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Two-phase flow model

• Viscous dominated (capillary effects are neglected)

−div(λ(S)k(x)∇p) = 0

St + v · ∇f(S) = 0, v = −λ(S)k∇p.

• Flow and transport with capillary effects:

v = −λ(S)k(s)∇po + λw(S)∇pc, div(v) = 0

St + div(vw) = 0.

Or
St + v · ∇f(S) = ∇H(x, S)∇S
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Homogenization of hyperbolic equations

• Hyperbolic equation with oscillatory periodic velocity field

∂Sε

∂t
+ v(x/ε) · ∇Sε = 0.

• Homogenization depends on (v1, v2) = 〈v(y)〉.
• If v1/v2 is irrational number, the flow is ergodic and the homogenized equation is

∂S

∂t
+ 〈v〉 · ∇S = 0.

• Otherwise, the flow can be reduced to layered flows
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Layered flow
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Homogenization of hyperbolic equations

• Hyperbolic equation with oscillatory velocity field

∂Sε

∂t
+ v

ε · ∇f(Sε) = 0

• Homogenized (macro-scale) equation is a non-local equation with memory effects.

• Consider the linear equation, ∂S
ε

∂t
+ vε · ∇Sε = 0, in a layered media,

v
ε = (vε(y), 0).

• Assume the velocity vε(y) has finite number of distinct values vi,
mi = P{v(y) = vi}. Then the homogenized equation (Tartar, 89, Hou and Xin, 92)

St + vSx =
X

k

Z t

0
βkSxx(x− uk(t− τ), τ)dτ.
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Adding diffusion

•

Sεt + v(x/ε) · ∇Sε = div(D∇Sε)

Homogenized equation:

Sεt + 〈v〉 · ∇Sε = div(D∇Sε)

•

Sεt +
v(x/ε)

ε
· ∇Sε = div(D∇Sε)

tlcon = O(l/v), tldiff = O(l2/D).
Homogenized equation:

Sεt +
1

ε
〈v〉 · ∇Sε = div((D + qij)∇Sε)

• Enhanced diffusion (ε = 1, D = δ).
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Two-phase flow effects

The effect of mobility.
Buckley-Leverett saturation profile.

1

s

x

Assume homogeneous k = 1 and small front perturbation:

x(Sf , y, t) = u0f
′(Sf )t+

1

2π

Z ∞

−∞
δxαe

iαydα.

Then, d
dt
δxα(t) = |α|Mf−1

Mf+1
u0f ′(Sf )δxα(t), where Mf = λ(Sf )/λ(0).
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If small permeability variations are present

k = k0 +
1

2π

Z ∞

−∞
δkα(x)eiαydy

then
d

dt
δxα(t) = |α|Mf − 1

Mf + 1
u0f

′(Sf )δxα(t) +
δkα

k0

stable

unstable
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Homogenization of hyperbolic equations, continued

• Homogenization of nonlinear hyperbolic equations in layered media.
• Main idea: the use of piece-wise linear discretization of the flux and piece-wise

constant discretization of the initial condition (Dafermos, 72).
• ‖Sk(·, t) − S(·, t)‖L1

≤ ‖Sk(·, 0) − S(·, 0)‖L1
+ Ct‖fk − f‖Lip.

• Homogenized equation (Efendiev and Popov, 2005)

St + USx =
X

k=1

Z t

0
βkSxx(x− uk(t− τ), τ)dτ,

where βk and uk depend only on one point correlations of v, f ′(S) and are defined
from (Riemann problem)

X

k

βk

uk − z
=

0

@

X

i,j

mi∆j

z − vif ′(Sj)

1

A

−1

− z + U, ∀z ∈ C.

Multiscale modeling and computation of flow through porous media – p.9/85



Perturbation technique

• Consider
∂Sε

∂t
+ v

ε · ∇Sε = 0

Expand the velocity and the saturation

vε = v + v
′, Sε = S + S

′

• The fluctuations can be neglected on the scale of a coarse grid block (not on the
scale of the entire domain!).

• Substituting the expansion into the equation and taking “average”

∂S

∂t
+ v · ∇S + v

′ · ∇S′

= 0.

Here we have used S′ = 0, v′ = 0.
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Perturbation technique, continued

• v
′ · ∇S′ represent the macro scale effects associated with the small scales. To

approximate it the equation for the fluctuating components is used

∂S
′

∂t
+ v · ∇S′

+ v
′ · ∇S + v

′ · ∇S′

= v
′ · ∇S′

.

• Solving for S
′

along the streamline dx/dt = v we get

v
′

kS
′

= −
Z t

0
v

′

k(x)v
′

j(x(τ))∇jSdτ +H.O.T

• Then v
′

S
′ is given by

v
′

kS
′

= −
Z t

0
v

′

k(x)v
′

j(x(τ))dτ∇jS
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Perturbation technique, continued

• The coarse scale equation is (Efendiev et al., WRR, 2000)

∂S

∂t
+ v · ∇S = ∇iDij∇jS,

where Dij =
R t
0 v

′

j(x)v
′

k(x(τ))dτ

• The correlation of the velocity appears as a diffusivity

x

x(t)
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Perturbation technique for nonlinear saturation equation

• The approximate macro scale equation is (Efendiev et al., WRR, 2002)

∂S

∂t
+ v · ∇f(S) = ∇if ′(S)2Dij∇jS

• Dij depends on two point correlation of the velocity field and S.
• The overall approach is obtained by combining the saturation equation with the

pressure equation in the form ∇ · λ(S)k∇p = 0.
• The multiscale base functions are constructed once. The two-point correlation of

the velocity can be found using the multiscale base functions. This approach is
very efficient and can predict the quantity of interest on a highly coarsened grid.
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The essence of the derivation

• Expand vε = v + v
′, Sε = S + S′, and f = f + f ′. Substitute the expansions into

the original equation and take average

∂S

∂t
+ v · ∇f(S) + ∇ · fS(S)v′S′ +

1

2
∇ · vfSS(S)S′2 = 0.

• We need to model the coarse scale quantities, velocity-saturation covariance
(v′S′), and saturation-saturation covariance (S′S′). Their modeling is based on the
equation for fluctuating components

∂S′

∂t
+ vjS

′fSS(S)∇jS + vjfS(S)∇jS′ + v
′

jfS(S)∇jS = Φ(x, t),

where Φ(x, t) is a coarse scale function.
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The essence of the derivation, continued

• Solving for S′ along the coarse trajectories dx/dt = vfS(S),

S
′

(x, t) =

Z t

0
−v′

j(x(τ), τ)fS(S(τ,x(τ)))∇jS(τ,x(τ)) exp (−
Z t

τ
L(x(µ), µ)dµ )dτ,

where L(x(µ), µ) is a coarse scale function. From here v′(x, t)S′(x, t) and
S′(x, t)S′(x, t) can be evaluated.

• Further we simplify the expression showing that dS(x(t), t)/dt = O(v′2), if
f ′(0) = f ′(1) = 0.
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Nonlinear equation

• We propose an alternative way to calculate the diagonal components of two-point
correlation of the velocity

v
′

i(x, t)v
′

i(x(τ), τ) ≈ α(σ, lx, lz)std(vi(x, t))vi(x(τ), τ).
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Coarse grid equation in FV framework

• Coarse grid transport equation:

∂S

∂t
+ v · ∇S = ∇ ·

˘

D(x, t)∇S(x, t)
¯

(single-phase),

∂S

∂t
+ v · ∇f(S) = ∇ ·

˘

fS(S)2D(x, t)∇S(x, t)
¯

(multi-phase)

where

Dij(x, t) =

Z

Vxi

»Z t

0
v′i(x)v

′
j(x(τ))dτ

–

dA.

• First order approximation: Dij(x, t) =
R

Vxi
v′i(x)LjdA,
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Numerical Results. Exponential variogram
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Numerical Results. Exponential variogram
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Numerical Results. Spherical variogram
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Numerical Results. Spherical variogram
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Numerical Results. Spherical variogram
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Two-component miscible flow

•

−∇ ·


k(x)

µ(C)
∇p
ff

= q

∂C

∂t
+ v · ∇C = (C̃ − C)q.

•

µ(C) =
µ(0)

“

1 − C +M
1

4 C
”4
,

• The pressure equation is solved using the MsFVEM.
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Existing upscaling techniques

• −div(λ(S)k∇p) = 0, St + v · ∇f(S) = 0, v = −λ(S)k∇p.

• Single-phase upscaling: (k → k∗), k
∗ = k∇p

∇p
.

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

∇ k∇ p=0 p=1 p=0 

no flow 

no flow 

• Multiphase upscaling λ→ λ∗, f → f∗.
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Multiscale methods for
two-phase flow in flow-based

coordinate system
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Two-phase flow equations in flow-based coor.

∂

∂ψ

„

k2λ(S)
∂P

∂ψ

«

+
∂

∂p

„

λ(S)
∂P

∂p

«

= 0.

∂S

∂t
+ (v · ∇ψ)

∂f(S)

∂ψ
+ (v · ∇p)∂f(S)

∂p
= 0.

Consider λ(S) = 1. Homogenization of hyperbolic equations.

Sεt + vε0f(Sε)p = 0

S(p, ψ, t = 0) = S0,

vε0(p) = v0(p,
p

ε
).
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Homogenization of transport

Then, for each ψ, it can be shown that Sε(p, ψ, t) → S̃(p, ψ, t) in L1((0, 1) × (0, T )),
where S̃ satisfies

S̃t + ṽ0f(S̃)p = 0,

where ṽ0 is harmonic average of vε0, i.e.,

1

vε0
→ 1

ṽ0
weak ∗ in L∞(0, 1).

Proof: (1) use of two-scale Young measures OR (2) one can follow Bourgeat and
Mikelic’s work.
Theorem.

‖Sε − S̃‖n ≤ Gε1/n.

Note. S̃ can be considered as an upscaled Sε along streamlines. Can we average
across streamlines?

Multiscale modeling and computation of flow through porous media – p.27/85



Homogenization across streamlines

If the velocity field does not depend on p inside the cells, that is, ṽ(ψ, ψ
ε
), then the

homogenized solution, S̃, (weak∗ limit of S̃, which will be denoted by S), satisfies

St + ṽ0Sp =

Z t

0

Z

Spp(p− λ(t− τ), ψ, τ)dµψ
ε

(λ)dτ.

Here, dνψ
ε

the Young measure associated with the sequence ṽ0(ψ, ·) and dµψ
ε

is a

Young measure that satisfies

0

@

Z dνψ
ε

(λ)

s
2πiq

+ λ

1

A

−1

=
s

2πiq
+ ṽ0 −

Z dµψ
ε

(λ)

s
2πiq

+ λ
.

We have denoted by ṽ0 the weak limit of the velocity. This equation has no dependence
on the small scale and we consider it to be the full homogenization of the fine saturation
equation.
We have extended this method for the Riemann problem in the case of nonlinear flux.
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Numerical Averaging across Streamlines

S̃ = S(p, ψ, t) + S′(p, ψ, ζ, t)

ṽ0 = ṽ0(p, ψ, t) + ṽ′0(p, ψ, ζ, t).

First, consider f(S) = S. Averaging fine-scale equations with respect to ψ we find an
equation for the mean of the saturation

St + ṽ0Sp + ṽ′0S
′
p = 0.

An equation for the fluctuations is

S′
t + (ṽ0 − ṽ0)Sp + ṽ0S

′
p − ṽ′0S

′
p = 0.

Together, the equations for the saturation are

St + ṽ0Sp + ṽ′0S
′
p = 0

S′
t + ṽ′0Sp + ṽ0S

′
p − ṽ′0S

′
p = 0.

(1)
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dP

dt
= ṽ0, with P (p, 0) = p.

S′ = −
Z t

0

“

ṽ′0(P (p, τ), ψ)Sp(P (p, τ), ψ, τ) + ṽ′0(P (p, τ), ψ)S′
p(P (p, τ), ψ, τ) + ṽ′0S

′
p)
”

dτ.

dP

dt
= ṽ0, with P (p, 0) = p.

S′ = −
Z t

0

“

ṽ′0(P (p, τ), ψ)Sp(P (p, τ), ψ, τ) + ṽ′0(P (p, τ), ψ)S′
p(P (p, τ), ψ, τ) + ṽ′0S

′
p)
”

dτ.

ṽ′0S
′ = −

Z t

0
ṽ′0ṽ0(P (p, τ), ψ)Sp(P (p, τ), ψ, τ)dτ.

It can be easily shown that Sp(P (p, τ) depends weakly on time. Then

ṽ′0S
′ = −

Z t

0
ṽ′0ṽ

′
0(P (p, τ), ψ)dτSp.
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Nonlinear case

St + ṽ0f(S)p + ṽ′0(fS(S)S′)p = 0

S′
t + ṽ′0fS(S)Sp + ṽ0fS(S)S′

p − ṽ′0S
′
p = 0.

The macrodispersion is discretized as

ṽ′0(fS(S)S′)p =
ṽ′0fS(S)S′

i+1
− ṽ′0fS(S)S′

i

∆p
+O(∆p).

We solve the second equation on the coarse characteristics defined by

dP

dt
= ṽ0fS(S), with P (p, 0) = p

and form the terms that appear in the macrodispersion

ṽ′0fS(S)S′ = −
Z t

0
ṽ′0fS(S)ṽ′0(P (p, τ), ψ)fS(S(P (p, τ), ψ, τ))Sp(P (p, τ), ψ, τ)dτ.
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Nonlinear case

We have dropped terms that are second-order in fluctuating quantities. It can be shown
that fS(S(P (p, τ), ψ, τ))Sp(P (p, τ), ψ, τ) does not vary significantly along the
streamlines and it can be taken out of the integration in time:

ṽ′0fS(S)S′ = −
Z t

0
ṽ′0ṽ

′
0(P (p, τ), ψ)dτfS(S)2Sp.

This expression is similar to the one obtained in the linear case, however the
macrodispersion depends on the past saturation through the equation for the coarse
characteristics.
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Numerical results
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Permeability fields used in the simulations. Left - permeability field with exponential
variogram, middle - synthetic channelized permeability field, right - layer 36 of SPE
comparative project
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Numerical results
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Saturation snapshots for variogram based permeability field (top) and synthetic channelized
permeability field (bottom). Linear flux is used. Left figures represent the upscaled saturation
plots and the right figures represent the fine-scale saturation plots.
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Numerical results
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Saturation snapshots for variogram based permeability field (top) and synthetic channelized
permeability field (bottom). Nonlinear flux is used. Left figures represent the upscaled
saturation plots and the right figures represent the fine-scale saturation plots.
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Numerical results

Upscaling error for permeability generated using two-point geostatistics

LINEAR FLUX 25x25 50x50 100x100 200x200

L1 error of S̃ 0.0021 6.57e− 4 2.15e− 4 8.75e− 5

L1 error of S with macrodispersion 0.115 0.0696 0.0364 0.0135

L1 error of S fine without macrodispersion 0.1843 0.0997 0.0505 0.0191

NONLINEAR FLUX 25x25 50x50 100x100 200x200

L1 error of S̃ 0.0023 8.05e− 4 2.89e− 4 1.29e− 4

L1 error of S with macrodispersion 0.116 0.0665 0.0433 0.0177

L1 error of S fine without macrodispersion 0.151 0.0805 0.0432 0.0186
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Numerical results

Upscaling error for for synthetic channelized permeability field

LINEAR FLUX 25x25 50x50 100x100 200x200

L1 error of S̃ 0.0222 0.0171 0.0122 0.0053

L1 error of S with macrodispersion 0.0819 0.0534 0.0333 0.0178

L1 error of S fine without macrodispersion 0.123 0.0834 0.0486 0.0209

NONLINEAR FLUX 25x25 50x50 100x100 200x200

L1 error of S̃ 0.0147 0.0105 0.0075 0.0040

L1 error of S with macrodispersion 0.0842 0.0658 0.0371 0.0207

L1 error of S fine without macrodispersion 0.119 0.0744 0.0424 0.0214
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Numerical results

Upscaling error for SPE 10, layer 36

LINEAR FLUX 25x25 50x50 100x100 200x200

L1 error of S̃ 0.0128 0.0093 0.0072 0.0042

L1 error of S with macrodispersion 0.0554 0.0435 0.0307 0.0176

L1 error of S fine without macrodispersion 0.123 0.0798 0.0484 0.0258

NONLINEAR FLUX 25x25 50x50 100x100 200x200

L1 error of S̃ 0.0089 0.0064 0.0054 0.0033

L1 error of S with macrodispersion 0.0743 0.0538 0.0348 0.0189

L1 error of S fine without macrodispersion 0.0924 0.0602 0.0395 0.0202
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Numerical results

Total error for permeability field generated using two-point geostatistics

LINEAR FLUX 25x25 50x50 100x100 200x200

L1 upscaling error of S̃ 0.0021 6.57e− 4 2.15e− 4 8.75e− 5

L1 error of S̃ computed on coarse grid 0.0185 0.0062 0.0019 0.0015

L1 upscaling error of S 0.115 0.0696 0.0364 0.0135

L1 error of computed on coarse grid 0.139 0.0779 0.0390 0.0144

NONLINEAR FLUX 25x25 50x50 100x100 200x200

L1 upscaling error of S̃ 0.0023 8.05e− 4 2.89e− 4 1.29e− 4

L1 error of S̃ computed on coarse grid 0.0268 0.0099 0.0027 9.38e− 4

L1 upscaling error of S 0.116 0.0665 0.0433 0.0177

L1 error of S computed on coarse grid 0.146 0.0797 0.0461 0.0184
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Numerical results

Total error for synthetic channelized permeability field

LINEAR FLUX 25x25 50x50 100x100 200x200

L1 upscaling error of S̃ 0.0222 0.0171 0.0122 0.0053

L1 error of S̃ computed on coarse grid 0.0326 0.0161 0.0107 0.0113

L1 upscaling error of S 0.0819 0.0534 0.0333 0.0178

L1 error of S computed on coarse grid 0.135 0.0849 0.0477 0.0274

NONLINEAR FLUX 25x25 50x50 100x100 200x200

L1 upscaling error of S̃ 0.0147 0.0105 0.0075 0.0040

L1 error of S̃ computed on coarse grid 0.0494 0.0295 0.0150 0.0130

L1 upscaling error of S 0.0842 0.0658 0.0371 0.0207

L1 error of S computed on coarse grid 0.17 0.11 0.0541 0.0303
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Numerical results

Total error for SPE10 layer 36

LINEAR FLUX 25x25 50x50 100x100 200x200

L1 upscaling error of S̃ 0.0128 0.0093 0.0072 0.0042

L1 error of S̃ computed on coarse grid 0.023 0.0095 0.0069 0.0052

L1 upscaling error of S 0.0554 0.0435 0.0307 0.0176

L1 error of S computed on coarse grid 0.0683 0.052 0.0361 0.0205

NONLINEAR FLUX 25x25 50x50 100x100 200x200

L1 upscaling error of S̃ 0.0089 0.0064 0.0054 0.0033

L1 error of S̃ computed on coarse grid 0.0338 0.0148 0.0074 0.0037

L1 upscaling error of S 0.0743 0.0538 0.0348 0.0189

L1 error of S computed on coarse grid 0.115 0.0720 0.0406 0.0204
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Numerical results

Computational cost

fine x.y fine p, ψ S̃ S

layered, linear flux 5648 257 9 1

layered, nonlinear flux 14543 945 28 4

percolation, linear flux 8812 552 12 1

percolation, nonlinear flux 23466 579 12 1

SPE10 36, linear flux 40586 1835 34 2

SPE10 36, nonlinear flux 118364 7644 25 2
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Numerical results

Left: Pressure and streamline function at time t = 0.4 in Cartesian frame. Right: pressure
and streamline function at time t = 0.4 in initial pressure-streamline frame.
For two-phase flow, equations are upscaled on flow-based coordinate system. MsFEM
using limited global information is equivalent to standard MsFEM.
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Numerical results
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Left: Saturation plot obtained using coarse-scale model. Right: The fine-scale saturation
plot. Both plots are on coarse grid. Variogram based permeability field is used. µo/µw = 5.
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Numerical results
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Comparison of fractional flow for coarse- and fine-scale models. Variogram based
permeability field is used. µo/µw = 5.
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Numerical results

Convergence of the upscaling method for two-phase flow for variogram based permeability

with S̃ 50x50 100x100 200x200

L2 pressure error at t =
3Tfinal

4
0.0014 0.007 0.004

L2 velocity error at t =
3Tfinal

4
0.0235 0.0137 0.0072

L1 saturation error t = Tfinal 0.0105 0.0052 0.0027

with S 50x50 100x100 200x200

L2 pressure error at t =
3Tfinal

4
0.0046 0.0021 0.0008

L2 velocity error at t =
3Tfinal

4
0.0530 0.0335 0.0246

L1 saturation error t = Tfinal 0.0546 0.0294 0.0134
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Adaptive subgrid capturing
algorithm for transport

equation
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Adaptive Multiscale Algorithm

For each T ∈ T ntr , do
• For Ki ⊂ TE , compute

S
n+1/2
i = Sni +

4t
R

Ki
φ dx

2

4

Z

Ki

qw(Sn+1/2) −
X

j 6=i

V ∗
ij

3

5 ,

where V ∗
ij =

(

Vij(S
n) if γij ⊂ ∂TE and vij < 0.

Vij(S
n+1/2) otherwise.

• Set Sn+1|T = Sn+1/2|T .

For each T 6∈ T ntr , do
• Set Sn+1|T = Sn|T .
• While

P

j4jt ≤ 4t, compute

S̄n+1
T = S̄n+1

T +
4jt
R

T φdx

2

4

Z

T
qw(Sn+1) dx−

X

γij⊂∂T

Vij(S
n+1)

3

5 ,

and set Sn+1|T = IT (S̄n+1
T ).
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Multiscale interpolation

The basis functions Φki = χi(x, τk) represent snapshots of the solution of the following
equation:

φ
∂χi

∂t
+ ∇ · (fw(χi)v) = qw in Ti.

The multiscale interpolation is chosen as

ITi (S̄
n
i ) = ωΦki + (1 − ω)Φk+1

i ,

where ω ∈ [0, 1] is chosen such that the interpolation preserves mass, i.e., such that

Z

Ti

ITi(S̄
n
i )φdx = S̄ni

Z

Ti

φ dx.

Boundary condition on inflow boundaries?
Relation to extension of MsFEM to nonlinear problems.
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The relation to pseudo type of approaches

∂S

∂t
+ ∇ · F ∗(x, S) = 0,

where F ∗(x, S) = vf∗w , v is the upscaled velocity field.
The pseudofunctions are computed from local fine scale problems such that they
provide the same average response as the fine grid model for the prescribed boundary
conditions. Assuming that the pseudofunctions have been computed, the corresponding
coarse scale equation takes the following form:

S
n+1

= S
n

+
∆t

R

T φdx

2

4

Z

T
qw(Sn)dx−

X

Γij⊂∂T

V ∗
ij(S

n)

3

5 ,

where V ∗
ij(S) = max{vijf∗w,i(Si),−vijf∗w,j(Sj)}.

Advantages: (1) adaptivity; (2) ability to downscale; (3) avoid no flow boundaries.
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Analysis

Gf (S) = − 1
R

T φ dx

Z

∂T
fw(S)(v · n) ds,

Gc(S) = − 1
R

T φ dx

Z

∂T
fw(I(S))(v · n) ds.

Let
δn = S

n − S
n
h .

It can be shown that

|δn| ≤ o(∆t) + ∆t

n−1
X

k=0

(1 + C∆t)k|Gf (Sn−k) −Gc(S
n−k

)| ≤ o(∆t) +

"

eC(n∆t) − 1

C

#

»

max
1≤i≤n

|Gf (Si) −Gc(S
i
)|
–

.

If we assume scale separation, then Gf (S) ≈ Gc(S).
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Analysis. Flow based coord. sys.

Assume vtp ≈ A∗(x, t)vsp. where A∗ is a scalar coarse-scale function. This assumption
holds if streamlines do not change dramatically.
Denote by τ time-of-flight for single-phase flow velocity, vsp · ∇τ = 1. Then, the
two-phase flow saturation equation has the form

φ
∂S

∂t
+A∗(τ, ψ, t)f(S)τ = 0,

where A∗(τ, ψ, t) denotes A∗(x, t) in (τ, ψ) coordinate system. Assuming A∗ is a
bounded smooth function, the equation suggests that S is a smooth function along the
lines τ = const. Writing Gf (S) ≈ Gc(S) in (τ, ψ) coordinate system, we have

Z

Tτ,ψ

fw(S)τdV ≈
Z

Tτ,ψ

fw(I(S))τdV,

where Tτ,ψ is an image of T in (τ, ψ) coordinate system. Note that S and I(S) satisfy

φ ∂S
∂t

+A∗(τ, ψ, t)f(S)τ = 0 and φ ∂I(S)
∂t

+ f(I(S))τ = 0, respectively.
S = 1 boundary condition overestimates the flow at the inlet of coarse blocks, especially
in regions where τ varies significantly along the inlet boundary.
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Alternatively, one can use extended domains with boundaries given by τ = const and
ψ = const for computation of basis functions in Cartesian coarse blocks. This reduces
the error associated with saturation distribution across the streamlines in the coarse
block.
Error at the inlet (1-D).
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Numerical results
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Numerical results
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Numerical results
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Numerical results
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Applications of multiscale
finite element methods to

uncertainty quantification in
porous media flows
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Introduction

• Dynamic data integration in petroleum applications consists of integrating
production data in order to reduce uncertainty and achieve realistic sampling of
permeability field.

• Production data (usually measured with some precision) describes an integrated
response (an average over the inter-well distance). Trying to obtain the
permeability field samples based on this integrated response is an ill-posed
problem.

• The problem reduces to sampling from a complicated distribition involving the
solutions of coupled nonlinear partial differential equations.

• Metropolis-MCMC methods can be used for the sampling. One of the main
difficulties is low acceptance rate.

• We propose and analyze approaches for increasing the acceptance rate using
coarse-scale models.
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Problem setting

Given the fractional flow information F (t) and some precision, we would like to sample k.
From Bayes’ theorem

P (k|F ) ∝ P (F |k)P (k).

Here P (k) is the prior information, P (F |k) is the likelihood and assumed given by

P (F |k) = exp(− ‖Fk(t)−Fobs(t)‖2

σ2

f

).

The objective is the proper sampling from the complicated distribution π(k) = P (k|F ).
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Difficulties

• π(k) = P (k|F ) is multi-modal.
• π(k) = P (k|F ) is not given analytically and involves the solution of nonlinear pde

system.

P

k

Figure 1:
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Sampling using Metropolis-MCMC

Algorithm (Metropolis-Hasting MCMC)

• Step 1. At kn generate k from q(k|kn).
• Step 2. Accept k as a sample with probability

p(kn, k) = min

„

1,
q(kn|k)π(k)

q(k|kn)π(kn)

«

,

i.e. kn+1 = k with probability p(kn, k), and kn+1 = kn with probability 1 − p(kn, k).

Here π(k) = P (k|F ). This process creates an ergodic Markov chain (under some
general conditions) with the stationary distribution π(k).

Discrete setting (state space: 1, .., n)
(1) At each i, propose j, using qij .
(2) Accept j with probability πjqji

πiqij
.
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Sampling using Metropolis-MCMC

Algorithm (Metropolis-Hasting MCMC)

• Step 1. At kn generate k from q(k|kn).
• Step 2. Accept k as a sample with probability

p(kn, k) = min

„

1,
q(kn|k)π(k)

q(k|kn)π(kn)

«

,

i.e. kn+1 = k with probability p(kn, k), and kn+1 = kn with probability 1 − p(kn, k).

Here π(k) = P (k|F ). This process creates an ergodic Markov chain (under some
general conditions) with the stationary distribution π(k).
Discrete setting (state space: 1, .., n)
(1) At each i, propose j, using qij .
(2) Accept j with probability πjqji

πiqij
.
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Metropolis-Hasting rule

• Direct (full) MCMC simulations are usually prohibitively expensive, because each
proposal requires a fine-scale computation.

• Direct MCMC usually requires many (thousand) of iterations for the convergence
to a steady state, where each iteration involves the computation of the fine-scale
solution over a large time interval.

• The acceptance rate of direct MCMC is usually small, i.e., most proposals will be
rejected.

• One way to improve direct MCMC is to increase the acceptance rate by modifying
the proposal. We propose an algorithm, where the proposal distribution is modified
using coarse-scale model.
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Typical fine and coarse results
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Figure 1: Typical fine and coarse scale fractional
flows
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Remark

Coarse-scale posterior is smoother and do not have all local maxima of fine-scale
posterior

π

π

∗
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Response surfaces

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Multiscale modeling and computation of flow through porous media – p.66/85



Preconditioning of MCMC

Algorithm (preconditioned MCMC)

• Step 1. At kn, generate k from distribution q(k|kn).
• Step 2. Accept k as a proposal for the fine-scale model with probability

g(kn, k) = min

„

1,
q(kn|k)π∗(k)

q(k|kn)π∗(kn)

«

,

i.e. pass k or kn as a proposal to the fine-scale model with probability g(kn, k) or
1 − g(kn, k) respectively. Here π∗(k) = P (k∗|F ). Therefore, the final proposal to
the fine-scale model is generated from the effective instrument distribution

Q(k|kn) = g(kn, k)q(k|kn) +
“

1 −
Z

g(kn, k)q(k|kn)dk
”

δkn (k).

• Step 3. Accept k as a sample with probability

ρ(kn, k) = min

„

1,
Q(kn|k)π(k)

Q(k|kn)π(kn)

«

,

i.e. kn+1 = k with probability ρ(kn, k), and kn+1 = kn with probability 1 − ρ(kn, k).
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Convergence of modified Markov Chain

First it can be shown that

ρ(kn, k) = min

„

1,
π(k)π∗(kn)

π(kn)π∗(k)

«

.

Denote

E =
˘

k; π(k) > [0]
¯

,

E∗ =
˘

k; π∗(k) > [0]
¯

,

D =
˘

k; q(k|kn) > [0] for some kn ∈ E
¯

,

To sample from π(k) correctly, it is necessary that E ⊆ E∗. Otherwise, there will exist a
subset A ⊂ (E \ E∗) such that

π(A) =

Z

A
π(x)dx > 0 and π∗(A) =

Z

A
π∗(x)dx = 0.

As a result, the chain {kn} will never visit (sample from) A since the element of A will
never be accepted for fine-scale run in Step 2. For the same reason, we should require
that E ⊆ Ω.
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Convergence of modified Markov Chain

The transition probability of the chain is defined by

K(kn, k) = ρ(kn, k)Q(k|kn), k 6= kn, and K(kn, {kn}) = 1−
Z

k 6=kn

ρ(kn, k)Q(k|kn)dk.

Lemma.
π(kn)K(kn, k) = π(k)K(k, kn)

for any k, kn ∈ E .
Lemma. If the proposal q(y|x) satisfies positivity condition, then the chain {kn} generated
by the preconditioned MCMC method is strongly π-irreducible and aperiodic.
Theorem. Suppose proposal is positive, then the chain generated by the preconditioned
MCMC method is ergodic: for any h ∈ L1(π),

lim
T→∞

1

N

N
X

n=1

h(kn) =

Z

h(k)π(k)dk,

and the distribution of the chain {kn} converges to π(k) in the total variation norm

lim
n→∞

sup
A

˛

˛Kn(k0, A) − π(A)
˛

˛ = 0

for any initial state k0.
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Convergence of modified Markov Chain

P (F ∗|k) ∝ exp
“

−
‖F ∗ − F ∗

k ‖2

σ2
c

”

.

Choosing Gaussian precisions we have

P (kn, k) = min

„

1,
π(k)π∗(kn)

π(kn)π∗(k)

«

= min

 

1, exp
“

−Ek − Ekn
σ2
f

”

exp
“E∗

k − E∗
kn

σ2
c

”

!

where
Ek = ‖F − Fk‖2, E∗

k = ‖F ∗ − F ∗
k ‖2.
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Numerical setting. Parameterization

k(x) = exp(Y (x)), where

Y (x, ω) =
∞
X

k=1

p

λkθk(ω)φk(x),

E(θk) = 0 and E(θiθj) = δij .
We consider the Gaussian fields

R(x, y) = σ2 exp
“

−|x1 − y1|2
2L2

1

− |x2 − y2|2
2L2

2

”

.

The permeability field is conditioned at some locations.

20
X

k=1

p

λkθkφk(xj) = αj ,
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Instrumental distribution

• Two type of instrumental proposal distribution, independent sampler and random
walk sampler.

• In the case of independent sampler, the proposal distribution q(k|kn) is chosen to
be independent of kn and equal to the prior distribution.

• In random walk sampler, the proposal distribution depends on the previous value
of the permeability field and given by

q(k|kn) = kn + εn,

where εn is a random perturbation with prescribed variance.
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Independent sampler
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Figure 1: Acceptance rate vs. coarse-scale preci-
sion of MCMC using 6× 6 and 10× 10 coarse-scale
models
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Brownian sampler
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Figure 1: Acceptance rate vs. coarse-scale preci-
sion of MCMC using 6× 6 and 10× 10 coarse-scale
models (single-phase flow and σ

2

f = 0.001). Ran-
dom walk sampler is used as a proposal distribution.
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Langevin Algorithms

An important type of proposal distribution can be derived from the Langevin diffusion.
The Langevin diffusion is defined by the stochastic differential equation

dk(τ) =
1

2
∇ log π(k(τ))dτ + dWτ ,

where Wτ is the standard Brownian motion vector with independent components.
A discretization of the equation,

kn+1 = kn +
∆τ

2
∇ log π(kn) +

√
∆τεn,

where εn are independent standard normal distributions.
The proposal is chosen to be

Y = kn +
∆τ

2
∇ log π(kn) +

√
∆τεn,
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Langevin Algorithms

The transition distribution of the proposal is

q(Y |kn) ∝ exp

 

−
‖Y − kn − ∆τ

2
∇ log π(kn)‖2

2∆τ

!

,

q(kn|Y ) ∝ exp

 

−
‖kn − Y − ∆τ

2
∇ log π(Y )‖2

2∆τ

!

.

The use of the gradient information in inverse problems for subsurface characterization -
RML (by Oliver et al.).
This approach uses unconditional realizations of the production and permeability data
and solves a deterministic gradient-based minimization problem.
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Preconditioned coarse-gradient Langevin algorithm

• Step 1. At kn, generate a trial proposal Y from the coarse Langevin distribution
q∗(Y |kn).

• Step 2. Take the proposal k as

k =

(

Y with probability g(kn, Y ),

kn with probability 1 − g(kn, Y ),

where

g(kn, Y ) = min

„

1,
q∗(kn|Y )π∗(Y )

q∗(Y |kn)π∗(kn)

«

.

Therefore, the proposal k is generated from the effective instrumental distribution

Q(k|kn) = g(kn, k)q
∗(k|kn) +

„

1 −
Z

g(kn, k)q
∗(k|kn)dk

«

δkn(k).

• Step 3. Accept k as a sample with probability

ρ(kn, k) = min

„

1,
Q(kn|k)π(k)

Q(k|kn)π(kn)

«

,

i.e., kn+1 = k with probability ρ(kn, k), and kn+1 = kn with probability 1 − ρ(kn, k).
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Preconditioned coarse-gradient Langevin algorithm

The transition distribution of the coarse-grid proposal is

q∗(Y |kn) ∝ exp

 

−
‖Y − kn − ∆τ

2
∇ log π∗(kn)‖2

2∆τ

!

,

q∗(kn|Y ) ∝ exp

 

−
‖kn − Y − ∆τ

2
∇ log π∗(Y )‖2

2∆τ

!

.

We have proved that the modified Markov chain is ergodic and samples from the correct
posterior.
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Numerical results
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Numerical results

0 5 10 15 20 25 30 35 40 45 50
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

accepted trials

fr
a
ct

io
n
a
l f

lo
w

 e
rr

o
r

Fractional flow error vs. Acceptances

preconditioned coarse Langevin
fine scale Langevin

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

PVI
F

Fractional Flow

exact F(t)

sampled F(t)s

Multiscale modeling and computation of flow through porous media – p.80/85



Numerical results
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Numerical results
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Numerical results
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