)
w,A
and B B
(Py) maximize  inf Ly(x,y;w,\) subject to w € BV(T), A € RY
T,y :

have the same value as the programs (P) resp. (P;). Also T resp. (w.\) are again optimal
solutions for (P) resp. (P}).

(b) We next observe that Ly(z, y;w, \) may be considered as a function of # € L(T),y €
L1(T), and we use the notation ﬁg(;v, y;w, \) for this extension. We now claim that the values

(4.5) infeer(myyeciry Lo, y;w, N) = infoear)yes (my Lo(r,y;w, A)

again coincide. This is a consequence of the fact that given any x € L. (T), y € L£1(T) having
(,y) € dom J,, there exist x, € A(T), y, € L£,(T) such that x,, — x, y, — y both in £; norm
and with Jy(x,,y,) — Je(x,y). The latter is proved by an argument in the spirit of but slightly
more elaborate than the one given in Lemma 3.4.

(¢) Consequently, the values of the primal and dual programs (13) (Pj) arising from the
Lagrangian ig((l?, y;w, \) have the same values as (P) resp. (Py), so primal resp. dual optimal
solutions for (P), (Py) are again optimal for (P), (P;). Therefore, our optimal T and (w, \) give
rise to a saddle point of Lz(l, yiw, \).

Now the conditions for a saddle point ((Z,7'), (w0, \)) of Lo imply

(0,0) € 3, Ls(T, 7w, N)
or what is the same

(4.6) (7,7) € 9,.L3(0,0;w, ),

where the conjugate ﬁi(r $;70, \) is now calculated with respect to the incomplete dual pairing
(Loo(T)XLNT), L1(T) X Loo(T)). Indeed, the following may be derived from Rockafellar’s results
[28]. (A direct argument similar to but easier than the one in Lemma 3.4 can be given).

Li(r, s;w,\) = Jge(r + 0" = AN s +w) + (N D) + Mu™(1) — mu (1) = Pw(1) + Qu(0),
(u = ws, v=1w,)

3

so (4.6) is equivalent to
(4.7)

T, r)y + (T, 8) < Jpe(r +70, — AN, s + W) — Jp (W, — AN, W)
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for all 7 € L£1(T),s € Loo(T) having (r +w, — A'\, s + W) € dom Jy4. This proves the statement
of the Theorem. O

As an implicit consequence of the proof we obtain the following

Corollary 4.4 (7, 7';w,\) is a saddle point of the Lagrangian Lo(x,y;w, X) if and only if T is
optimal for (P) and (@, \) is optimal for (Py).

Example 4.1. Let us now exhibit the consequences of our main results for the Fisher infor-
mation, or more generally, for the class of Csiszar distances (2.1).

Let ¢(x,v) = xp(v/2) be an integrand of this type, and assume the conditions of Theorem 2.1
resp. Corollary 4.8 below are met, so that program (P) admits an optimal solution z. Suppose
the dual program (P;) has an optimal solution (1, \), guaranteed by the constraint qualification
(CQr). Furthermore, assume that & > 0 as a consequence of Theorem 2.2 resp. its analogue
for the class of objectives (2.1). By Propositions 4.1 and 4.2, and since m = 0, M = 400, the
singular part of the dual optimal w vanishes. Now a direct calculation gives

/ e [0 if r+1U*(s) <0
(4.8) o(r.s) _{ 400 otherwise

so (4.7) becomes

(4.9) (T, r) +(T,s) <0 forr+ W — AN+ (s+wW) <0 a.e.

We claim that
W — AN+ (W) =0 ae.

Suppose not. Then W — AN + ¢*(w) < —¢€ on a set Q of positive measure and for some & > 0.
Define s = 0, r = £+ yq, then the pair (r,s) is admitted in (4.9), so [T - & < 0, which is
impossible since T > 0 on 7.

Consequently, we may recast the statement in (4.9) as follows

(T,r) + (T, s) <0 whenever r+4¢"(s+w)— " (w) <O0.
Setting r = ¢*(w) — ¥*(s + w), we get
(Z, 0" (@) =Y (s + @)y + (T, s) <0

for all s € L.(T'), which can only hold true if

—x(t) - (w(t) +T(t) =0

for almost all ¢ € T'. Therefore, we get the relation

= ¢/(w(1))
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or rather y
(4.10) Z(t)=C- exp{/ ubx’(m(,s))ds},
Jo

with the constant C' > 0 determined by the constraints Ax = b. In particular, for the case of the
Fisher information, we get the following result, which we state explicitely due to its relevance
for our subsequent paper [6]:

Proposition 4.5 Suppose the {a;} are pseudo-Haar with 1 € lin {ay,...,an}. Let (CQp) be
satisfied. Then for the Fisher information Ir, the dual program (Py) may be stated in the form

N
(Py) mingmize Z/\ :b;
i=1
17\/
. 2
subject to w' + iw“ = Z il
i=1

w(0) = w(l)’_: 0
w e A(T)

The primal optimal T may be recovered from the solution (W0, \) of (Py) by means of the identity

1 st
(4.11) z(t)=C - exp {5/ w(s) ds},
Jo
where C' > 0 is determined by the constraints Ax =b.

|

Remark. As a consequence of (4.10), we derive that for analytic data a;, ¢, the solution Z is
of the same type. In particular, in the Fisher case, and for algebraic or trigonometric moments,
7 will be an entire function. Even for continuous a;, 7 will at least be of class C?.

Let us end this Section with a pleasant application of our duality theory. Suppose we do
not know whether the primal program (P) admits an optimal solution. Starting with the dual
program ( P}), it seems natural to consider a bidual program (P**), which under some constraint
qualification on (Py) will have an optimal solution. It turns out that the solution of (P**) may
be viewed as a generalized solution for (P), and even more, in some cases, it is in fact a solution
of (P). Let us notice that this bidual relaxation scheme fits a general pattern which has been
used by various authors in different contexts, see e.g. [30, 32, 16].

Let us consider the restricted dual program

maximize —Jop (V) — ATA v) — (A, D)
(Q)subject to v € A(T), v(0) =v(1) =0, \ € RV.

We expect the values of (P5) and (@) to be identical. Instead of proving this directly, we consider
the duality associated with (Q). This requires a constraint qualification for (Q):

(CQ) 0€core{u—v +AN: (u,v) € dom Jye, A € RV}
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where the core means the algebraic interior of a set, and the underlying space is £4(7T), and
where dom Jy« is a subset of £,(T) x A(T). The Lagrangian associated with program (@) is
now

(4.12) L{u, v, \;x) = Jye(u,v) + (N, D) — (u— v + A"\, 2),
defined for u € £4(T), v € A(T), x € Li(T)" = Lo(T), A € RY. Then (@) and (Q*) may as

usually be stated in terms of L. Our duality theory enables us to prove the following

Proposition 4.6 Suppose (C'Q)" is satisfied. Then the dual program (Q*) admits an optimal
solution & € BYV(T). The values of (Q) and (Q*) coincide, and (Q*) may be represented in the
form

1 1
minimize Jy(x,y') + Mx/ dzt —m* / dz~
0 0

(@)
subject to Ax =,

where ¥ = y+ z is the Lebesgue decomposition of x, that is y = x,, 2 = x,, (Definition 3.1), and
with
M™ =sup{n:3E¢"(&,n) < 4o}, m =inf{n:3IE " (&, n) < +o0}.

Proof. The existence of z follows from (C'Q)* and Proposition 3.1, while z € BV(T) is a
consequence of Proposition 3.2. Theorem 3.3 gives the above form of the dual program (Q*). O

We are now ready to extend Theorem 2.1 to a more general class of objectives. The reader
might compare this with the central existence result in [30]; see also [31].

Theorem 4.7 Suppose Ju satisfies (CQ)*, and there exists (§,10) € dom ¢ such that t —
o(&o,my + t) is coercive. Then program (P) admits an optimal solution.

Proof. As a consequence of (C'Q)*, we know that the dual program (@*) admits an optimal
solution 7 € BY(T'). If we can show m* = —oo and M* = 400, the singular part T, of Z will
vanish as a consequence of Proposition 4.1, and then T will be an optimal solution of the original
program (P).

In order to prove m = —oo, M = +oc, observe that o

= 0%¢, where o denotes

dom ¢ dom ¢+
the support function of dom ¢, and where 07 ¢ denotes the recession function of ¢. But now the

coercivity of t — ¢(&p, 1o +t) implies
07¢(0,1) = 07¢(0, —1) = +oc,

hence o 0,41) = +o0. This implies M* = 400, m* = —o0, as desired. ad

dom ¢+ (

Remark. We may split the statement. If 07 ¢(0,1) = +oo, then M* = 400, while 0T¢(0,—1) =
400 implies m* = —oo. The converse is also true in either case.
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Corollary 4.8 Let ¢(x,v) = xip(v/x) be a Csiszar distance (2.1). Suppose 1 is coercive, and
let 1 € lin{ay,...,ay}. Then the corresponding program (P) admits a unique optimal solution.

Proof. The coercivity assumption in Theorem 4.7 is satisfied. Hence we have to check that

(C'Q)" is satisfied.

Due to the special form (4.8) of the conjugate, it suffices to fix « = 1 and A'\ = —1. Then
every v € A(T) having v < —1*(1) will give rise to a pair (u,v) € dom Jy. Now any o' € £(T)
having ||¢'[|; < 1 will provide such a v by setting v(t) = —1 — ¢*(1) + f; v'(s)ds. But then

{u—v + A"\ : (u,v) € dom Jg, A € RV} contains the £; unit ball, which proves the statement.
O

Remark. Assuming conditions 1. and 2. for the Csiszar distance ¢(x,v) = 2¢)(v/x) as well as
coercivity of ¢, we may now state the dual program (Py) as follows:

N
maximize — Z A;b;
i=1

N
(Py) subject to ¢ (w)+w' = Na
i=1

w(0) =w(l) =0, we AT).

The formula for recovering the primal optimal solution 7 for (P) from the dual optimal @ is

(4.10). 0

Conclusion

We have presented a Maximum Entropy type model for the Spectral Density Estimation problem
(1.1) which is based on entropy functions that control derivative values. A fairly general duality
theory for this model was obtained in Sections 3 and 4. The general form of the dual program
was derived in Theorem 3.3. More special but typical cases are presented in Section 4. A
numerically tractable dual program formulation was obtained (Proposition 4.5 and the Remark
following Corollary 4.8). A general existence result is Theorem 4.7, which was obtained by duality
techniques. Special emphasis was given to the Fisher information model (Section 2, Example
3.1, Example 4.1, Proposition 4.5).

A presentation of explicit numerical results for the Fisher information model (1.1), (1.4) will
be given in the second part of our paper [6].

5 Examples
In this section we present some examples which among others indicate that the constraint model

(1.1) we used throughout the Sections 2 to 4 could be replaced by more general models - essen-
tially without affecting the arguments presented. We indicate the straightforward changes as we
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go. We start, however, with an example that fits our model (1.1) verbally, and which is included
in particular to show that the singular part of the dual variable may vanish from reasons which
are different in nature from the ones which applied for the Fisher information.

Example 5.1. Moment Matching with Minimum Slope

This example is included in particular to show that the singular part of the dual optimal variable
may vanish even when the primal optimal solution hits the boundary.
Consider the program

C Lo
minimize EH”I I
(P)
1
subject to x>0, / a;(t)x(t)dt =b;, i=1,...,N.
Jo

This is a problem in accordance with the model (1.1). The integrand (1.4) and its conjugate are
given as

olr,v) =
Observe that (P) has a unique optimal solution & € Ay(T).

Let us consider the duality based on using the first Lagrangian. The conditions for a saddle
point (Z,\) imply AZ = b and

%@'2 forxz >0 . : %uz, for y <0
- , O (y,u) =1 2 ) :
400 fora <0 4+oo fory >0

o < 17 I =

+/ Z)\al h < +o0

for every h € Ay(T) having 7 + 7h > 0 for small 7 > 0. Therefore the Dubois-Reymond Lemma
only applies on the set {# > 0}, where it provides the equation

N

7"(s) = A'A(s Z)\ a;(:

This equation, however, need not hold on the interior of the set {T = 0}. We may nevertheless
deduce at this stage that 7 is of class C*!, and that ¥’ € A(T).

Duality based on using the second Lagrangian provides more information. Notice that m =0
and M = +oo in this case, so the dual program (Py) is

maximize 2| w5 = (N, b)
(P)* subject to 0 At)\ <0
w(O) <0, w(l) >0, weBVT), \er",

We know that the differential inequality is in fact an equality on the set {Z > 0}, but might be a
strict inequality in the interior of {Z = 0}. So we may not deduce w € A( ') directly. However,
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Theorem 4.3 helps. Indeed, we have

{(0,s)} for r<0
Ao (r,s) = { Ry X {s} for r=0.
0 for >0

Then the second coordinate in formula (5.5) implies 7/(t) = @w(t) for almost all . Hence @ must
be absolutely continuous from what we have seen before.

We may not replace the differential inequality in the dual program by an equality, for this
would mean solving the unrestricted program without the side condition z > 0. Therefore, when-
ever the optimal solution of the unrestricted program fails to be feasible for (P), the inequality
will certainly be strict on some interval.

Example 5.2. Interpolation on a Strip

We exhibit an example involving higher order derivatives and slightly different constraints. The
pattern for a duality as expounded in Sections 3 and 4 remains essentially the same.

Consider the problem of interpolation on a strip, which was discussed by A.L. Dontchev in
[11] (see also [12]). For a partition 0 = t; < ty < ...t, = 1 of [0,1] we pose the interpolation
problem

minimize 2"
(IP) subject to x(t) =y, i=1,....n
a(t) < a(t) < f(t) for all t € [0,1]

We assume that the problem is feasible, that is «(t;) < y; < [((t;), and that a(-),3(-) are
continuous and piecewise C? functions satisfying a(t) < 3(t) for every t. It is well known that
in the absence of the constraint a < x < 3, the solution is a cubic spline interpolating the data
(t:,y;). We will show that, under reasonable conditions on «, 3, the solution of (IP) is again a
cubic spline, with a finite number of extra knots. In the case where «, 3 are piecewise linear on
[t;,ti11], this has been demonstrated in [11].

It is well-known that the problem may be reformulated as

1 .
minimize 5”1”“%
1
(P) subject to / a;(s)a"(s)ds =b;, i=1,....,n—2, z(0) =y,
Jo

a(t) < x(t) < B(t), t €[0,1].

Here the a; denote the second order B-splines, and the b; are the ¢th divided differences of order
2 associated with the data (¢;,y;), see [12, 11] or [2].
Let
Bt)u+tw? ifv=0u>0
L0 (tu,v,w) = { a(t)u + %wQ ifo=0,u<0.
+00 ifv#£0

8(t, z,y, ) :{ L2 ifa(t) <@ < B(t)

+o0c otherwise
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(5.13)

Writing problem (P) in the form

minimize Jy(x, 2’ 2") = /; o(t, x(t), 2" (t),2"(t)) dt
subject to A" =D, :1;(0> = 1Yo,
we see that the correct choice for a Lagrangian of the second type is
L(x,y,z,0,w, N, p) = Jo(x,y,2) + (0,2 —y) + (w,y — 2) + (N, Az = b) + p(2(0) — yo),

with @ € Ags(T) = {v € L1 1 2" € Lo}, y € A(T), 2 € Ly, 0 € A(T)*, w € Ly. First
we represent (0, z) = (v,z") + 1 - 2(0) for some v € Ly, r € R, hence (0,2" —y) = (v,2" —
y') +r(2'(0) — y(0)). Then we establish duality in the spirit of Proposition 3.1. This requires a
constraint qualification which in this case is satisfied as a consequence of the feasibility of (I P)
resp. (P). We obtain a dual optimal (6, w, A, p). Now playing with the variable y, which is
allowed to take on every value, we first show that w € BY. Playing with 2/, say, shows v € BV,
so we may integrate by parts. Using again the fact that the variable y is free, we can show
successively that

v(1) =0, r—v(0) =0, w(0) =w(l) =0 and dv = dw.
This implies v = w, and hence r = (. Therefore the Lagrangian takes on the simplified form
L(x,y, ;0,0 p) = Jy(a,y, 2) = {dv, 2"y — (v, 2) + (A, Az = b) + p(x(0) — yo).

Now let us fix 2 such that «(t) < 2(t) < B(t) and 2(t;) = y;,. We may play with x near 2,
producing arbitrarily high derivatives 2’ on small measure sets. This allows us to prove that the
singular part of the measure dv vanishes, proving v € A(T'). Notice here that we have subsumed
the boundary values coming from the integration by parts into the singular measures, so we have
the representation (dv,2’) = (v/,2'), and v(0) = v(1) = 0. Playing again with 2', Proposition
3.2 shows v' € BY(T), so we may again integrate by parts, which gives us

L(z,y, 20,0, p) = Jy(x,y,2) + (2, dv")y — (v — A"\, z) — (A, b).

Here we used p 4+ ¢/(0) = 0 and +'(1) = 0, which follows since problem (P) has an optimal
solution.

We decompose according to Lebesgue: v = v/, + v/, By a result analoguous to Theorem 3.3,
the dual objective function is

1 1
1ML=<%p@yﬁw—Nm—@w+/ammﬁm—/3mmﬁ@.
JO JO

Y,z s s

Our next step is to evaluate the conditions for a saddle point of the Lagrangian. Similarly to
the procedure as presented in Section 4, this leads to the inequality

() + {2 s) < Tpe(r = (), 0,8 + 0 — AN) — Jye(—(0)), 0,0 — A'N)
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for all r,s € L. Letting » = 0 and s arbitrary, we first get

n—2

(5.14) () = v(t) = Y Nai(t) for a.a. t.

=1

Since the functions a; are piecewise linear and v € A(T), we derive that x is of class C? and is
three times differentiable. Secondly, suppose (v,) < 0 on a set M of positive measure. Setting
s = 0 implies

(x,1) <{B,71)
for all r having r — (v/,)’ > 0, which implies = § on M. Similarly, (¢/,) > 0 on a set N of
positive measure implies * = « on N. In particular, v/, is constant whenever z stays strictly
inside the strip.

An analogue of Proposition 4.2 tells us that the singular measure dv’. " is concentrated on the
set {t: (1) = a(t)}, while dv.~ is concentrated on {t : 2(t) = 3(t)}. Therefore v is affine on any
part of an interval [¢;,#;,1] on which = stays strictly inside the strip. Since the a; are piecewise
linear, so is 2" by (5.14), which means that 2 is a cubic spline as long as it stays strictly inside
the strip. On the other hand, for general o and J it is possible that the solution @ goes along
the boundary for some time.

Let us consider the case where a and 3 are piecewise cubic on the [t;,t;11]. Then we deduce
that x is a cubic spline with a finite number of extra knots of the form (¢, a(t)) resp. (¢, 3(1))
in addition to the knots (¢;.y;). In the case where «, 3 are piecewise linear, x may touch the
upper resp. lower boundaries each at most once in a given interval [t;,¢;11], so here the maximum
number of extra knots is 2 per interval [t;, t;11]. For piecewise quadratic or cubic «, 3, the solution
may follow the boundary on certain subintervals of the partition.

Example 5.3. Fisher Moment Matching with Tolerance
It often happens in practical problems that the data b; are noisy. One way of dealing with this

phenomenon is to allow for tolerances in the moment matching model (1.1). In the case of the
Fisher information, the relaxed model may be stated as

; Ly (¢
minimize Ir(x) :/ (5)) dt
o x(t

(Fe)
subject to x>0, |Az—-b|| <e
Here || - || is any fixed norm on RY. Introducing a new variable e = (e;)Y, € RY, and separating
x and 2’ we may recast the program as follows:
minimize  Ip(x) subject to Ax =b+e and € > |e].

This leads us to consider the following Lagrangian of the second kind:

L(x,y,e;w, N, p) = Jp(a,y) + (w, 2" —y) + (N, Ar — b — €) + pe — |

),

el
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for ||e|| < € and L = 400 otherwise. The duality as presented in Sections 3 and 4 will lead to
the dual program

maximize — Jg(w' = AN\ w) — (N, b) — €|\
(P.)* subject to we AT), \ e RY,

Here || - || denotes the norm dual to || - ||. By the representation of the Fisher conjugate, this
gives the dual program

N
maximize — Z Aibi — €[]l
;
N
(P.)* subject to 4w’ + w? = 42 Aia;
i=1

w(0) = w(1) =0.

It follows that (A, e) = €||\||. with ||e]| = €, so the tolerance is fully used. For example, if || - || is
the Euclidean norm, the solution Z. of the perturbed program (P.) coincides with the solution
of the original moment matching problem (1.1) with the moments b; replaced by either b; +¢; or
b; — ¢;, where ¥ ¢? = €2. Numerical experiments using the Boltzmann-Shannon entropy suggest
that in the case where ||-|| is the supremum norm, the perturbed program (P, ) will be the original
program with b; replaced by either b; + € or b; — €.

Appendix I

Let us briefly recall the origin of the Fisher information measure and its relation to what we call
the averaged Fisher information.

Fisher information was introduced by R.A. Fisher [13] in the context of maximum likelihood
estimation. Let f(z;p), p € T C R be a parametrized family of probability densities on R". For
an independent sample x4, ..., x,, the maximum likelihood estimate for the true parameter p.
is defined as the parameter value p, = p,(z1,...,2,) where the log likelihood function

L(Ila s Tny P 1OgH f J“lwp Zlogf(l’,,p)
=1

attains its maximum (if any). It was known to R.A. Fisher [15] and proved rigorously by J.L.
Doob [13] that, under reasonable conditions, and for large n, /n(p, — p-) is asymptotically
normally distributed with mean 0 and variance o , Where

i = —/ /f 8210gf(lp)dx1...d;r,,

02 op?

- // (W) frspa)day .. da,.
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The term 1/0? is known as the Fisher information of f(-;p.), and it measures the expected
negative curvature of the log likelihood function with regard to the distribution f(x;p.)dzr. In
particular, the higher the negative curvature of the log likelihood function in a neighbourhood
of the true value p,, the more accurate the maximum likelihood estimate p,.

In order to measure the information of the parametrized family f(-,p), p € T = [to.t1] C R,
we assume that a priori all p € T" are equally likely to occur. It is then convenient to consider
the averaged information

515~ [ 1L gy = o) - a4 [ (P iy

op? Tip

and the second term on the right hand side of this expression, that is

2
(5.16) Ip(f) = /ab ff(;; dp,

is what we call the averaged Fisher information of f(x, p) considered as a function of the param-
eter p.

It is intuitively clear from (5.15) that a sharp spike of the function f at some p, giving rise
to a fairly negative curvature of log f, will make a sizable contribution to the information Ip(f).
It is therefore heuristically clear that minimizing the averaged Fisher information will have the
effect of "smoothing” the data as proposed in [36].

Appendix 11

Proof of Lemma 3.4. Let v € £y(T),w € Lo(T). We have to show that

(517) ']d)* (777 ’UJ) = SumeA(T),yeﬁl(T)<771 '/I’a> + <’1,1/‘7 1/> o J(D('/I;v (/)

Assume first that the right hand side is finite. We show that J(v,w) < +00. Our first step is
to show that t — ¢*(v(t),w(t)) must be finite a.e.

Before starting, let us recall the notion of Lebesgue points. For a fixed realization f of an
element of £{(T), the set of Lebesgue points of f consists of those t € T for which

lim — /t+6 f(s)ds = f(t).

5—0 26

It is known that the set of Lebesgue points has full measure (see [33] or [19]).
Suppose now there exists a set € of positive measure such that ¢*(v(t), w(t)) = +oc fort € €.

Since the set E of common Lebesgue points of v and w has full measure, we may assume that €2

consists of such points. Now for t € Q and n € N, £ > 0 fixed, select (&,1,) € dom ¢ such that

(5.18) Eu(t) 4+ nw(t) — o(&,m) > n.
Find 6(t) > 0 such that
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%/jj (ft’U(S) + ntw(s)) ds = &u(t) + naw(t) + o(1),

with |o(1)] < ¢, say, for all 0 < 6 < 6(t). As the set of intervals [t — 6,1 + 6],1 € Q2,0 < 6 < §(t)
forms a Vitali covering of Q, we find finitely many disjoint intervals I; = [t; — 6;,t; + 6,], 1 =
1,...,r covering © up to a set of measure < =, where t; € Q. 6; < 6(¢;).

Now let p > 0 be such that the intervals I;, = [t; — ¢; — p,t; + 6; + p] are still disjoint. Define
piecewise linear functions x.,, y., by

(5.19) o =&, Yep =, onlj,

,
v, =¢ , Y., =n outside U I,
J=1

where (£,1) € dom ¢ is a fixed point. By convexity, (2.,(t),y.,(t)) € dom ¢ for all t, and
moreover,

Saep(t)yn()| = Jo(ADE M) + (1= A0, m,))]

< o€ n) O(&1y5hy )

shows &(x,,¥.,) is integrable. Letting p — 0,2 — 0, we derive that

J(j)(xsp-/ ysp) - <7J, I€p> - <'l,U./ y€p> - 0(1) + Z/Ift_, U(’S) + ’]]tj IU(S) - @(Etl ) 7ltj) ds

j=1""

= o(l)+ Z 26; (5#’(?3) + nw(ty) — 975(5@,77”)) +0(;)
=1

> ofl)+n- Z 20; = o(1) + n - meas (2) — +o0,
Jj=1

as n — 400, contradicting the finiteness of the right hand side in (5.17). Similar reasoning now
shows that ¢*(v(-),w(-)) must in fact be integrable.

Let us next check that the right hand side in (5.17) equals Jy(v,w). Fix £ > 0 and let E
be the set of common Lebesgue points of v, w and ¢*(v(-), w(-)). For every t € E we may select
(&, m:) € dom ¢ such that
(5.20) O (o(t),w(t)) < &o(t) +nmw(t) — o(&,m) + =.

As before, let 6(t) > 0 be such that

1 i+
%/ . <§Lv(s) + 7)1'111(5))(]5 = &u(t) + nw(t) + o(1)
26 Ji-s

1 46

% s @*(‘L’(S)a'u/'<5))d,9 = @*(U(f),w(t)) _|_0(1)
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with the corresponding |o(1)|] < & whenever 0 < ¢ < 4(%).

Let Iy,..., I, be disjoint intervals I; = [t; — 6;,t; + ¢;] having 6; < é(¢;), t; € E, and covering
T =10, 1] up to a set of measure < ¢. Let p > 0, and define the z.,,y., as above. Then the right
hand side in (5.17) is greater or equal to

Tt ) = () = () = 0(1) % 32 8,1(6) 4+ 0(s) =6
+Z% (a ol ) = o, ) )
+225 & (v(ty), w(ty)) —e.

By the second equation in (5.22), the last term
has the same limit as

Zr:/],@*(l’(-s)-,w(S))dS = Jo(v,w) +0(1).

This proves that Ju(v,w) is majorized by the right hand side of (5.18). Since the reverse
inequality is obvious, this proves the statement of the Lemma. a

Proof of Proposition 4.2. Suppose contrary to the statement that there exists a Lebesgue null
set Q such that Z(¢) > m on Q, and da () > 0. Since the measures dut and da~ are mutually
singular, we may assume that da"(Q) = 0. Fix € > 0, and let Iy, ..., I; disjoint intervals covering
Q up to a set of du—-measure < €. Now let J; = I; + [—p, p] be larger disjoint intervals such
that still (de +dua™)(Jy U ... U J}) < e, (dv = Lebesgue measure). Define a continuous function
AT — [0,1] such that A =1 on each I;, and A = 0 outside J; U ... U J.

By the definition of m, and for € small enough, there exists an m’ having (m-+¢e,m’) € dom ¢.
Now define an arc x € A(T') and y € £,(T) by setting

x(t) = (1= A(t))z(t) + A(t )(m+€)
(1) = (1= O () + Ao

Notice that (x,y) € dom I, since by the convexity of ¢ we have on each .J;:

lo(x(t), y(1)| < |o(Z(t), 7 ()] + |o(m + e,m')|,

while ¢(x, y) = &(2,7") outside the .J;. This estimate also shows Jy(z,y) — J4(Z,2'), as e, p — 0.
The construction now implies

Lo(z,y;w, \) — Lo(z, 25w, \) — (du™, & —m), (e,p — 0F).

But 7 is optimal SO <d1‘F T —m) <0, and since T > m by definition, this implies that da— = 0
on the set {t: Z(t) > m}. O
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