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Abstract— In standard SPECT with static radio-tracers, the
activity distribution in tissue is assumed constant during the
acquisition. However, techniques capable of visualizing dynamic
tracers may provide new insight into physiology and function of
organisms. This is the aim of dynamic SPECT. We developed
oSPECT, a new fully 4D reconstruction approach to obtain
time activity curves from single or multiple slow rotations with
dynamic SPECT data. It is based on KNITRO, a large-scale
nonlinear constrained optimization method that takes curvature
information into account to speed up convergence. The perfor-
mance of oSPECT is tested using data from a dynamic anthropo-
morphic numerical phantom that simulates myocardial perfusion
of 99mTc-Teboroxime. We also tested the method on a simulated
brain study with 123I-FP-CIT, a dynamic presynaptic marker
for SPECT of the dopaminergic neurotransmission system.

Index Terms— Dynamic imaging, large scale nonlinear opti-
mization, regularization, simulations, myocardial SPECT, cere-
bral SPECT

I. INTRODUCTION

IN STANDARD SPECT with static radio-tracers, the ac-
tivity distribution in tissue is assumed to remain constant

during the acquisition. However, techniques capable of visual-
izing dynamic tracers may provide new insight into physiology
and function of organisms. This is the aim of dynamic SPECT.
Dynamic imaging is already a well established technique in
Positron Emission Tomography (PET) - at least in a research
environment - for brain and cardiac studies e.g. [1-4]. How-
ever, PET is an expensive technique of restricted availability.
This issue can be overcome with the use of dynamic SPECT,
which has proved its potential applicability in clinical studies
such as Tl-201 myocardial imaging [5] and cerebral blood flow
measurement [6].

In recent years, several methods to assess tracer dynamics
from SPECT studies have been proposed. They can be classi-
fied mainly into three groups:
1) A first group includes methods involving data acquired with
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fast rotations of the camera. During each rotation, activity dis-
tribution is assumed to remain constant and the acquired subset
of data is reconstructed with standard SPECT algorithms. The
reconstruction of the separate rotations provides a temporal
series of spatial activity distributions. The fast acquisition
protocol produces a high level of noise and poor image quality.
Moreover, multiple rotations generate a very large amount
of data to handle and reconstruct. On the other hand, the
simplicity of this method and its acceptable accuracy have
allowed its clinical application, in particular in myocardium
perfusion studies [7, 8].
2) A second group includes methods that assume an apriori
kinetic model. In most situation, a one or two compartmental
model is used. Some authors have investigated methods to es-
timate kinetic parameters directly from projections, bypassing
the reconstruction step [9-12], whereas others like [13] suggest
using a kinetic model in reconstructing explicitly the dynamic
activity distribution. However, those methods can only provide
results predicted by the input kinetic model and thus may
lead in some situations with altered or abnormal physiological
functions to incorrect and misleading results.
3) A third approach to the problem is to reconstruct the
spatio-temporal activity distribution by direct inversion of the
tomographic dynamic problem. Mathematically, such problem
is modelled by an underdetermined linear system and involves
the inversion of a huge, ill-conditioned matrix. A straightfor-
ward inversion had been attempted by [14] using the conven-
tional Singular Value Decomposition inversion algorithm in
order to calculate a weighted least squares solution according
to Poison statistics. Unfortunately, it took a full week to
reconstruct a single slice on a 300MHz CPU. Furthermore, the
authors stress the very high level of noise in their solution.

Two approaches, designed to reconstruct data acquired
during a standard slow rotation of the SPECT camera, had
been proposed in order to circumvent the instability of this
problem:
i) the 3D (2D+time) constrained least squares (CLS) method
[15, 16] minimizes a quadratic cost function augmented by
regularizing terms subject to bound constraints restricting
the temporal variations of activity. The minimization of the
cost function is based on the first-order bound-constrained
optimization code L-BFGS-B.
ii) the dynamic expectation maximization (dEM) algorithm,
originally proposed in [17] and implemented in [18, 19], is
a dynamic version of the Maximum Likelihood Expectation
Maximization algorithm. It is significantly faster than CLS,
but not compatible with any of the more sophisticated regu-
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larization techniques required for the appropriate treatment of
ill-posed problems.

With the aim to improve the quality of dynamic SPECT
reconstructions, we have developed oSPECT, a 4D (3D+time)
SPECT reconstruction algorithm based on the large scale
optimization package KNITRO, a solver which is more pow-
erful and versatile than L-BFGS-B used in the CLS method.
oSPECT permits the use of regularizing terms. They stabilize
the inversion of the tomographic problem, they have an
adjustable spatial and temporal smoothing effect, but may
also be designed for edge conservation. As well, they can
be designed to take into account a priori information such
as a physiological temporal behavior or a kinetic model. The
regularizing terms impose more or less relaxed constraints, but
oSPECT permits also to impose hard equality or inequality
constraints in the system which is one of its advantages over
the CLS method. Thus oSPECT is a very flexible and versatile
tool that can be adapted to various physiological problems
and has a great potential of improvements through the use of
appropriate constraints and regularizing terms.

We present here the first results of this new algorithm ob-
tained with a choice of elementary regularizers and constraints.
The performance of oSPECT was tested on two distinct
clinically relevant applications. First, a study of the myocardial
perfusion with the dynamic tracer

�����
Tc-Teboroxime was

performed using our dMCAT phantom model [20], a dynamic
version of the anthropomorphic numerical phantom MCAT.
Secondly, we tested oSPECT on a numerical brain model of
the dopaminergic neurotransmission system with

�����
I-FP-CIT,

a dynamic presynaptic marker for SPECT.

II. METHOD

The method we propose is based on large-scale nonlinear
constrained optimization. We consider the program

�
	�� minimize 
 �
������� ������ ����� � ������! #"%$ �&�'�
subject to (*),+.-�) �&��� +�/0)2143 �65 1�7�7%781�9

The unknown spatio-temporal activity distribution is
�

, and 9
is the number of inequality constraints - ) �&�'� with bounds ( )
and / ) being used to bring prior information about

�
into the

process. The linear operator � is a forward projector which in
our implementation includes both a central ray attenuation
correction [21], and a 3D detector response compensation
(DRC) as described in [22]. The vector

�
represents dynamic

SPECT projection data. Further elements of
�:	��

are the
regularizers

�; #"%$ �
���
included to improve stability of the

otherwise seriously ill-conditioned problem and several of
them have been discussed in the literature e.g. [23]. The data
mismatch term

��'�8� �<�=� � �� in principle assumes Gaussian
distributed measurements

�
, but an appropriate weighting may

be used to address the more realistic Poisson distribution [23].
In our approach, the 3D reference volume is a priori divided

into several types of voxels. Only voxels inside the 3D body
contour, defined by a segmentation of the attenuation map,
contribute to the activity vector, either by a single value

�0>
if voxel ? is classified as static, or by a total of @ values�A>
B C

, D �E5 1%7�7%781�@ , if ? is classified as dynamic and the total
number of time frames D considered in the study is @ . The

number of time frames can be at most as large as the number
of stops @ of the camera system, but the temporal resolution
can be reduced in order to decrease the number of unknowns
in the system. In this case, two or more consecutive stops are
reconstructed as a single time frame over which the activity
distribution is assumed to remain static.

The linear inequality constraints - ) �
���!�F� >
B C �G� >
B CIH � in�
	��
apply only to the J0KMLON dynamic voxels ?QPSR,TVU and

the number of these constraints is 9 �W� @ �X5Y� J;KZL;N . Then( ) +.- ) �&�'� +.[ �,� / ) says that the activity in voxel ? , between
the time steps D and D � 5 , is increasing or constant, but with
a rate of at most ( ) . Similarly, ( ) �\� []+F- ) �&�'� +^/ ) says
that the activity in voxel ? is decreasing or constant between
time steps D and D � 5

, but with rate no greater than /;) .
If an approximate position D`_ � ? � of the peak activity for the
dynamic voxel ? is estimated, we propose to replace these hard
constraints by the more flexible

( ) + � >&B C �a� >
B CIH � + �Qbc�,� / ) 1
for time frames D _ � ? �d�Ge D#+fD�gfD _ � ? � and

( ) �\�hb + � >
B C �a� >
B CIH � +i/ )
for time frames Dj_ � ? � +kD=+kDY_ � ? � � e D and some suitably
chosen

bml [ and
e D . This allows the method to adjust

the tentative peak position Dj_ � ? � automatically within the
confidence interval n D`_ � ? �o�pe D'1�Dj_ � ? � � e Drq , so that errors
imposed by the prior information may to some extent be
corrected or reduced. Prior peak positions may be calculated
either by the method proposed in [18], or by fitting “hat
functions” [23] or similar functions. This work is currently
in progress.

We shall notice that the problem
�
	��

can be easily adapted
to specific physiological cases through the use of appropriate
temporal constraints or regularization when an a priori kinetic
model is available. The implementation of the kinetic model
through the constraints -%) �&��� defines a hard constraint whereas
its implementation through the regularization terms relaxes this
constraint.

III. OPTIMIZER

In order to solve program
�
	��

we use the optimizer package
KNITRO [24], which is based on a Newton trust region
method adapted to large scale nonlinear constrained optimiza-
tion programs. KNITRO includes second order information to
speed up convergence of the algorithm, a novel feature for
software addressing very large size problems. In our problem,
the Hessian matrix of the objective function 
 �
��� in

�
	��
is not

sparse and even the coefficients of the 3D forward projection
operator � can not be stored. Incorporating curvature infor-
mation in 
 �&�'� therefore requires the dialogue technique used
by KNITRO, which we indicate by the following schematic
code:

/* dialogue principle */
initialize;
while ( flag != stop ) {
case( flag == gimme_f )

my_evalfc( x,&f,&c,my_parameters );
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case( flag == gimme_g )
my_evalg( x,&g,my_parameters );

case( flag == gimme_H )
my_evalH( x,&v,lambda,my_parameters );

knitro( &x,f,c,g,v,&flag );
if( my_stopping_test == true )

flag = stop;
}
display_results;

The optimizer is a f77 function knitro which may be
included in the user’s master code. The variables x, f and
c represent the current vector

�
, the objective function value
 �&��� and the values of the constraints - ) �&�'� in

�:	��
, while

g regroups the first order information 
�� �&�'� and -�� ) �&�'� at�
. The dialogue principle enables the user to implement at

his convenience the functions my evalfc, my evalg and
my evalH that calculate the objective function and the con-
straints, their first derivative and second derivative respectively.
This is a major advantage over those large scale codes, which
provide as part of the optimizer package, predefined func-
tions their evalfc, their evalg, etc. whose imposed
structure greatly hinders the application of user’s parameters
required for the master code. In contrast, the calling function
knitro only requires the results of those functions, leaving
their workout to the user, while keeping the current status of
the optimization process stored in the variable flag.

The function my evalH that calculates the Hessian� �&�'�4� 
�� � �&��� ��� -�� � �&�'� of the Lagrangian of
�:	��

is at the core
of the trust region strategy as it allows the use of second order
information even when

� �
���
could not be stored. Indeed,

while
� �
���

may even be dense, matrix vector products
� �&�'��� 	

with test vectors
	

may require much less calculation. The
solution of a linear system

� �&�'�
� e,�����
required to estimate

a step
e,�

may then be obtained by iterative techniques like
conjugate gradient or GMRES, which involve a succession of
such products. These matrix vector products are obtained by
the function my evalH which calculates the product

� �&�'�
��	
for the test vector

	
, and returns the result to the optimizer as

a new vector
	
.

Notice that in our application, the constraint functions - ) �&���
are linear, so -�� �) �
���V� [ , and the calculation of the Hessian
of the Lagrangian is reduced to the evaluation of 
�� � �&�'������M� � �G� � "%$ � � �&�'� . Typically, the regularizers are local and
therefore have sparse Hessians, so the main computational cost
is in the product ���Z� 	 , whose cost is that of one forward
and one backward product with the projection operator � , so
roughly the cost of one iteration of a static EM-algorithm.
The same complexity appears at the level of the gradient
my evalg, as the structure of -�� ) �
��� is sparse. The efficiency
of KNITRO therefore hinges on a speedy resolution of the
system

� �&�'��� eV� ���
which depends on the condition number

cond
� � �

. Unfortunately, when cond
� � �

is large, the current
version of KNITRO does not permit the use of a user provided
preconditioner, although the dialogue principle would make its
management extremely simple.

A last advantage of the dialogue principle is that the user
has a very convenient way to apply his or her own stopping

criterium. Optimizers like KNITRO clearly have their own
internal stopping tests, which dispense with the process when
first order optimality conditions are attained within a pre-
specified tolerance, or when changes in

�
become negligeable.

Whenever such a test applies, the optimizer knitro will
by itself set flag = stop. However, large scale problems
often require problem specific stopping tests, which are easily
implemented as a consequence of the ongoing interaction
between the optimizer and the user.

IV. SIMULATIONS

A. Myocardium

In order to evaluate the performance of the dynamic re-
construction method, we used the dynamic numerical phan-
tom dMCAT [20], based on the anthropomorphic numerical
phantom MCAT. The dMCAT phantom simulated the my-
ocardial perfusion of the dynamic tracer

�����
Tc-Teboroxime

in a healthy patient. A transaxial slice of this phantom is
shown in Fig. 1. Time activity curves (TACs) also shown in
Fig. 1 were computed using an eight compartment model,
including myocardium, left and right ventricles, liver, lungs
and muscles. Kinetic parameters and normalization of the
model were adjusted to obtain TACs that resemble those
observed in real patient data. Projection data were simulated
starting 90 seconds post-injection with 32 time steps of
20 seconds each. Each projection contained 64x64 bins with
a size of � 7 ��� mm. A standard single rotation cardiac protocol
on a dual-head camera was used to generate 64 projections
ranging over

5�� [�� from right anterior oblique to left posterior
oblique. Also, we simulated three studies using multiple on a
triple-head camera. Each study contained 96 projections over
one, two and three full rotations. The total acquisition time
remained unchanged. Noise levels corresponding to realistic
count rates were modelled. Both attenuation and 2D Gaussian
depth-dependent detector reponse corresponding to a camera
equipped with Low Energy High Resolution (LEHR) collima-
tors were included, but scatter was not modelled.
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Fig. 1. A transaxial slice of the dMCAT phantom 90 seconds post-injection
(right) and the associated time activity curves (left).

B. Brain

We also tested oSPECT on a numerical model of the
dopaminergic neurotransmission system with

� ���
I-FP-CIT, a

dynamic presynaptic marker for SPECT. For this purpose, we
created a dynamic numerical brain phantom. The morphology
of the phantom shown in Fig. 2 was based on a CT study of
a physical brain phantom (RSD - Radiology Support Device).
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Then, the striatal region of the phantom was segmented using
a threshold method. Five regions were defined: the left and the
right putamens and caudate nuclei, as well as a non-specific
area representing the surrounding brain region (occipital re-
gion). The temporal behavior in each region was determined
by solving a five compartment model with kinetic parameters
and count rates adjusted in accordance with several

� ���
I-FP-

CIT clinical studies performed at Hôpital Purpan (Toulouse,
France) and with some other studies [25, 26]. TACs are also
shown in Fig. 2. A cerebral protocol using a triple-head camera
was applied to generate 60 projections ranging over � � [ � .
Acquisition started at injection and continued over 20 stops
of 1 minute each. Each projection contained 64x64 bins with
a size of � 7 � mm. Poisson noise, attenuation and 2D Gaussian
depth-dependent detector response corresponding to a camera
equipped with Low Energy Ultra High Resolution (LEUHR)
collimators were taken into account.
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Fig. 2. A transaxial slice of the cerebral phantom 10 minutes post-injection
(right) and the associated time activity curves (left).

V. RECONSTRUCTIONS AND DATA ANALYSIS

Both thorax and brain simulations were reconstructed as-
summing a Poisson distribution in the projection data and
compensating for both attenuation and 1D and 2D Gaussian
detector response. Since a regular static reconstruction of
dynamic data results in a rough temporal mean of the tracer
distribution [20], we used a 3D (static) OSEM solution to
create a flat temporal distribution which served as an initial
point for the iterative process.

In those reconstructions, the prior information defining the
set of constraints - ) �&�'� in

�:	��
is summarized in a mask that

describes the temporal behavior of the voxels. Four different
types of temporal behavior are possible:
i) TACs constant,
ii) TACs monotonically increasing,
iii) TACs monotonically decreasing,
iv) TACs first increasing and then decreasing.
In this latter case, the temporal position of the peak activity
is needed. The methods discussed in [23, 18], in particular
the “hat method” may be used to obtain prior estimates of the
peak positions. However, in those reconstructions, the temporal
mask was not calculated, but directly defined using the true
activity distributions.

Since the solution of program
�
	��

may vary with the choice
of regularization, we investigated four spatial and one temporal
regularizers

 #"%$ �
���
:

i) spatial norm-1 symmetric:� C � >���� N ��� >
	���
���B >������������ n � > 	���
�� B C �]� > ������� B C q � ���

ii) spatial norm-1 asymmetric:� C � >���� N � > ��������� n �A>
B C �]��>��������`B C q � ���
iii) spatial Tychonoff symmetric:�� � C � >���� N � � >
	���
���B >
�������!�#" � > 	���
�� B C �a� > ������� B C%$ �
iv) spatial Tychonoff asymmetric:�� � C � >���� N � > �������&" �A>
B C �a�A>
�������jB C $ �
v) temporal Tychonoff asymmetric:�� � >�� KMLON �('*) �C,+ � n � >
B C �]� >&B CIH � q �
With the spatial regularizers, the summation

� >
is performed

over those pixels ? P.-MU which are located strictly inside
the 3D body contour. The pixels ?�/!021,3 and ?24%5�026 refer to
the neighboring pixels of pixel ? along each of the three
spatial axes. In order to ensure the differentiability of norm-
1 regularizers, a small term

�
was added. With the temporal

regularizer,
� >

is performed only over dynamic pixels ?�PR,T,U . The roughness parameter
�

of the regularization was
ajusted to produce the best compromise between image quality
and accuracy of the reconstructed TACs.

In order to analyse and compare reconstructions, we defined
two main regions of interest (ROIs) in the thorax phantoms,
one over the myocardium and one over the liver, containing
104 and 256 pixels respectively.

On the brain, five ROIs, corresponding to the left and right
putamens and caudate nuclei and to the occipital part for the
non-specific response, were defined. They were drawn on the
temporal mean image of the reconstructed activity distribution.

The TACs behavior for every individual pixel in those ROIs
was examined and an average TAC was computed over each
ROI and compared to the true TACs. In order to quantify the
accuracy of the reconstructions, we compared for each ROI
their relative deviation 7 from the truth:

7 � 899:
� C<; ' � >��>=@?BA �&� 3C5�D!0>
B C �]��>&B C ���
� C<; ' � >��>=#?BA � 3�5�D!0>
B C � (1)

Table I summarizes figures of merit for several reconstructions
of the heart simulation comparing 2D and 3D versions of
oSPECT and dEM, various regularizers, rotation protocols and
temporal resolutions.

VI. RESULTS AND DISCUSSION

In order to stabilize the reconstruction algorithm, we in-
vestigated ways to improve the condition number cond

� � �
.

We observed that changing the problem
�
	��

by tuning ap-
propriately the weighting of the norm � � � � improved the
reconstructions. For instance, the diagonal elements of � � �
show strong variations of several orders of magnitude. Prescal-
ing by dividing each equation by its corresponding � � �
diagonal element improved the condition number cond

� � �
and stabilized the algorithm for some cases, but not for all.
The improvement of the condition number is a study still
under development. It is also expected that future versions
of KNITRO will include the possibility of preconditioning
the iterative solving of

� �
��� �;e,� � �
. In parallel, the

normalization of the objective function to rescale its values
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close to 1 substantially improved the convergence and this
feature was used in all the reconstructions presented in this
paper.

A. Myocardium

Among the regularizers we tested, the spatial Tychonoff and
norm-1 asymmetric regularizers with a roughness parameter� �X5 [ ) � led to the best results. As seen in Table I, the
assymetric norm-1 regularizer provided the best result for the
figure of merit 7 in both myocardium and liver ROIs, and
in the total image, but the Tychonoff regularizer generated a
smoother image as seen in Fig. 4 and we therefore chose this
latter for all reconstructions unless otherwise specified. We
shall note that spatial regularization also provides a smoothing
effect along the time dimension. The use of a temporal
regularizer had a stronger smoothing effect on the TACs, and
in particular removed significantly the peak artifact present in
the liver TACs as we see in Fig. 3. However, the choice of
this temporal regularizer has to be further investigated since
the temporal Tychonoff regularizer we used in this study is
very basic and led to excessively flattened TACs, in particular
in the heard region.
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Fig. 3. Effect of choice of regularizers on reconstructed TACs for the heart
(left) and the liver (right) regions.
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Fig. 4. Temporal mean of reconstructed transaxial slices with 4 different
regularizers.

We investigated the accuracy of oSPECT reconstructions in
2D and 3D (+time) modes, and compared the results to the

TABLE I

SUMMARY OF THE FIGURES OF MERIT � IN THE MYOCARDIUM AND

LIVER REGIONS AND IN THE FULL RECONSTRUCTED IMAGE FOR THE

SEVERAL RECONSTRUCTIONS PRESENTED (SEE TEXT).

Models Myocardium Liver Total

2D oSPECT Tycho asym. 0.38 0.24 0.34

2D oSPECT norm-1 asym. 0.36 0.18 0.34

3D oSPECT 0.33 0.31 0.42

2D dEM 0.32 0.27 0.35

3D dEM 0.35 0.18 0.24

16 times - 1/2 rot 0.37 0.23 0.32

32 times - 1 rot 0.37 0.20 0.30

32 times - 2 rot 0.36 0.21 0.30

16 times - 2 rot 0.33 0.20 0.28

32 times - 3 rot 0. 36 0.20 0.39

sp. Tycho asym. �������	��
 0.38 0.24 0.34

sp. Tycho sym. ����� �	� 
 0.44 0.26 0.37

sp. norm-1 asym. ����� �	� 
 0.36 0.18 0.34

sp. norm-1 asym. ����� ��
 
 0.41 0.28 0.45

sp. norm-1 sym. ����� �	� 
 0.38 0.18 0.31

sp. Tycho asym. ����� �	� 
 0.40 0.21 0.32

+ tp. Tycho asym. ��������


corresponding dEM reconstructions. All four reconstructions
were initiated with the same static OSEM 3D reconstruction,
and used the same temporal mask (prior information). Fig. 5
shows the individual and mean TACs for the heart and the
liver regions. The monotonically decreasing mean TACs for
the heart region showed no significant differences in the four
reconstructions, and TACs agree well with the “truth”. When
comparing the mean TACs for the liver region, dEM seems to
perform slighly better than oSPECT which wrongly produces a
peaked curve. However, investigating the TACs for individual
pixels in liver, we see in Fig. 6 that the temporal behavior
is more consistent with oSPECT than with dEM, this latter
method resconstructing some individual TACs with a wrong
temporal behavior. The improved consistency of the temporal
behavior in a ROI with oSPECT is a significant feature since
it may allow post-reconstruction segmentation based on the
temporal characteristics as it is performed in [27]. When
comparing the summarized figures of merit 7 in Table I,
we see that oSPECT 2D provides slightly better results than
dEM 2D in the liver and in the total image. Indeed oSPECT
reconstructs individual TACs with better consistency in ROIs
exhibiting a uniform temporal pattern.
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Fig. 5. Comparison of the mean TACs for the heart (left) and the liver (right)
regions reconstructed with the 2D and 3D versions of oSPECT and dEM.
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Fig. 6. TACs of individual voxels in liver reconstructed with the 2D and 3D
versions of oSPECT and dEM.

This improvement also affects the image quality by reducing
noise as can be seen on the temporal mean of a transaxial slice
in Fig. 7. ROIs appear more homogeneous when reconstructed
with oSPECT than with dEM. However, the 3D (+time)
reconstruction with oSPECT is not yet satisfactory since its
accuracy is decreased as compared with the 2D oSPECT
reconstruction. Further work is planned to address this issue.
Also, we expect to obtain additional improvement of the
estimation of TACs by reducing their slope around the tentative
peak positions, while adding a constraint -*) in

�:	��
preserving

the total number of counts, or by posteriori smoothing of
the TACs. Also, we have seen in Fig. 3 that the elementary
temporal regularizer we tested removed partly the peak artifact
present in the liver TACs, and we expect further improvement
with a more elaborate temporal regularizer.

oSPECT 2D oSPECT 3D

dEM 2D dEM 3D

Fig. 7. Temporal mean of transaxial slices reconstructed with the 2D and
3D versions of oSPECT and dEM.

With the aim of improving reconstructions by reducing the
dimension of the problem, we tried to reconstruct dynamic
sinograms with a reduced number of time frames: the set of

projections acquired during two consecutive camera stops were
reconstructed as a single time frame. Fig. 8 shows the resulting
mean TACs for the heart and the liver regions and Fig. 9 the
corresponding transaxial slices of the temporal means. This
approach improved the reconstructions as seen in Table I.
Although the improvement is moderate, this approach may be
of great value since it reduces significantly the reconstruction
cpu time, this latter being roughly proportional to the number
of reconstructed time frames. Reducing temporal resolution
may also be necessary in reconstructing multiple rotations
scans with a large number of rotation as the number of time
frames in this case may be too large to be computationally
feasible.
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Fig. 8. Effect of the temporal resolution on reconstructed TACs for the heart
(left) and the liver (right) regions.
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Fig. 9. Temporal mean of transaxial slices of the standard cardiac protocol
and two rotations protocol studies reconstructed with full temporal resolution
(32 time frames) and with 16 time frames.

It seemed likely that a multiple rotations protocol would
lead to a better reconstruction (as long as the temporal
resolution is also reduced to avoid the increase of the number
of unknowns in the problem) since in this case the number
of projection data is larger than in a single rotation scan.
However, in the case where the number of projection data
remained the same, we studied the influence of the number of
rotations on reconstruction quality. Thus, we compared image
reconstructions of three acquisition protocols using one, two
and three full rotations. The standard cardiac scan over

5�� [ �
was used as reference. As can be seen in Fig. 10 presenting the
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reconstructed mean TACs for the heart and the liver regions,
as well as in Table I, a full rotation is to be favoured over
a
5 � [�� rotation. Image quality of the reconstructed transaxial

slices is also improved as shown in Fig. 11. In particular, heart
and liver spatial activities distributions are more uniform and
closer to the true distributions in the full rotation study than
in the half rotation study. However, this result is also due in
part to the larger number of projections in the full rotation
protocol.

When comparing one, two or three full rotations (with
the same number of projections), there was no significant
difference in reconstruction quality. Those results suggest that
the greater the number of projection data and the less under-
determined the system is, the better will be the reconstruction.
But the projection sampling can be indifferently chosen over
a single or multiple rotations.
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Fig. 10. Effect of multiple rotations on reconstructed TACs for the heart
(left) and the liver (right) regions.
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Fig. 11. Temporal mean of reconstructed transaxial slices of the standard
cardiac protocol, one, two and three rotations protocol studies.

B. Brain

The brain simulation was reconstructed using oSPECT 2D
and 3D. Our preliminary results showed a reasonably good
agreement between the true and the reconstructed mean TACs
for the putamens, caudate nuclei and occipital regions as
shown in Fig. 12 and reconstructed transaxial slices resemble
the true one as we see in Fig. 13. As in the heart simulation, the

activity distribution reconstructed with oSPECT 2D was closer
to the “truth” than the activity reconstructed with oSPECT 3D.
However, oSPECT performed more efficiently in this cerebral
study than in the myocardial study since the number of
dynamic voxels, and hence variables was significantly smaller
in the brain. Those results show that oSPECT has the potential
to be clinically valuable for dynamic brain studies.
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Fig. 12. TACs of the true brain phantom and 2D/3D oSPECT reconstructions
in putamens, caudate nuclei and occipital region.
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Fig. 13. Temporal mean of a transaxial slice of the brain simulation
reconstructed with oSPECT 2D and 3D.

VII. CONCLUSION

This paper presents oSPECT, a new approach to reconstruct
spatio-temporal activity distributions from dynamic SPECT
projection data acquired with a single or multiple slow ro-
tations. It is based on a large-scale nonlinear constrained
optimization method that takes curvature information into
account to speed up convergence.

We tested the performance of oSPECT using data from a
dynamic anthropomorphic phantom that simulates myocardial
perfusion of

�����
Tc-Teboroxime, as well as on a simulated

brain study with
� ���

I-FP-CIT, a dynamic presynaptic marker
for SPECT of the dopaminergic neurotransmission system.

Our first results show a reasonably good agreement between
the true and the reconstructed activity distributions. We show
that oSPECT performs slightly better than dEM in the 2D
case and that individual TACs behave more consistently in
dynamically homogeneous regions. This feature is essential
for “post-reconstruction” temporal segmentation.

Our results also suggest that the greater the number of
projection data and the less under-determined the system is, the
better will be the reconstruction. But the projection sampling
can be indifferently chosen over a single or multiple rotations.

Although oSPECT and the elementary regularizers pre-
sented in this paper did not provide much better dynamic
reconstructions than previous methods, it is a very flexible
and versatile tool that can be adapted to various physiological
problems and has a great potential of improvements through
the use of appropriate constraints and regularizing terms.
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Future work will include:
i) the investigation of suitable spatial and temporal regularizers
and constraints to improve accuracy of reconstructions,
ii) the development of a weighting procedure to speed up
convergence in chosen regions of interest,
iii) the development of a method based on the fit of ”hat
functions” to determine the dynamic a priori information
needed by oSPECT.
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