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Introduction

• Subsurface flows and transport are affected by heterogeneities at multiple scales
(pore scale, core scale, field scale).

• Because of wide range of scales direct numerical simulations are not affordable.
• Upscaling of flow and transport parameters is commonly used in practice.
• Multiscale approaches are developed as an alternative to perform upscaling in the

solution space.
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Outline

• Porous media and heterogeneity
• Multiscale finite element methods (MsFEM) on coarse-grid
• Applications of multiscale finite element methods to porous media flows
• Multiscale finite element methods using limited global information

********************************************************
• Generalizations of MsFEM to nonlinear problems and homogenization of nonlinear

parabolic equation with random fluxes.
Dtuε = div(aε(x, t, uε,Dxuε)) + a0,ε(x, t, uε,Dxuε).
*****************************************************************

• Upscaling of transport equtions.
• Upscaling of two-phase flow in flow-based coordinate system.
• Uncertainty quantification using upscaled models
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Darcy’s law and permeability

Darcy’s empirical law, 1856: The volumetric flux u(x, t) (Darcy velocity) is proportional to
the pressure gradient

u = − k

µ
∇p = −K∇p,

where k(x) is the measured permeability of the rock, µ is the fluid viscosity, p(x) is the
fluid pressure, u(x) is the Darcy velocity.
We obtain the second order elliptic system

u = −K∇p in Q Darcy’s Law

div(u) = f in Q conservation
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A natural porous media
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Heterogeneities

Log of permeability at large scales
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Upscaling: The system must be represented on a larger scale by incorporating the fine
details in an average sense.
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Requirements/Challenges

• Accuracy and Robustness
• Retain geological realism in flow simulation
• Valid for different types of subsurface heterogeneity
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• Applicable for varying flow scenarios
• Heterogeneities. Conditional distributions. Inverse problems.
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Kolmogorov n-width

Given a Banach space V and a fixed integer n, find the best vector subspace Vn of
dimension n that approximates V .
Find Vn such that

sup
u∈V,‖u‖=1

inf
un∈Vn

‖u− un‖

in minimized (this number is called Kolmogorov n-width).
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A simple example
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aε(x) = 1/(2 + 1.99 cos(x/ε)), ε = 0.01.
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Multiscale Finite Element Methods

Hou and Wu (1997).
Consider

div(kε(x)∇pε) = f ,
where ε is a small parameter.

• The central idea is to incorporate the small scale information into the finite element
bases

• Basis functions are constructed by solving the leading order homogeneous
equation in an element K (coarse grid or Representative Elementary Volume
(RVE))

div(kε(x)∇φi) = 0 in K

• It is through the basis functions that we capture the local small scale information of
the differential operator.

• 1-D example.
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Multiscale Finite Element Methods

• Boundary conditions?

φi = linear function on ∂K, φi(xj) = δij

Coarse−grid Fine−grid
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Multiscale Finite Element Methods

• Except for the multiscale basis functions, MsFEM is the same as the traditional
FEM (finite element method). Find ph

ε ∈ V h = {φi} such that

k(ph
ε , v

h) = f(vh) ∀vh ∈ V h,

where

k(u, v) =

Z

Q
kε

ij(x)
∂u

∂xi

∂v

∂xj
dx, f(v) =

Z

Q
fvdx

• The coupling of the small scales is through the variational formulation

• Solution has the form pε = p0(x) + εNk(x/ε) ∂
∂xk

p0(x).

• If standard finite element method is used (linear basis functions):

‖pε − ph
ε ‖H1(Q) ≤ Chα‖pε‖H1+α(Q) = O(

hα

εα
).

Thus, h� ε, which is not affordable in practice.
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Subgrid modeling (by T. Arbogast, I. Babuska, T. Hughes and others)
Subgrid stabilization (by F. Brezzi, L Franco, J.L. Guermond, T. Hughes, A. Russo, and
others).
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Brief introduction to homogenization

pε ∈ H1
0 (Q)

div(k(x,
x

ε
)∇pε) = f,

where k(x, y) is a periodic function with respect to y. Consider formal expansion

pε = p0(x, y) + εp1(x, y) + ε2p2(x, y) + ....

Taking into account

∇A(x,
x

ε
) = ∇xA+

1

ε
∇yA

we have

(divx +
1

ε
divy)[k(x, y)(∇x +

1

ε
∇y)(p0(x, y) + εp1(x, y) + ε2p2(x, y) + ...) = f.

ε−2 : divy(k(x, y)∇yp0(x, y)) = 0.

From here, p0(x, y) = p0(x).
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Brief introduction to homogenization

ε−1 : divy(k(x, y)∇yp1(x, y)) = −divy(k(x, y))∇xp0.

From here, p1(x, y) = Nl(x, y)
∂

∂xl
p0, where

divy(k(x, y)∇yNl) = −∇xikil(x, y).

ε0 : divy(k(x, y)∇yp2)+divy(k(x, y)∇xp1)+divx(k(x, y)∇yp1)+divx(k(x, y)∇xp0) = f.

Taking the average and noting that

〈divyA(x, y)〉 =

Z

Y
divyA(x, y)dy = 0,

we get
divx〈k(x, y)∇yp1〉 + divx(〈k(x, y)〉∇xp0) = f.

From here, we conclude that
divx(k∗(x)∇xp0) = f,

where k∗(x) = 〈k(x, y) + k(x, y)∇yN〉. Multiscale modeling and computation of flow through porous media – p.15/56



Basic convergence in homogenization

For bounded domains, we have pε = p0(x) + εN(x, y) · ∇p0 + θ + ε2p2(x, y) + ..., where

div(k∇θ) = 0

θ = −εN(x, y) · ∇p0.

It can be shown that (e.g., JKO 94) ‖θ‖H1(Q) ≤ C
√
ε.
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Convergence property of MsFEM

Consider kε(x) = k(x/ε), where k(y) is periodic in y.
h - computational mesh size.
Theorem Denote ph

ε the numerical solution obtained by MsFEM, and pε the solution of the
original problem. Then,
If h >> ε,

‖pε − ph
ε ‖1,Q ≤ C(h+

r

ε

h
)

• This theorem shows that MsFEM converges to the correct solution as ε→ 0

• The ratio ε/h reflects two intrinsic scales. We call ε/h the resonance error
• The theorem shows that there is a scale resonance when h ≈ ε. Numerical

experiments confirm the scale resonance.
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Resonance errors

• For problems with scale separation, we can choose h� ε in order to avoid the
resonance, but for problems with continuous spectrum of scales, we cannot avoid
this resonance.

• To demonstrate the influence of the boundary condition of the basis function on
the overall accuracy of the method we perform multiscale expansion of φi

• Multiscale expansion of φi

φi = φ0(x) + εφ1(x, x/ε) + εθ + . . . ,

• φ1(x, x/ε) = Nk(x/ε) ∂
∂xk

φ0, where Nk(x/ε) is a periodic function which depends

on k(x/ε).
• θ satisfies

div(kε∇θ) = 0 in K, θi = −φ1(x, x/ε) + (φi − φ0)/ε on ∂K

• Oscillations near the boundaries (in ε vicinity) of θi lead to the resonance error
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Illustration of θ

0
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θ
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Oversampling technique

• To capture more accurately the small scale information of the problem, the effect of
θ needs to be moderated

• Since the boundary layer of θ is thin (O(ε)) we can sample in a domain with size
larger than h+ ε and use only interior sampled information to construct the basis
functions.

• Let ψk be the functions in the domain S,

div(kε(x)∇ψk) = 0 in S, ψk = linear function on ∂S, ψk(si) = δik.

Fine−gridCoarse−grid
Oversampled

  domain

S

K
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Oversampling technique

• The base functions in a domain K ⊂ S constructed as

φi|K =
X

cijψ
j |K , φi(xk) = δik

• The method is non-conforming.
• The derivation of the convergence rate uses the homogenization method

combined with the techniques of non-conforming finite element method (Efendiev
et al., SIAM Num. Anal. 1999)

• By a correct choice of the boundary condition of the basis functions we can reduce
the effects of the boundary layer in θ.
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Illustration of θ with oversampling
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Numerical Results

Table 0: ‖Uh

ε
− Uh

0
‖l2

, ε/h = 0.64
MsFEM MsFEM-os Resolved FEM

h
l2 rate l2 rate hfine l2

1/16 3.54e-4 7.78e-5 1/256 1.34e-4
1/32 3.90e-4 -0.14 3.38e-5 1.02 1/512 1.34e-4
1/64 4.00e-4 -0.05 1.97e-5 0.96 1/1024 1.34e-4
1/128 4.10e-4 -0.02 1.03e-5 0.95 1/2048 1.34e-4
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The convergence of MsFEM

• The convergence of MsFEM for problems with multiple scales ε1 � ε2 � ...� εn.

If εk � h� εk+1, then the convergence rate in H1 is C
“

h
εk+1

”s
+

q

εk

h
.

• The convergence of MsFEM for random coefficients (continuous ε-scales).
• The expansion of the base function, φi

ε(x, ω) = φ0(x) + εφ1(x,x/ε, ω) + εθ, where
φ1(x,x/ε, ω) = Nk(x/ε, ω)∇kφ0(x).

• The estimates for stationary fields approximating N(x/ε, ω) have been derived
under the strong mixing condition for the coefficients (Yurinskii, 86) (power decay
of two point correlation).

• The convergence rate of MsFEM remains the same as in the periodic case if the
coefficients are quasi-periodic or almost periodic subject to some conditions.
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Various global formulations

• Once basis functions are constructed, various global formulation (mixed, control
volume finite element, DG and etc) can be used to couple the subgrid effects.

• Control volume finite element: Find ph ∈ Vh such that

Z

∂Vz

k(x)∇ph · n dl =

Z

Vz

q dx ∀Vz ∈ Q,

where Vz is control volume.
• Mixed finite element: In each coarse block K, we construct basis functions for the

velocity field

div(k(x)∇wK
i ) =

1

|K| in K

k(x)∇wK
i n

K =

(

1
|eK

i
|

on eK
i

0 else.

For the pressure, the basis functions are taken to be constants.
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MsFEM for problems with scale separation

For periodic problems or problems with scale separation, multiscale finite element
methods can take an advantage of scale separation. Local problems can be solved in
RVE

div(k∇φi) = 0

φi = φi
0 on ∂ RV E.

Basis functions can be also approximated

φi = φi
0 +Nε · ∇φi

0,

where φ0
i is linear basis functions and N is the periodic solution of auxiliary problem in

ε-size period
−div(kε(x)(∇N + I)) = 0.

(cf. Durlofsky 1981, etc.).
Note, the above procedure works when “homogenization by periodization” is applicable
(e.g., random homogeneous case).
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Applications of MsFEM to subsurface flow simulations

Two-phase flow model. Darcy’s law for each phase

vi = −kki(Si)

µi
∇pi,

i=1,2. Here k - permeability field representing the heterogeneities (micro-level
information), pi - the pressure, vi - velocity, ki - relative permeability, Si -saturation, µi -
viscosity

phase 1 phase 2
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Two-phase flow model

• p1 = p2 = p if the capillary effects are neglected. The total velocity v is given by

v = v1 + v2 = −λ(S)k∇p, λ(S) =
k1(S)

µ1
+
k2(S)

µ2
.

where S = S1, S2 = 1 − S1.
• Incompressibility of the total velocity implies

div(λ(S)k∇p) = 0,

• From the conservation of mass St + div(v1) = 0 we can derive

∂S

∂t
+ v · ∇f(S) = 0, f(S) =

k1(S)
µ1

k1(S)
µ1

+
k2(S)

µ2
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Existing upscaling techniques

• −div(λ(S)k∇p) = 0, St + v · ∇f(S) = 0, v = −λ(S)k∇p.

• Single-phase upscaling: (k → k∗), k
∗ = k∇p

∇p
.

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

∇ k∇ p=0 p=1 p=0 

no flow 

no flow 

• Multiphase upscaling λ→ λ∗, f → f∗.
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Applications of MsFEM

At least two way one can apply MsFEM
1) Solve the pressure equation on the coarse-grid and solve the saturation equation on
the fine-grid

−div(λ(S)k∇p) = 0

∂

∂t
S + v · ∇f(S) = 0,

where v = −λ(S)k∇p. Basis functions are updated only near sharp fronts.
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: : : : : :: : : : : :: : : : : :: : : : : :: : : : : :: : : : : :: : : : : :: : : : : :: : : : : :: : : : : :

; ; ; ; ; ;; ; ; ; ; ;; ; ; ; ; ;; ; ; ; ; ;; ; ; ; ; ;; ; ; ; ; ;; ; ; ; ; ;; ; ; ; ; ;; ; ; ; ; ;; ; ; ; ; ;

< < < < < << < < < < << < < < < << < < < < << < < < < << < < < < << < < < < << < < < < << < < < < << < < < < <
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? ? ? ? ? ?? ? ? ? ? ?? ? ? ? ? ?? ? ? ? ? ?? ? ? ? ? ?? ? ? ? ? ?? ? ? ? ? ?? ? ? ? ? ?? ? ? ? ? ?? ? ? ? ? ?
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MsFVEM applied to two-phase flow problem

(IM)plicit (P)ressure (E)xplicit (S)aturation:

Given S0, for n = 1, 2, 3, · · · , do the following:

• find pn−1
h ∈ Vh such that

Z

∂Vz

λ(Sn−1)k(x)∇pn−1
h · n dl =

Z

Vz

q dx ∀Vz ∈ Q

• compute v
n−1 = −λ(Sn−1)k(x)∇pn−1

h

• time march on the saturation equation:

Z

cz

`

Sn − Sn−1
´

dx+ ∆tn−1

Z

∂cz

f(Sn−1)vn−1 · n dl = ∆tn−1

Z

cz

qS̃ dx
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Numerical Setting

• Rectangular domain is considered. The permeability field is generated using
geostatistical libraries.

• The boundary conditions: no flow on top and bottom boundaries, a fixed pressure
and saturation (S = 1) at the inlet (left edge), fixed pressure at the outlet (right
edge).

• The production rate F = q0/q, where q0 the volumetric flow rate of oil produced at
the outlet edge and q the volumetric flow rate of the total fluid produced at the
outlet edge. The dimensionless time is defined as PV I = qt/Vp, where t is time,
Vp is the total pore volume of the system.

B B B B B B B B B B B B B B B B B B B B B B B B BB B B B B B B B B B B B B B B B B B B B B B B B BC C C C C C C C C C C C C C C C C C C C C C C C C

D D D D D D D D D D D D D D D D D D D D D D D D DE E E E E E E E E E E E E E E E E E E E E E E E E

no flow

no flow

S=1

p=1
p=0

F(t)
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Two-point geostatistics
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Fractional flow and total flow for a realization of permeability field with exponential variogram
and lx = 0.4, lz = 0.02, σ = 1.5.
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Two-point geostatistics

fine−scale saturation plot at PVI=0.5
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Applications of MsFEM

2) Obtain coarse-scale equations for the saturation equation. The approximate macro
scale equation is (Efendiev et al., 2000, 2002, 2004)

∂S

∂t
+ v · ∇f(S) = ∇if

′(S)2Dij∇jS

• Dij depends on two point correlation of the velocity field and S.
• The overall approach is obtained by combining the saturation equation with the

pressure equation in the form div(λ(S)k∇p) = 0.
• The multiscale base functions are constructed once. The two-point correlation of

the velocity can be found using the multiscale base functions. This approach is
very efficient and can predict the quantity of interest on a highly coarsened grid.
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Channelized permeability fields

Benchmark tests: SPE 10 Comparative Project

−6

−4

−2

0

2

4

6

8

Multiscale modeling and computation of flow through porous media – p.36/56



Channelized reservoir
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Channelized reservoir
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Comparison of saturation profile at PVI=0.5: (left) fine-scale model, (right) standard MsFVEM
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No-scale separation

• Let kε(x) be a general heterogeneous field (no-scale separation).
• With these basis functions we would like to approximate

div(λ(x)kε(x)∇p) = g(x),

for any λ(x) and g(x) that vary on the coarse grid (smooth function).
• Some type of “one-time” global information is required, e.g.,

div(kε(x)∇p1) = f(x),

p1(x) = p(x) on ∂Q.
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MsFVEM utilizing global information

• The numerical tests using strongly channelized permeability fields (such as SPE 10
Comparative) show that local basis functions can not accurately capture the
long-range information. There is a need to incorporate a global information.

• The main idea is to use the solution of the fine-scale problem at time zero, p0, to
determine the boundary conditions for the multiscale basis formulation.

x

x

x
i

i−1

i+1

x i−1

i+1xx
i

φ  (

φ  (

φ  ()=1 )=0

)=0

i

i

i

φ  (   )=0

φ  (   )=0

i

x

x

i

• These approach is different from oversampling technique.

• Previous related work: J. Aarnes; L. Durlofsky et al.
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MsFVEM utilizing global information

• If p0(xi) 6= p0(xi+1)

gi(x)|[xi,xi+1] =
p0(x) − p0(xi+1)

p0(xi) − p0(xi+1)
, gi(x)|[xi,xi−1] =

p0(x) − p0(xi−1)

p0(xi) − p0(xi−1)
.

If p0(xi) = p0(xi+1) 6= 0 then

gi|[xi,xi+1] = ψi(x) +
1

2p0(xi)
(p0(x) − p0(xi+1)),

where ψi(x) is a linear function on [xi, xi+1] such that ψi(xi) = 1 and ψi(xi+1) = 0.

• The modified MsFVEM is exact for linear elliptic problem.

• When global boundary changes, then reevaluation of the basis might be needed.
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Channelized reservoir
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Channelized reservoir
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Comparison of saturation profile at PVI=0.5: (left) fine-scale model, (right) modified MsFVEM
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Channelized reservoir
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Channelized reservoir
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Comparison of saturation profile at PVI=0.5: (left) fine-scale model, (middle) standard
MsFVEM (right) modified MsFVEM
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Channelized reservoir
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Channelized reservoir
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Channelized reservoir
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Brief Analysis
• Main goal is to show that time-varying pressure is strongly influenced by the initial

pressure field.

• Use the streamline-pressure coordinates:

∂ψ/∂x1 = −v2, ∂ψ/∂x2 = v1

• Set η = ψ(x, t = 0) and ζ = p(x, t = 0) and transform as follows:

F F FF F FF F FF F FF F F
G G GG G GG G GG G GG G G
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x

y

− high flow channel

ζ

η − Ο(δ)

− Ο(δ)
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Brief Analysis

• The transformed pressure equation:

∂

∂η

„

|k|2λ(S)
∂p

∂η

«

+
∂

∂ζ

„

λ(S)
∂p

∂ζ

«

= 0

• The transformed saturation equation:

∂S

∂t
+ (v · ∇η)∂f(S)

∂η
+ (v · ∇ζ)∂f(S)

∂ζ
= 0

• |k|2λ(S) = |k0|2λ0(ζ, t)1Q1−δ
+ |k1|2λ1(η, ζ, t)1Qδ

, λ(S) =

λ0(ζ, t)1Q1−δ
+ λ1(η, ζ, t)1Qδ

.

• The pressure has the following expansion:

p(η, ζ, t) = p0(ζ, t) + δp1(η, ζ, t) + . . . ,

∂
∂ζ

“

λ0(ζ, t) ∂p0

∂ζ

”

= 0.

• Modified basis functions can exactly recover the initial pressure.
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Analysis

Assumption G. There exists a sufficiently smooth scalar valued function G(η) (G ∈ C3),
such that

|p−G(psp)|1,Q ≤ Cδ,

where δ is sufficiently small.
Under Assumption G and psp ∈W 1,s(Q) (s > 2), multiscale finite element method
converges with the rate given by

|p− ph|1,Q ≤ Cδ + Ch1−2/s|psp|W1,s(Q) ≤ Cδ + Ch1−2/s.
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Mixed finite element methods

In each coarse block K, we construct basis functions for the velocity field

div(k(x)∇wK
i ) =

1

|K| in K

k(x)∇wK
i n

K =

(

gK
i on eK

i

0 else,

For the pressure, the basis functions are taken to be constants. In Chen and Hou,
gK

i = 1
|eK

i
|

and eK
i are the edges of K.

Mixed multiscale finite element methods using single-phase flow information is given in
the following way (Aarnes, 2004).
Suppose that psp solves the single-phase flow equation. We set bKi = (k∇psp|eK

i
) · nK

and assume that bKi is uniformly bounded. Then the new basis functions for velocity is
constructed by solving the following local problems with gK

i = bKi /β
K
i , where

βK
i =

R

eK
i
k∇psp · nKds.

Lemma. Inf-sup condition holds.
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Mixed finite element methods. Analysis

Assume
‖u − A(x)usp‖0,Q ≤ δ

and

|
X

i

Ai

Z

∂eK
i

u
sp

n
Kds| ≤ Cδ1h

2.

Then
‖u − uh‖H(div,Q) + ‖p− ph‖0,Q ≤ Cδ + Cδ1 + Chγ .
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Extensions

Assume there exists a sufficiently smooth scalar valued function G(η), η ∈ RN

(G ∈ C3), such that
|p−G(u1, ..., uN )|1,Q ≤ Cδ,

where δ is sufficiently small.
Let ωi be a patch, and define φ0

i to be piecewise linear basis function in patch ωi, such
that φ0

i (xj) = δij . For simplicity of notation, denote u1 = 1. Then, the multiscale finite
element method for each patch ωi is constructed by

ψij = φ0
i uj

where j = 1, .., N and i is the index of nodes. First, we note that in each K,
Pn

i=1 ψij = uj is the desired single-phase flow solution.
Theorem. Assume ui ∈W 1,s(Q), s > 2, i = 1, ...,N . Then

|p− ph|1,Q ≤ Cδ + Ch1−2/s.
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An approach to general 2nd order pdes

(H. Owhadi and L. Zhang, CPAM, 2006)

div(λ(x)k(x)∇p) = 0,

where λ(x) is smooth function, while k(x) is rough (e.g., k(x) = k(x/ε)).
Take u1 and u2 that satisfy

−div(k(x)∇ui) = 0 in Q,

ui = xi on ∂Q. Then, p(u1, u2) ∈W 2,p because it satisfies

aij
∂2p

∂ui∂uj
≈ 0.

(e.g., p = p0 + ε2N(x/ε)...).
Owhadi and Zhang showed that the non-conforming method with basis functions that
span u1 and u2 converge.
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Conclusions

• MsFEM on coarse grid. Analysis. Oversampling
• Some applications of MsFEM to porous media flows.
• MsFEM using limited global information.
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