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Chapter 1

Random geometric optics I: short
time asymptotics

1.1 Rays without the wave equation – the formal theory

We consider in this section the very basic ray theory in a random emdium without any refer-
ences to the wave equation – this material is based on the classical paper by J.B. Keller [38].

1.1.1 Perturbative ray theory

Fermat’s principle postulates that light goes from point A to B as fast as possible. Such fastest
path is called a ray connecting points A and B. The medium in which light is propagating is
described in terms of the local speed of light c(x). Let Γ be a ray from A to B, then∫

Γ

dl

c(X)
= inf

γ

∫
γ

dl

c(X)
.

Here the infimum is taken over all continuous curves γ connecting A and B. Equivalently,
parameterizing γ by x(t) = (x1(t), x2(t), x3(t)), 0 ≤ t ≤ 1, we need to minimize the functional

1∫
0

n(x(s))|ẋ(s)|ds (1.1)

with n(x) = c0/c(x) being the refractive index. Here c0 = const is a reference speed that
is some typical speed of propagation in the medium. This will be sometimes formalized by
requiring that n(x) does not deviate from n0 = 1 too much but that is not required a priori.
The Euler-Lagrange equations for the functional (1.1) are

d

dt

∂F

∂ẋj
− ∂F

∂xj
= 0

with F (x, ẋ) = n(x(s))|ẋ(s)|. This may be rewritten as

d

dt

(
nẋj

|ẋ|

)
− |ẋ| ∂n

∂xj
= 0.

Let θ be the unit vector along the ray: θ = ẋ/|ẋ|, then the above equations take the form

d

dt
(nθ)− |ẋ|∇n = 0. (1.2)
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A convenient way to parameterize the path is to use the arclength parameter l along the curve
x(t), then dl = |ẋ|dt and we obtain the ray equation

d

dl
(nθ)−∇n = 0. (1.3)

It may be also written as
d

dl

(
n
dx

dl

)
−∇n = 0. (1.4)

Equation (1.4) should be supplemented by the initial conditions:

x(0) = 0,
dx

dl
(0) = θ0, |θ0| = 1. (1.5)

This is the fundamental equation of the ray optics that describes the geometry of rays con-
necting different points in an inhomogeneous medium. Observe that if n(x) = const, then
dθ/dl = 0 and the direction θ doesn’t change along the ray. Therefore rays in a homogeneous
medium are straight lines. Similarly, if the medium is layered, that is, the refraction variable
depends only on the variable x1: n = n(x1) then rays that point initially in the direction of
x1 are straight lines – this also follows immediately from (1.5) with n = n(x1) and the initial
data θ0 = e1.

Let us now consider the case when index of refraction deviates slightly from unity:

n(x) = 1 + εµ(x).

We assume that ε is a small parameter: ε� 1 and employ the formal perturbation theory to
determine the perturbed path x(l, ε) expanding it as

x(l, ε) = x0(l) + εx1(l) + ε2x2(l) + . . .

We insert this expansion in the ray equations (1.4) and get in the order ε0:

d2x0

dl2
= 0

so that x0(l) = lθ0. The first order correction in ε is determined by the equation

d2x1

dl2
= ∇µ(x0)−

(
dx0

dl
· ∇µ(x0)

)
dx0

dl
(1.6)

with the initial condition x1(0) = dx1/dl(0) = 0. The right side of (1.6) is the component of
∇µ normal to θ0. We will denote it by ∇⊥µ below. The solution of (1.6) is given by

x1(l) =

l∫
0

(l − s)∇⊥µ(θ0s)ds. (1.7)

It follows that (x1 · x0) = 0 – this is typical for a first order correction in the perturbation
series. A straightforward computation using the fact that x1 is perpendicular to θ0 shows that
the second order term x2 satisfies a lengthy equation

d2x2

dl2
= (x1 · ∇⊥)∇⊥µ(x0)− 1

2
∇⊥µ

2 −
(
dx1

dl
· ∇⊥µ(x0)

)
dx0

dl
−
(
dx0

dl
· ∇µ(x0)

)
dx1

dl
(1.8)
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with the initial data x2(0) = dx2/dl(0) = 0. Its solution is given by

x2(l) =

l∫
0

ds(l − s)

(x1(s) · ∇⊥)∇⊥µ(sθ0)− 1
2
∇⊥µ

2(sθ0)− θ0

s∫
0

(∇⊥µ(sθ0) · ∇⊥µ(τθ0))dτ

− (θ0 · ∇µ(sθ0))

s∫
0

∇⊥µ(τθ0)dτ

 . (1.9)

1.1.2 Weakly perturbed rays in a random medium

Expressions for the corrections x1 and x2 obtained above are valid for any perturbation µ(x).
Let us now specify that µ(x) is a random function that has mean zero and its statistics is
spatially homogeneous and isotropic:

〈µ(x)〉 = 0, 〈µ(x)µ(y)〉 = R(|x− y|), 〈µ(p)µ(q)〉 = (2π)nR̂(p)δ(p+ q). (1.10)

The correlation function R(|x|) is smooth, has maximum at zero, is a decreasing and rapidly
decaying function of |x|, and the power spectrum R̂(p) is its Fourier transform.

The mean ray position

Let us first compute the average ray position using expressions obtained in Section 1.1. The
first order correction has mean zero: 〈x1〉 = 0 so that

〈x(l)〉 = lθ0 + ε2〈x2〉+O(ε3).

The expected value of of x2 may be computed explicitly using expression (1.9). Observe that
〈∇⊥µ

2〉 = 0 since 〈µ2〉 is constant because of spatial homogeneity. To compute the mean of
the first term in (1.9) we use (1.7) and the Fourier transform, as well as the last identity in
(1.10). This term becomes:〈 l∫

0

ds

s∫
0

ds1(l − s)(s− s1)(∇⊥µ(s1θ0) · ∇⊥)∇⊥µ(sθ0)

〉
=

l∫
0

ds

s∫
0

ds1(l − s)(s− s1)

×
∫
eis1p·θ0+isq·θ0 ((ip− i(θ0 · p) θ0) · (iq − i(θ0 · q)θ0)) [iq − i(θ0 · q)θ0] 〈µ̂(p)µ̂(q)〉 dpdq

(2π)2n

= −i
l∫

0

ds

s∫
0

ds1(l − s)(s− s1)
∫
eis1p·θ0−isp·θ0 |p− (θ0 · p)θ0|2 (p− (θ0 · p)θ0)R̂(p)

dp

(2π)n

We claim that the integral in p vanishes. To see that we choose a coordinate system such that
θ0 = en is the unit vector in the direction of xn. The integral in p becomes∫

ei(s1−s)pn |p′|2p′R̂(p)
dp

(2π)n
= 0, p′ = (p1, p2, . . . , pn−1, 0),
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because R̂ depends only on |p| so that R̂(p′, pn) = R̂(−p′, pn). Similarly one may show that
the average of the last term in (1.9) vanishes. Indeed, it is equal to

−

〈 l∫
0

(l − s)(θ0 · ∇µ(sθ0))

s∫
0

∇⊥µ(τθ0)dτds

〉

= −
l∫

0

s∫
0

(l − s)
∫
eisp·θ0+iτq·θ0〈µ̂(p)µ̂(q)〉(θ0 · (ip)) [iq − i(q · θ0)θ0]

dpdq

(2π)n
dτds

= −
l∫

0

s∫
0

(l − s)
∫
eisp·θ0−iτp·θ0R̂(p)(θ0 · p) [p− (p · θ0)θ0]

dp

(2π)n
dτds.

With the same choice of coordinates such that θ0 = en is along the pn-variable and p′ =
(p1, . . . , pn−1, 0) the integral in p above is∫

ei(s−τ)pnR̂(p)pnp
′ dp

(2π)n
= 0

as R̂(p′, pn) = R̂(−p′, pn) because R(x) is isotropic.
Thus only the third term has a non-zero mean and we obtain

〈x(l)〉 = lθ0 − ε2θ0

l∫
0

ds(l − s)

s∫
0

dτ 〈(∇⊥µ(sθ0) · ∇⊥µ(τθ0))〉+O(ε3).

The second term may be evaluated using the Fourier transform as above:

〈∇⊥µ(sθ0) · ∇⊥µ(τθ0)〉 =
∫
ei(s−τ)p·θ0(p− (θ0 · p)θ0)2R̂(|p|) dp

(2π)n
= −∆⊥R((s− τ)θ0).

Here ∆⊥ is the Laplacian in the direction transverse to θ0: with our usual choice of θ0 along
the coordinate xn we have

∆⊥R =
n−1∑
j=1

∂2R

∂x2
j

.

When R(|x|) is radially symmetric this is

∆⊥R(x) =
n−1∑
j=1

∂

∂xj

[
R′(|x|)xj

|x|

]
=

n−1∑
j=1

(
R′′(|x|)x2

j

|x|2
+
R′(|x|)
|x|

−
R′(|x|)x2

j

|x|3

)
,

and in particular

∆⊥R(rθ0) =
(n− 1)R′(r)

r
.

This leads to

〈x(l)〉 = θ0

l +
(n− 1)ε2

2

l∫
0

(l − r)2
R′(r)
r

 dr +O(ε3). (1.11)

We see that the mean location of the endpoint of a ray of length l which starts from the
origin is in the direction θ0. However, its distance from the origin is less than when the ray
is not perturbed since R′(r) < 0. Physically this is expected because the presence of the
inhomogeneities slows down the propagation as light no longer propagates along a straight
line.
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The mean square fluctuations

Let us denote by ρ deviation of the ray from the straight line x = θ0l: ρ(l) = xε(l)− θ0l. Then
we have

〈ρ(l)2〉 = ε2〈x2
1〉+ o(ε2).

We set now space dimension n = 3 and compute the above average in the same manner as
before:

〈x2
1(l)〉 = −

∫ l

0

∫ l

0
(l − s)(l − τ)∆⊥R(|s− τ |)dτds = −

∫ l

0
R′(r)

[
2r2

3
− 2l2 +

4l3

3r

]
dr.

For l large compared to the correlation length a the last term above dominates so that

〈ρ(l)2〉 ≈ −4ε2l3

3

∫ ∞

0

R′(r)
r

dr +O(ε3) for l� a. (1.12)

Similarly one may compute the average deviation α of the direction of the ray from the
mean direction θ0:

〈α2(l)〉 =

〈(
dx

dl
− θ0

)2
〉

= ε2

〈∣∣∣∣dx1

dl

∣∣∣∣2
〉

+O(ε3) = ε2

〈 l∫
0

l∫
0

∇⊥µ(θ0s)∇⊥µ(θ0τ)

〉
dτds

= −2ε2
l∫

0

l∫
0

R′(|τ − s|)
|τ − s|

dτds = 4ε2
[
R(l)−R(0)− l

∫ l

0

R′(r)
r

dr

]
+O(ε3).

For l large compared to the correlation length a this becomes〈
α2(l)

〉
≈ −4ε2l

∫ ∞

0

R′(r)
r

dr +O(ε3) for l� a. (1.13)

Expressions (1.12) and (1.13) may be written as〈
ρ2(l)

〉
≈ 1

3
Dl3 +O(ε3) (1.14)

and 〈
α2(l)

〉
≈ Dl +O(ε3). (1.15)

Here we introduced the ray diffusion coefficient

D = −4ε2
∫ ∞

0

R′(r)
r

dr. (1.16)

Expressions (1.14) and (1.15) may also be obtained by treating the ray direction α(l) as a
Brownian motion with the diffusion coefficient D and ρ(l) as its time integral:

dα =
√
DdB, dρ = α(l)dl.

Here B(l) is the standard Brownian motion. Then a simple calculation shows that

〈ρ(l)2〉 = D

〈 l∫
0

l∫
0

B(s)B(s′)ds′ds

〉
= 2D

〈 l∫
0

s′∫
0

B(s)B(s′)dsds′
〉

= 2D

l∫
0

s∫
0

sdsds′ =
Dl3

3
.

However, the a priori assumption that ray direction may be described in terms of such Markov
process is not easy to justify unlike the derivation presented above. Nevertheless, this concept
is important and the ray direction does behave as a Markov process in a certain asymptotic
limit that we will discuss in the rest of this chapter.
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1.1.3 Random Liouville equations: small time formal asymptotics

Reduction to a time-dependent stochastic accelaration problem

In order to make the above discussion of the diffusive ray behavior somewhat more careful
(albeit not yet rigorous) we consider the Liouville equations in phase space

∂φ

∂t
+ c(x)k̂ · ∇xφ− |k|∇c(x) · ∇kφ = 0 (1.17)

with the speed c(x) = 1 + δµ(x). Here µ(x) is a spatially homogeneous random process with
the correlation function as in (1.10). Then (1.17) becomes

∂φ

∂t
+ [1 + δµ(x)]k̂ · ∇xφ− δ∇µ(x)|k| · ∇kφ = 0 (1.18)

and solutions are close to those of

∂φ

∂t
+ k̂ · ∇xφ = 0 (1.19)

for times t = O(1). In order to see some more interesting phenomena, in particular, the ray
diffusion mentioned above, we look at the bicharacteristics of (1.18):

Ẋ(t) = −(1 + δµ(X))K̂(t), K̇(t) = δ∇µ(X(t))|K(t)|, X(0) = x0, K(0) = k0. (1.20)

It is convenient to re-write this system in terms of the unit vector K̂(t) = K(t)/|K(t)| using
the relation

dK̂

dt
=

K̇

|K|
− (K · K̇)

|K|2
K̂ = δ∇µ(X)− δ(K̂ · ∇µ(X))K̂.

This allows us to re-write (1.20) as

dX(t)
dt

= −(1 + δµ(X))K̂(t),
dK̂(t)
dt

= δ[∇µ(X(t))− (K̂ · ∇µ(X))K̂]. (1.21)

Let us introduce the rescaled quantities Y (t) = X(t)+k̂0t−x0 and P = (K̂(t)−k̂0)/δα with
α > 0 to be chosen. Naively, one would expect that over a time T the direction K̂ deviates
from its initial value by δT which means that the trajectory deviates from X0(t) = −k̂0t
by T · δT = δT 2. Hence we would expect that Y (t) behaves non-trivially on the time scale
O(δ−1/2). We will see, however, that because the random perturbation has mean zero, the
effect takes place on a longer time scale.

In the new variables the system (1.21) becomes

Ẏ (t) = −δαP (t)− δµ(X(t))k̂0 − δ1+αµ(X(t))P (t), (1.22)
Ṗ (t) = δ1−α[∇µ(X(t))− (K̂ · ∇µ(X))K̂].

In the slow time variable t′ = δαt this is

dỸ (t′)
dt′

= −P̃ (t′)− δ1−αµ

(
x0 −

k0t
′

δα
+ Ỹ (t′)

)
k̂0 − δµ

(
x0 −

k0t
′

δα
+ Ỹ (t′)

)
P̃ (t′), (1.23)

dP̃ (t′)
dt′

= δ1−2α
[
I − (k̂0 + δαP̃ (t′))⊗ (k̂0 + δαP̃ (t′))

]
∇µ

(
x0 −

k0t
′

δα
+ Ỹ (t′)

)
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with Ỹ (t′) = Y (t′/δα) and P̃ (t′) = P (t′/δα). We choose α = 2/3 so that δ1−2α = δ−α/2 and
introduce ε = δ1/3:

dỸ (t′)
dt′

= −P̃ (t′)− εµ

(
x0 −

k0t
′

ε2
+ Ỹ (t′)

)
k̂0 − ε3µ

(
x0 −

k0t
′

ε2
+ Ỹ (t′)

)
P̃ (t′), (1.24)

dP̃ (t′)
dt′

=
1
ε

[
I − (k̂0 + ε2P̃ (t′))⊗ (k̂0 + ε2P̃ (t′))

]
∇µ

(
x0 −

k0t
′

ε2
+ Ỹ (t′)

)
.

Let us keep only the leading order terms in (1.24). The analysis that we perform on the
simplified system may be applied to the full problem as well albeit at the price of somewhat
lengthier calculations that we are not willing to pay at the moment. Then (1.24) becomes (we
now drop both the primes and tildes)

Ẏ (t) = −P (t), Y (0) = 0 (1.25)

Ṗ (t) =
1
ε

[
I − (k̂0 ⊗ k̂0)

]
∇µ

(
x0 −

k0t

ε2
+ Y (t)

)
, P (0) = 0,

which is the system we will study. The vector Ṗ (t) is orthogonal to k0 for all t ≥ 0 – hence
so is P (t) and thus (Y (t) · k0) = 0 for all t ≥ 0 as well. This is a familiar phenomenon for the
perturbation theory – the first order correction is orthogonal to the mean dispalcement. It is
convenient to set x0 = 0 and choose the coordinate axes so that k0 = en, the unit vector in the
direction of xn. Then Y (t) = (Y1, . . . , Yn−1, 0), P (t) = (P1, . . . , Pn−1, 0) and (1.25) may be re-
written as the following system for Z(t) = (Y1(t), . . . , Yn−1(t)) and Q(t) = (P1(t), . . . , Pn−1(t)):

Ż(t) = −Q(t), Z(0) = 0 (1.26)

Q̇(t) =
1
ε
G

(
t

ε2
, Z(t)

)
, Q(0) = 0,

where

G(xn, x
′) =

(
∂µ(x′,−xn)

∂x1
, . . . ,

∂µ(x′,−xn)
∂xn−1

)
, x′ ∈ Rn−1.

This system also happens to describe the motion of a classical particle moving in a random
time-dependent force field ε−1G(t/ε2, x) and is called the stochastic acceleration problem in
this context. Equivalently, (1.26) describes the trajectories for the Liouville equation

φt + k · ∇xφ−
1
ε
G(

t

ε2
, x) · ∇kφ = 0

which appears in the semi-classical limit δ → 0 for the Schrödinger equation

iδ
∂ψ

∂t
+
δ2

2
∆ψ − 1

ε
G(

t

ε2
, x)ψ = 0, ψ(0, x) = ψ0

δ (x),

with the parameter ε > 0 fixed.

A very formal derivation of the diffusive limit

We now describe a very formal but quick and effective way to obtain the limit of (1.26) as
ε→ 0. Let us write the corresponding Liouville equation

∂φ

∂t
+ q · ∇zφ−

1
ε
G

(
t

ε2
, z

)
· ∇qφ = 0. (1.27)
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Instead of assuming that the random function G(s, x) is as in (1.26) we make a more general
hypothesis that for each x ∈ Rn the process G(s, x) ∈ Rn is stationary in time with the
two-point correlation tensor

Rml(s, x) = 〈Gm(t, x)Gp(t+ s, x)〉.

We seek the solution as a multiple time scale expansion

φ = φ0(t, z) + εφ1(t, τ, z) + ε2φ2(t, τ, z) + . . . , τ = t/ε2. (1.28)

As usual in such expansions in random media we assume that the leading order term is
independent of the fast variable and is deterministic. The higher order corrections are assumed
to be stationary in the fast variable τ . These assumptions are typically very hard to justify
rigorously – nevertheless they often provide the correct answer. We insert the expansion into
(1.27) and obtain in the leading order O(1/ε)

∂φ1

∂τ
= G(τ, z) · ∇qφ0(t, z)

so that
φ1(t, z, τ) = χ(τ, z) · ∇qφ0(t, z) (1.29)

with the corrector χ(τ, z) that solves χ̇ = G(τ, z). It is very convenient to introduce a regu-
larization parameter θ that we will send to zero later and write

χm(τ, z) =
∫ τ

−∞
eθsGm(s, z)ds. (1.30)

The terms of the order O(1) in (1.27) are

∂φ0

∂t
+ q · ∇zφ0 −G (τ, z) · ∇qφ1 +

∂φ2

∂τ
= 0.

We take the expectation of this equation using the fact that φ0 is deterministic and argue that
because φ2 is stationary in τ we have 〈

∂φ2

∂τ

〉
= 0.

With these two closure assumptions we obtain

∂φ0

∂t
+ q · ∇zφ0 = 〈G (τ, z) · ∇qφ1〉.

The term on the right side is computed explicitly using expression (1.29)-(1.30) for φ1:

〈G (τ, z) · ∇qφ1〉 =
〈
Gm (τ, z)

∂

∂qm

[∫ τ

−∞
eθsGp(s, z)ds

∂φ0

∂qp

]〉
=
∫ τ

−∞
eθsRmp(s− τ, z)ds

∂2φ0

∂qm∂qp
→
∫ 0

−∞
Rmp(s, z)ds

∂2φ0

∂qm∂qp
as θ → 0.

Therefore, the function φ0(t, q, z) satisfies a degenerate parabolic equation

∂φ0

∂t
+ q · ∇zφ0 = Dmp(z)

∂2φ0

∂qm∂qp
(1.31)
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with the symmetrized diffusion coefficient

Dmp(z) =
1
2

[∫ 0

−∞
Rmp(s, z)ds+

∫ 0

−∞
Rpm(s, z)ds

]
=

1
2

∫ ∞

−∞
Rmp(s, z)ds.

If the statistics of G(s, x) is identical for all x ∈ Rn then the diffusion matrix is constant in
space. This means that in the limit ε→ 0 the process Q(t) becomes a diffusion while Z(t) is
its integral in time.

Going back to the short time asymptotics for the geomtric optics we see that the rescaled
deviation of the wave vector from its original value k0 converges to a diffusion process Q(t)
and the deviation of the spatial position from its average k0t converges to the time integral of
Q(t) on a time scale of the order O(δ−2/3). This time is much longer than the naive prediction
O(δ−1/2) discussed below (1.21). Here δ is the relative size of the variations of the refraction
index. This provides a formalization of the ray diffusion we have discussed in Section 1.1.2,
at least for short times. It turns out that the randomization of the wave vector on the time
scale O(δ−2/3) is related to the appearance of a caustic. kIt has been shown by B. White
[61] appears on this time scale with probability one. This means that the ray approach in a
random medium works only on a very short time scale as caustics appear very qucikly. On the
other hand, one may follow the solutions of the Liouville equations for arbitrarily long times.

1.2 Basic facts on weak convergence in C and D

Weak convergence

We recall in this section basic facts from [11] on weak convergence of probability measures.
All the proofs of the results of this section can be found there as well as a wealth of other
information. Recall that a sequence of Borel measures Pn defined on a space Ω converges
weakly to a Borel measure P on Ω if for every bounded continuous real function f we have∫

Ω
fdPn →

∫
Ω
fdP.

This condition is equivalent to the following: for every set A with P (∂A) = 0 we have Pn(A) →
P (A). A family F of (Borel) probability measures on Ω is relatively weakly compact if every
sequence Pn of elements in F contains a weakly convergent subsequence Pnk

which converges
weakly to a probability measure Q.

Weak convergence in C

One of the main examples we are going to discuss is the weak convergence in the space
C = C([0, T ]; Rn) of continuous functions (paths) on an interval [0, T ]. An effective way
to verify weak compactness in C is provided by Prokhorov’s theorem. Recall that a family
F of probability measures is tight if for every ε > 0 there exists a compact set K so that
P (K) > 1− ε for all measures P ∈ F .

Theorem 1.2.1 If a family F is tight then it is relatively compact.

As a corollary we have the following basic criterion for weak convergence.

Corollary 1.2.2 Let Pn and P be probability measures on C. If the finite-dimensional dis-
tirbutions of Pn converge weakly to those of P and {Pn} is a tight family then Pn converge
weakly to P .
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It is important to note that convergence of finite-dimensional distributions in C in itself
does not imply weak convergence and tightness assumption in Corollary 1.2.2 can not be
dropped. Indeed, consider a sequence of piece-wise linear functions zn which increase from 0
to 1 on the interval [0, 1/n], decrease from 1 to 0 on the interval [1/n, 2/n] and are equal to
zero for t ≥ 2/n. Set the measure Pn = δzn and let P = δ0, the delta-function concentrated on
the function z = 0. Suppose that A is a finite-dimensional subset of C, that is, there exists a
finite set of times t1, . . . , tk so that if a path x(t) lies in A then so do all paths y(t) such that
x(ti) = y(ti) for all 1 ≤ i ≤ k. If A is a finite-dimensional set then as soon as n is so large that
1/n < ti for all i = 1, . . . , k such that ti > 0 (this qualifier is needed since it is possible that
some ti = 0) we have PnA = PA simply because zn(tj) = z(tj) for all j = 1, . . . , k (including
the time ti = 0 if there is such an i) and thus zn lies in A if and only if z ∈ A. On the other
hand if we define f(x) = min[2, ‖x‖] with the uniform norm

‖x‖ = sup
0≤t≤1

|x(t)|

then f is by definition a bounded continuous function on C but∫
fdPn = 1

while ∫
fdP = 0.

Therefore Pn does not converge weakly to P . This example shows that convergence of finite-
dimensional distributions is not sufficient for weak convergence.

The advanatage of tightness is that it is a verifiable notion by means of various moduli of
continuity. The usual modulus of coninuity of a function x(t), t ∈ [0, 1] is defined as

wx(ε) = sup
|t−s|≤ε

|x(s)− x(t)|, 0 < ε ≤ 1.

The Arzela-Ascoli theorem implies that a set A is relatively compact in C if and only if both
supx∈A |x(0)| < +∞ and

lim sup
ε→0

sup
x∈A

wx(ε) = 0.

The following theorem (Theorem 7.3 in [11]) is the most basic criterion for tightness in C.

Theorem 1.2.3 A sequence of probability measures Pn on C is tight if and only if the following
two conditions hold: (i) for each η > 0 there exist n0 and a > 0 so that

Pn[x : x(0) ≥ a] ≤ η for all n ≥ n0, (1.32)

and (ii) for each δ > 0 and η > 0 there exists 0 < ε < 1 and n0 so that

Pn [x : wx(ε) ≥ δ] ≤ η for all n ≥ n0. (1.33)

Condition (1.32) is usually easy to verify, especially so when we the measures Pn are generated
by solutions of differential equations (with coefficients that depend on the parameter n) with
a prescribed initial point – then x(0) does not depend on n. On the other hand, verifying
(1.33) is the heart of the proof of many limit theorems. Some criteria for (1.33) to hold will
be given in the next section.
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The space D

The cadlag functions. It is quite common that one has to deal with convergence of processes
that have jumps but are “nice” otherwise. The appropriate space to work with consists of
functions that have limits on the left and are continuous on the right:

(i) For 0 ≤ t < 1 the right limit x(t+) = lims→t+ x(s) exists and x(t) = x(t+).
(ii) For 0 < t ≤ 1 the left limit x(t−) = lims→t− x(s). (1.34)

Such functions are often called cadlag functions (“continu á droite, limites á gauche”).
Cadlag functions can not be too bad: for instance, it is easy to check that for any cadlag

function x(t) and any ε > 0 one can find a finite partition 0 = t0 < t1 < · · · < tn = 1 of the
interval [0, 1] such that the oscillation wx[ti−1, ti) < ε. Here the oscillation of the function x(t)
on a set S is defined as

wx(S) = sup
s,t∈S

|x(s)− x(t)|. (1.35)

It follows that any cadlag function x(t) is uniformly bounded and, moreover, has at most
countably many discontinuities since the number of points where the jump magnitude exceeds
1/n is finite for all n ∈ N. We will continue to denote the usual uniform norm by

‖x‖ = sup
0≤t≤1

|x(t)|.

The Skorohod topology. The usual uniform topology is too rigid to work in the space
D. If we think of functions in D as, for instance, realizations of a random jump process then
we would like to think of two realizations as close even if the jumps occur not at exactly the
same time but rather at close times. The uniform norm does not capture this idea. Instead,
for two functions x and y in D we define the distance d(x, y) as the smallest number ε > 0 so
that we may find an increasing continuous function (“time change”) λ(t) such that λ(0) = 0,
λ(1) = 1 and both

sup
t∈[0,1]

|λ(t)− t| < ε

and
sup

t∈[0,1]
|x(t)− y(λ(t))| = sup

t∈[0,1]
|x(λ−1(t))− y(t)| < ε. (1.36)

This metric defines the Skorohod topology.
Let Λ be the set of increasing continuous functions λ(t) such that λ(0) = 0, λ(1) = 1. Then

a sequence xn(t) converges to x(t) in the Skorohod topology in D if there exists a sequence
λn ∈ Λ such that x̃n(t) = xn(λn(t)) converges to x(t) and λn(t) converges to t – both in the
uniform topology of [0, 1]. In particular, the usual uniform convergence implies convergence
in the Skorohod topology – simply take λn(t) = t. Moreover, as

|xn(t)− x(t)| ≤ |xn(t)− x(λn(t))|+ |x(λn(t))− x(t)|, (1.37)

it follows that xn(t) converges pointwise to x(t) at the points where x(t) is continuous. Since
x(t) is continuous for all but countably many points, Skorohod convergence implies pointwise
convergence except on a countable set of points. In addition (1.37) implies that if the limit
x(t) is continuous on [0, 1] (and hence uniformly continuous) then the Skorohod convergence
implies the uniform convergence.
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The problem with the above metric is that the space D is not complete under the metric
d as can be seen on the following example. Let xn(t) = 1 for 0 ≤ t ≤ 1/2n and xn(t) = 0
otherwise. Let λn ∈ Λ be a (piecewise) linear function:

λn(t) =
t

2

on the interval [0, 1/2n] and

λn(t) =
1

2n+1
+

1− 1
2n+1

1− 1
2n

(
t− 1

2n

)
on the interval [1/2n, 1] so that λn maps [0, 1/2n] onto [0, 1/2n+1]. Then xn+1(λn(t)) = xn(t)
and |λn(t) − t| ≤ 1/2n+1. This means that d(xn, xn+1) ≤ 1/2n+1 and therefore the sequence
xn(t) is Cauchy in the metric d. On the other hand, xn(t) converges pointwise to x(t) = 0
for all t > 0. Therefore, if xn converges in the Skorohod topology the only possible limit
function is x(t) = 0 (because Skorohod convergence implies pointwise convergence except on a
countable set). However, the distance from each xn(t) to x = 0 is equal to one (simply because
x(λ(t)) ≡ 0 for all λ ∈ Λ and xn(0) = 1 for all n) and thus xn(t) does not converge in the
Skorohod topology.

The way to make the space D complete is to introduce a different metric d0 defined as
follows. For λ ∈ Λ define

‖λ‖0 = sup
s<t

∣∣∣∣log
λ(t)− λ(s)

t− s

∣∣∣∣ .
This means that the slopes of λ are bounded away from zero and infinity if ‖λ‖0 < ∞. The
distance d0(x, y) for x, y ∈ D is the smallest number ε ≥ 0 so that there exists λ ∈ Λ such
that ‖λ‖0 < ε and (1.36) holds. This is more restrictive than d: it requires that not only λ is
close to identity in the uniform norm but the slopes of λ are all close to one. In particular,
the above example of a non-converging Cauchy sequence involves λn which are not close to
identity in this norm. We have the following proposition.

Proposition 1.2.4 The metrics d and d0 are equivalent on D in the sense that d(xn, x) → 0
if and only if d0(xn, x) → 0. Moreover, the space D is separable under both d and d0 and
complete under d0.

Note that there is no contradiction in this proposition to the above example of a sequence
xn which is d-Cauchy in D but does not converge. This sequence is simply not d0-Cauchy:
d0(xn, xn+1) = ‖λn‖0 = log 2.

Compactness in D

Compactness in terms of w′x(δ). Modulus of coninuity is not a right notion for a function
in D as wx(δ) does not vanish in the limit δ → 0. An alternative modulus which allows for
jumps is defined as follows. We have mentioned that for any function x(t) ∈ D and any ε > 0
one can find a finite partition 0 = t0 < t1 < · · · < tn = 1 such that on each sub-interval the
oscillation wx[ti−1, ti) < ε. We say that a partition {ti} is δ-sparse if ti − ti−1 > δ for all i.
Define the modulus

w′x(δ) = inf
{ti}

max
1≤i≤n

wx[ti−1, ti)

with the infimum taken over all δ-sparce partitions {ti}. The previous argument shows that
limδ→0w

′
x(δ) = 0 for any cadlag function x ∈ D. It is straightforward to check that we always

have w′x(δ) ≤ wx(2δ). There can be no inequality in the opposite direction because the usual
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modulus of conitnuity wx(δ) does not go to zero as δ → 0 for a discontinuous function from
D. However, for a continuous function x(t) we do have an inequality wx(δ) ≤ 2w′x(δ) so for
continuous functions the two moduli are equivalent.

The most basic criterion for compactness in D is the following analog of the Arzela-Ascoli
theorem.

Theorem 1.2.5 A necessary and sufficient condition for a set A to be relatively compact in
the Skorohod topology is that supx∈A ‖x‖ <∞ and limδ→0 supx∈Aw

′
x(δ) = 0.

Since the space D is separable and complete an immediate consequence of this theorem is the
following tightness criterion.

Theorem 1.2.6 A necessary and sufficient condition for a sequence Pn of probability measures
on D to be tight is that

(i) lim
a→∞

lim sup
n

Pn [x : ‖x‖ ≥ a] = 0,

and
(ii) lim

δ→0
lim sup

n
Pn

[
x : w′x(δ) ≥ ε

]
= 0 for all ε > 0.

Compactness in terms of w′′x(δ). Another useful generalization of the modulus of
continuity is the following modulus

w′′x(δ) = sup
0≤u−s≤δ

[
sup

s≤t≤u
(min [|x(u)− x(t)|, |x(t)− x(s)|])

]
.

This is yet another relaxation as it is not hard to see that w′′x(δ) ≤ w′x(δ). However, once
again, there is no inequality in the opposite direction: for the functions

xn(t) =

1, for 0 ≤ t < 1/n,

0, for 1/n ≤ t ≤ 1
,

we have w′′xn
(δ) = 0 while w′xn

(δ) = 1 for δ > 1/n because any δ-sparse partition will still
contain an interval [0, t1) with t1 > δ > 1/n where the oscillation is equal to one. This is an
end-point phenomenon which also happens for the functions

yn(t) =

0, for 0 ≤ t < 1− 1/n,

1, for 1− 1/n ≤ t ≤ 1
.

Nevertheless this is the only obstacle for a compactness criterion in terms of w′′x(δ) alone. The
following result takes this problem into account.

Theorem 1.2.7 A necessary and sufficient condition for a set A to have a compact closure
in the Skorohod topology is that supx∈A ‖x‖ <∞, limδ→0 supx∈Aw

′′
x(δ) = 0 and

lim
δ→0

sup
x∈A

|x(δ)− x(0)| = 0, and lim
δ→0

sup
x∈A

|x(1−)− x(1− δ)| = 0.

A direct analog of Theorem 1.2.6 is then the following.
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Theorem 1.2.8 A necessary and sufficient condition for a sequence Pn of probability measures
on D to be tight is that

(i) lim
a→∞

lim sup
n

Pn [x : ‖x‖ ≥ a] = 0,

and
(ii.1) lim

δ→0
lim sup

n
Pn

[
x : w′′x(δ) ≥ ε

]
= 0 for all ε > 0

and

(ii.2)

 limδ→0 lim supn Pn [x : |x(δ)− x(0)| ≥ ε] = 0

limδ→0 lim supn Pn [x : |x(1−)− x(1− δ)| ≥ ε] = 0.

A convenient and more practical criterion for weak convergence is the following. Given
a probability measure P we denote by TP the set of all times t such that P [Jt] = 0 where
Jt = {x ∈ D : x(t) 6= x(t−)} is the set of all functions that have a jump at time t. If X is a
random variable on D then we write TX for TP where TP is the law of X.

Theorem 1.2.9 Suppose that the finite-dimensional distirbutions (Xn
t1 , . . . , X

n
tk

) of random
variables Xn defined on D converge weakly as n→∞ to (Xt1 , . . . , Xtk) whenever all ti lie in
TX , and X1 − X1−δ goes weakly to zero as δ → 0. Assume also that there exists β ≥ 0 and
α > 1/2 so that for all r ≤ s ≤ t and λ > 0 we have

P [min{|Xn
s −Xn

r |, |Xn
t −Xn

s |} ≥ λ] ≤ C

λ4β
|F (t)− F (s)|2α, (1.38)

where F is a non-decreasing continuous function on [0, 1]. Then Xn converge weakly to X as
n→∞.

The key estimate in the proof of Theorem 1.2.9 is that (1.38) implies that there exists a
constant K that depends only on C, α and β so that

P
[
w′′Xn(δ) ≥ ε

]
≤ K

ε4β
(F (1)− F (0))[wF (2δ)]2α−1, (1.39)

where wF is the modulus of continuity of the function F . This means that (1.38) ensures
that condition (ii.1) of Theorem 1.2.8 holds. A useful and verifiable condition that guarantees
(1.38) is that there exist β > 0, α > 1/2 and C > 0 so that

E
{
|Xn

s −Xn
r |2β|Xn

t −Xn
s |2β

}
≤ C|t− r|2α (1.40)

for all n. Then we may take F (t) = t and (1.39) becomes

P
[
w′′Xn(δ) ≥ ε

]
≤ K

ε4β
δ2α−1. (1.41)

This is why we need α > 1/2 in (1.40). It follows that we may use (1.40) as a substitute for
condition (ii.1) in Theorem 1.2.8.

In turn, the following condition is sufficient to ensure that (1.40) holds: for any T > 0 and
ν > 0 there exists a constant C(T, ν) so that for all n, and all 0 ≤ s ≤ t ≤ u ≤ T , we have

E
{
|Xn(u)−Xn(t)|2|Xn(t)−Xn(s)|ν

}
≤ C(T, ν)(u− t)E {|Xn(t)−Xn(s)|ν} . (1.42)

Indeed, when ν = 0 in (1.42) we have

E
{
|Xn(u)−Xn(t)|2

}
≤ C(T, ν)(u− t) for all n and all 0 ≤ t ≤ u ≤ T .
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Taking ν = 2 in (1.42) we get, using the above:

E
{
|Xn(u)−Xn(t)|2|Xn(t)−Xn(s)|2

}
≤ C(T, ν)(u− t)E

{
|Xn(t)−Xn(s)|2

}
(1.43)

≤ C(T, ν)(u− t)(t− s) ≤ C(T, ν)(u− s)2

and thus (1.40) indeed holds. A somehwat more general estimate than (1.42) is a reformulation
in terms of the conditional expectation

E
{
|Xn(t)−Xn(s)|2|

∣∣Fs

}
≤ C(T )(t− s). (1.44)

A practical advantage of working with the conditional expectation in (1.44) is that the power
of (t− s) on the right is equal to one, not larger than one as in (1.40).

1.3 A limit theorem for a particle in a random flow

We now return to the question of the limiting behavior of solutions of the ray equations (1.26)

Ż(t) = −Q(t), Z(0) = 0 (1.45)

Q̇(t) =
1
ε
G

(
t

ε2
, Z(t)

)
, Q(0) = 0.

The rigorous approach to this problem lies via understanding the more general problem of the
behavior of a particle in a rapidly varying in time random flow:

Ẋ =
1
ε
V

(
t

ε2
, X

)
, X(0) = x, (1.46)

with a random function V when ε � 1. This question goes back to the papers by Khas-
minskii [41] from the 60’s with subsequent contributions by various authors: without any
attempt at completeness we mention the work of Papanicolaou and Kohler [52], and Kesten
and Papanicolaou [39]. We present a version of the limit theorem due to T. Komorowski [43].

Let us explain where the scaling in (1.46) comes from, apart from coinciding with that in
(1.45). To see that let us start with a dynamical system

dY

dT
= v0V

(
T

t0
,
Y

x0

)
with a random time-dependent function V (s, x) and introduce non-dimensional space-time
variables X = Y/x0, s = T/t0:

dX

ds
= εV (s,X) , ε =

v0t0
x0

.

Let us now assume that ε � 1 is a small parameter – physically this means that the time it
takes the particle to pass one spatial correlation length is much larger than the correlation
time of the random fluctuations. Therefore, in this regime the temporal randomness of V (s, x)
“dominates” the spatial variations. If we now introduce a slow time t so that t = ε2s, then in
the variables (t, x) the particle obeys (1.46). The limit ε → 0 now corresponds to observing
the particle at times much larger than the correlation time of the random fluctuations and on
the spatial scale of the order of the correlation length of the medium.

The first order equation corresponding to (1.46) is

∂φ

∂t
+

1
ε
V

(
t

ε2
, x

)
· ∇φ = 0, φ(0, x) = φ0(x). (1.47)
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Its solution is φ(T, x) = φ0(X(0;x;T )), where X(t;x, T ) is the solution of (1.46) with the
initial data prescribed at time T : X(T ;x, T ) = x.

When does one expect the trajectories of (1.46) to behave diffusively? First of all, V has to
have mean zero so that the mean displacement would not be clearly biased. Second, V should
“mix things around” which means that the flow should be incompressible. It helps if dynamics
at “far away” points is nearly independent: this is formalized by the mixing assumption below
that eliminates the memory effect. Finally, there should be no distinguished times – this
requires stationarity of V in time.

The ray equations (1.45) are not quite of the form (1.46): one should consider a slightly
more general dynamics with an additional slow component F (t, x):

dX

dt
=

1
ε
G

(
t

ε2
, X

)
+ F (t,X), X(0) = x, (1.48)

with a function F which we will assume to be deterministic for simplicity. Then equations
(1.45) are of the form (1.48) with X = (Z,Q), G = (0, V ) and F = (−Q, 0).

Assumptions on the random field

Stationarity. The random field V (t, x) is strictly stationary in time and space. This means
that for any t1, t2, . . . , tm ∈ R, x1, . . . , xm ∈ Rn, and each h ∈ R and y ∈ Rn the joint
distirbution of V (t1 + h, x + y), V (t2 + h, x + y), . . . , V (tm + h, x + y) is the same as that of
V (t1, x), V (t2, x), . . . , V (tm, x). We will denote by Rnm(t, x) the two-point correlation tensor
of V (t, x):

Rnm(t, x) = E {Vn(s, y)Vm(t+ s, y + x)} . (1.49)

Mixing. Given C > 0 and ρ > 0 let us denote by Vb
a(C, ρ) the σ-algebra generated by the

sets of the form {ω : V (t, x, ω) ∈ A} where a ≤ t ≤ b, |x| ≤ C(1 + tρ) and A is a Borel set
in Rn. We will assume that there exists C > 0 and 1/2 < ρ < 1 such that for any m ≥ 0 the
mixing coefficient

β(h;C, ρ) = sup
t

sup
A∈V∞t+h(C,ρ),B∈Vt

0(C,ρ)

|P (A ∩B)− P (A)P (B)|
P (B)

(1.50)

satisfies
hmβ(h;C, ρ) ≤ Cm for all h ≥ 0.

Boundedness. The random field V (t, x) has three spatial derivatives and there exists a
deterministic constant C > 0 so that with probability one we have

|V (t, x)|+
∣∣∣∣∂V (t, x)

∂xj

∣∣∣∣+
∣∣∣∣ ∂2V

∂xi∂xj

∣∣∣∣+
∣∣∣∣ ∂3V

∂xl∂xi∂xj

∣∣∣∣ ≤ C < +∞

for all 1 ≤ i, j, l ≤ n.
Incompressibility. The field V is divergence free, that is, almost surely

∇ · V (t, x) =
n∑

j=1

∂Vj

∂xj
= 0.

The mixing assumption is sometimes strengthened considering larger σ-algebras Ṽb
a gen-

erated by the sets of the form {ω : V (t, x, ω) ∈ A} where a ≤ t ≤ b, x ∈ Rn (there is no
restriction on x now) and A is a Borel set in Rn with the corresponding mixing coefficient

β̃(h) = sup
t

sup
A∈Ṽt+h,B∈Ṽt

0

|P (A ∩B)− P (A)P (B)|
P (B)

.
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The stronger assumption does not apply to shifts by a mean flow, that is, random fields of the
form V (t, x) = U(x− ūt), where U(x) is a field that is mixing in space and ū is a mean flow.
This is an important and interesting class of random fields that we would like to include in
our consideration. The small price to pay for its inclusion is the modification of the mixing
condition as in (1.50).

The spatial stationarity of V (t, x) is not a necessary assumption but it allows to simplify
a few expressions in what follows. This can be seen already from the formal computation in
Section 1.1.3. It can, however, be dropped and we adopt it here simply for convenience. On
the other hand, stationarity in time is essential for the limit theorem.

The limit theorem

Let us define the diffusion matrix

apq =
∫ ∞

0
E {Vq(t, 0)Vp(0, 0) + Vp(t, 0)Vq(0, 0)} dt =

∫ ∞

0
[Rpq(t, 0) +Rqp(t, 0)] dt

and its symmetric non-negative definite square-root matrix σ: σ2 = a. Then the following
theorem holds.

Theorem 1.3.1 Suppose that the random field V (t, x) satisfies the assumptions above. Then
the process Xε(t) converges weakly as ε→ 0 to the limit process X̄(t) that satisfies a stochastic
differential equation

dX̄(t) = F (t, X̄(t))dt+ σdWt.

Here Wt is the standard Brownian motion.

The main result of [43] is actually much more general – it applies also to non-divergence free
velocities. Then the large time behavior is a sum of a large (order 1/ε) deterministic component
that comes from the flow compressibility and an order one diffusive process. Komorowski also
accounts for the possible small scale variations of the random field looking at equations of the
form

dX

dt
=

1
ε
V

(
t

ε2
,
X(t)
εα

)
with 0 ≤ α < 1. We will not describe these generalizations in detail here. We should also
mention that when α = 1 a new regime arises – the time it takes the particle to pass one
spatial correlation length is no longer much larger than the correlation time of the random
fluctuations. This seriously changes the analysis.

We will present the proof of Theorem 1.3.1 under two simplifying assumptions: first, the
drift F = 0 and second, the matrix σ is invertible. While they do not subtract any of the
essential aspects of the proof, they do shorten many expressions and calculations which are
sufficiently long even without them. The proof proceeds in several steps. First, we establish a
mixing lemma that translates the mixing properties of the random field into a “loss-of-memroy”
effect for the trajectories. Second, using the mixing lemma we establish the tightness of the
family of processes Xε(t). This is done in the space D. However, as the processes Xε(t) are
all continuous the limit process also has to be continuous and convergence take place in C. In
the last step we identify the limit as a Brownian motion multiplied by the matrix σ by means
of the martingale characterization of the Brownian motion.
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The proof of tightness

The mixing lemmas

A crucial component in many proofs of this kind is some sort of a mixing lemma. It translates
the mixing properties of the random field into the mixing properties of the trajectories. At
the end of the day this allows us to split expectations into product of expectations and either
“justify”, or explain away the closure assumptions that are often made formally. In our
particular problem it explains why the formal assumption that the leading order term in the
asymptotic expansion (1.28) is deterministic produced the correct answer.

We set G0(s1, x) = V (s1, x) and

G1,j(s1, s2, x) =
n∑

p=1

Vp(s2, x)
∂Vj(s1, x)

∂xp
, j = 1, . . . , n.

Incompressibility of V (t, x) and its spatial stationarity imply that E{G1(s1, s2, x)} = 0. In the
next lemma we drop C and ρ in the notation for the σ-algebras Vs

0(C, ρ).

Lemma 1.3.2 Fix T ≥ 0 and let 0 ≤ u ≤ s ≤ T . Assume that Y is a Vs/ε2

0 -measurable
random vector function. Then there exists ε0 > 0 and a constant C > 0 such that for any
0 ≤ u ≤ s ≤ s2 ≤ s1 ≤ T and 0 < ε < ε0 we have∣∣∣E{V (s1

ε2
, Xε(u)

)
Y
( s
ε2

)}∣∣∣ ≤ Cβ(s1 − s)E
∣∣∣Y ( s

ε2

)∣∣∣ , (1.51)∣∣∣∣E{ ∂

∂xk

[
V
(s1
ε2
, Xε(u)

)]
Y
( s
ε2

)}∣∣∣∣ ≤ Cβ(s1 − s)E
∣∣∣Y ( s

ε2

)∣∣∣ , (1.52)

and ∣∣∣E{G1

(s1
ε2
,
s2
ε2
, Xε(u)

)
Y
( s
ε2

)}∣∣∣ ≤ Cβ1/2(s1 − s2)β1/2(s2 − s)E
∣∣∣Y ( s

ε2

)∣∣∣ , (1.53)∣∣∣∣E{ ∂

∂xk

[
G1

(s1
ε2
,
s2
ε2
, Xε(u)

)]
Y
( s
ε2

)}∣∣∣∣ ≤ Cβ1/2(s1 − s2)β1/2(s2 − s)E
∣∣∣Y ( s

ε2

)∣∣∣ , (1.54)

for all 1 ≤ k ≤ n.

Proof. First of all, we note that for ρ > 1/2, C > 1 + sup |V (t, x)| and 0 < ε < ε0(T ) the
process Xε(t), 0 ≤ t ≤ u ≤ T does not leave the ball of the radius C(1 + uρ/ε2ρ) centered at
the origin, and hence is Vu/ε2

0 (C, ρ) -measurable:

|Xε(t)| ≤
1
ε

∫ u

0

∣∣∣V ( s
ε2
, Xε(s)

)∣∣∣ ds ≤ Cu

ε
≤ C

(
1 +

uρ

ε2ρ

)
for all 0 ≤ t ≤ u.

We first prove (1.51)-(1.52). We prove only the second inequality, (1.52) as the proof of
(1.51) is identical. The idea is to replace the random variable Xε(u) by a deterministic value
and use the mixing properties of the field V (t, x) in time. Let M ∈ N be a fixed positive
integer and l ∈ Zn. Define the event

A(l) =
[
ω :

lj
M

≤ Xε
j (u) <

lj + 1
M

, j = 1, . . . , n
]
, l = (l1, . . . , ln).

The event A(l) is Vs/ε2

0 measurable since u ≤ s. When M is sufficiently large, that is, if

1
M

≤ C

(
1 +

tρ

ε2ρ

)
,
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for almost every realization ω there exists exactly one l ∈ Zn so that ω ∈ A(k). Then we may
decompose the expectation in (1.52) using the fact that the random variable Xε(u) is close to
the non-random value l/M on the event A(l) as follows:∣∣∣∣E{ ∂

∂xk

[
V

(
t

ε2
, Xε(u)

)]
Y
( s
ε2

)}∣∣∣∣ =

∣∣∣∣∣∑
l

E
{

∂

∂xk

[
V

(
t

ε2
, Xε(u)

)]
Y
( s
ε2

)
χA(l)

}∣∣∣∣∣
≤

∣∣∣∣∣∑
l

E
{[

∂

∂xk

[
V

(
t

ε2
, Xε(u)

)]
− ∂

∂xk

[
V

(
t

ε2
,
l

M

)]]
Y
( s
ε2

)
χA(l)

}∣∣∣∣∣
+

∣∣∣∣∣∑
l

E
{

∂

∂xk

[
V

(
t

ε2
,
l

M

)]
Y
( s
ε2

)
χA(l)

}∣∣∣∣∣ = I + II.

The second term above may be now estimated using the mixing property (1.50) and the fact
that E {∂V/∂xk} = 0 by

II ≤ 2Kβ
(
t− s

ε2

)∑
l

E
{∣∣∣Y ( s

ε2

)∣∣∣χA(l)

}
= 2Kβ

(
t− s

ε2

)
E
{∣∣∣Y ( s

ε2

)∣∣∣} ,
uniformly in M .

As we have assumed that two spatial derivatives of the field V (t, x) are bounded by a de-
terministic constant, ∂V/∂xk is uniformly continuous in space. Therefore, using the Lebesgue
dominated convergence theorem we conclude that I → 0 as M → +∞ and (1.52) follows. An
identical proof shows that in addition we have the same bound for the second derivatives of
the random field V :∣∣∣∣E{ ∂2

∂xk∂xm

[
V
(s1
ε2
, Xε(u)

)]
Y
( s
ε2

)}∣∣∣∣ ≤ Cβ(s1 − s)E
∣∣∣Y ( s

ε2

)∣∣∣ . (1.55)

We now prove (1.54) – the proof of (1.53) is identical. Let us first write out the expression
for G1 : ∣∣∣∣E{ ∂

∂xk

[
G1

(s1
ε2
,
s2
ε2
, Xε(u)

)]
Y
( s
ε2

)}∣∣∣∣
≤

n∑
p=1

∣∣∣∣E{ ∂

∂xk

[
Vp

(s2
ε2
, Xε(u)

) ∂

∂xp

(
V
(s1
ε2
, Xε(u)

))]
Y
( s
ε2

)}∣∣∣∣
Now we may apply (1.52), (1.55) in two different ways using different parts of the inequality

0 ≤ u ≤ s ≤ s2 ≤ s1.

First, we may use (1.52), (1.55) with the gap between s1 and s2, that is, we group into “Y ”
in (1.52), (1.55) all terms that involve s and s2. Using in addition the uniform bounds on V
and its derivatives this leads to∣∣∣∣E{ ∂

∂xk

[
G1

(s1
ε2
,
s2
ε2
, Xε(u)

)]
Y
( s
ε2

)}∣∣∣∣ ≤ Cβ

(
s1 − s2
ε2

)
E
{∣∣∣Y ( s

ε2

)∣∣∣} .
Second, note that (1.52) may be slightly generalized to apply with ∂V/∂xk replaced by a suffi-
ciently smooth in space VT

s1
random variable with an expectation equal to zero. As E{G1} = 0

indeed, we can use use this modified version of (1.52) with the gap between s2 and s, taking
“Y ” in (1.52) to be simply Y (s/ε2):∣∣∣∣E{ ∂

∂xk

[
G1

(s1
ε2
,
s2
ε2
, Xε(u)

)]
Y
( s
ε2

)}∣∣∣∣ ≤ Cβ

(
s2 − s

ε2

)
E
{∣∣∣Y ( s

ε2

)∣∣∣} .
Multiplying these two inequalities and taking the square root we conculde that (1.54) holds.
This finishes the proof of Lemma 1.3.2. �
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The proof of tightness

We will establish the inequality

E
{
|Xε(t)−Xε(s)|2|Xε(s)−Xε(u)|2

}
≤ C(t− u)1+ν (1.56)

with ν > 0. This is the criterion (1.40) for tightness in the space D. The main step in the
proof is to find γ ∈ (1, 2) such that for all times t and s such that t − s > 10εγ we have an
estimate for the conditional expectation

E
{
|Xε(t)−Xε(s)|2

∣∣Fs

}
≤ C(t− s) for t− s > 10εγ . (1.57)

Step 0. Nearby times. As we have explained before, the estimate (1.57) itself is sufficient
to establish tightness in D for the family Xε(t) if it were to hold for all t > s. As we will prove
it only for pairs of time with a gap: t− s > 10εγ , we may at the moment conclude only that

E
{
|Xε(t)−Xε(s)|2|Xε(s)−Xε(u)|2

}
≤ C(t− u)1+ν for t− s > 10εγ and s− u > 10εγ .

Our first step is to establish that, with an appropriate choice of γ ∈ (1, 2), if either t−s ≤ 10εγ

or s − u ≤ 10εγ , the estimate (1.56) follows from (1.57) together with the dynamical system
(1.48) governing Xε(t). If both t − s ≤ 10εγ and s − u ≤ 10εγ then we have directly from
(1.48):

E
{
|Xε(t)−Xε(s)|2|Xε(s)−Xε(u)|2

}
≤ Cε−4(t− s)2(s− u)2

≤ Cε11γ/4−4(t− u)5/4 ≤ C(t− u)5/4

provided that γ > 16/11. On the other hand, if, say, t − s ≤ 10εγ but s − u > 10εγ , (1.57)
implies that

E
{
|X(s)−X(u)|2

}
≤ C(s− u),

and (1.48) implies that with probability one

|X(t)−X(s)| ≤ C(t− s)
ε

.

Therefore, the following estimate holds for such times t, s and u:

E
{
|Xε(t)−Xε(s)|2|Xε(s)−Xε(u)|2

}
≤ C

ε2
(t− s)2(s− u)

≤ Cε7γ/4−2(t− u)5/4 ≤ C(t− u)5/4,

provided that γ > 8/7. We see that, indeed, (1.57) together with (1.48) are sufficient to
prove the tightness criterion (1.56). The rest of the proof of tightness of the processes Xε(t)
is concerned with verifying (1.57).

Step 1. Taking a time-step backward. We start with a pair of times t > s with a gap
between them: t− s > 10εγ . Consider a partition of the interval [s, t] into subintervals of the
length

∆t = lε = (t− s)
([

t− s

εγ

])−1

,

where [x] is the integer part of x. Then the time step lε is such that εγ/2 ≤ lε ≤ 2εγ and
the partition is s = t0 < t1 < · · · < tM+1 = t with a time step ∆t = ti+1 − ti = lε. The
parameter γ ∈ (1, 2) is to be defined later. The important aspect is that γ < 2 so that ∆t is
much larger than the velocity correlation time ε2. The basic idea in the proof of (1.57) is “to
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expand Xε(t) −Xε(s) in a Taylor series” with a “large” time step O(∆t). This will produce
explicitly computable terms which are the first two terms in this expansion. The error terms
which are nominally large are shown to be small using the mixing Lemma 1.3.2.

Dropping the subscript ε of Xε we write for t > s:

X(t)−X(s) =
1
ε

∫ t

s
V
( u
ε2
, X(u)

)
du =

1
ε

M∑
i=0

ti+1∫
ti

V
( u
ε2
, X(u)

)
du (1.58)

Therefore our task is to estimate the integral inside the summation in the right side of (1.58).
In the preparation for the application of the mixing lemma the integrand on the interval
ti ≤ u ≤ ti+1 can be rewritten as

V
( u
ε2
, X(u)

)
= V

( u
ε2
, X(ti−1)

)
+
∫ u

ti−1

d

du1
V
( u
ε2
, X(u1)

)
du

= V
( u
ε2
, X(ti−1)

)
+

u∫
ti−1

n∑
p=1

∂

∂xp

[
V
( u
ε2
, X(u1)

)](1
ε
Vp

(u1

ε2
, X(u1)

))
du1

= V
( u
ε2
, X(ti−1)

)
+

1
ε

∫ u

ti−1

G1

( u
ε2
,
u1

ε2
, X(u1)

)
du1.

The next step is to expand G1 as well, also around the “one-step-backward” time ti−1:

G1

( u
ε2
,
u1

ε2
, X(u1)

)
= G1

( u
ε2
,
u1

ε2
, X(ti−1)

)
+

1
ε

∫ u1

ti−1

G2

( u
ε2
,
u1

ε2
,
u2

ε2
, X(u2)

)
du2

with

G2(u, u1, u2, x) =
n∑

q=1

∂

∂xq
[G1 (u, u1, x)]Vq (u2, x) .

Putting together the above calculations we see that

X(t)−X(s) =
1
ε

M∑
i=0

∫ ti+1

ti

V
( u
ε2
, X(u)

)
du =

1
ε

M∑
i=0

∫ ti+1

ti

V
( u
ε2
, X(ti−1)

)
du

+
1
ε2

M∑
i=0

∫ ti+1

ti

[∫ u

ti−1

G1

( u
ε2
,
u1

ε2
, X(u1)

)
du1

]
du

=
1
ε

M∑
i=0

∫ ti+1

ti

V
( u
ε2
, X(ti−1)

)
du+

1
ε2

M∑
i=0

∫ ti+1

ti

[∫ u

ti−1

G1

( u
ε2
,
u1

ε2
, X(ti−1)

)
du1

]
du

+
1
ε3

M∑
i=0

∫ ti+1

ti

[∫ u

ti−1

[∫ u1

ti−1

G2

( u
ε2
,
u1

ε2
,
u2

ε2
, X(u2)

)
du2

]
du1

]
du.

The triple integral on the last line is deterministically small with an appropriate choice of γ:
the time interval in each integration is smaller than εγ and the total number of terms is at
most 2(t−s)/εγ as we have assumed that t−s ≥ 10εγ . Therefore, the last integral is bounded
by

1
ε3

∣∣∣∣∣
M∑
i=0

∫ ti+1

ti

[∫ u

ti−1

[∫ u1

ti−1

G2

( u
ε2
,
u1

ε2
,
u2

ε2
, X(u2)

)
du2

]
du1

]
du

∣∣∣∣∣ ≤ Cε2γ−3(t− s)
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which is small if γ > 3/2. This is a general idea in proofs of weak coupling limits: pull back
one time step and expand the integrands until they become almost surely small, then compute
the limit of the (very) finite number of surviviing terms. In our present case we have shown
that, for 3/2 < γ < 2,

X(t)−X(s) = L1(s, t) + L2(s, t) + E(s, t)

where

L1(s, t) =
1
ε

M∑
i=0

ti+1∫
ti

V
( u
ε2
, X(ti−1)

)
du

and

L2(s, t) =
1
ε2

M∑
i=0

ti+1∫
ti

[∫ u

ti−1

G1

( u
ε2
,
u1

ε2
, X(ti−1)

)
du1

]
du,

while |E(s, t)| ≤ Cεα(t−s) with some α > 0 and a deterministic constant C > 0. This finishes
the first preliminary step in the proof of tightness.

Step 2. Application of the tightness criterion. Now we are ready to prove (1.57).
That is, we have to verify that for any non-negative and Vs/ε2

0 -measurable random variable Y
we have for all 0 ≤ s ≤ t ≤ T such that t ≥ s+ 10εγ :

E
{
|X(t)−X(s)|2Y

}
≤ C(T )(t− s)E {Y } .

Our estimates in Step 1 show that it is actually enough to verify that

E
{

(Lj(s, t))2Y
}
≤ C(t− s)E{Y }, j = 1, 2.

An estimate for L1. We first look at the term corresponding to L1: it is equal to

E
{

(L1(s, t))2Y
}

=
2
ε2

∑
i<j

n∑
p=1

ti+1∫
ti

tj+1∫
tj

E
{
Vp

( u
ε2
, X(ti−1)

)
Vp

(
u′

ε2
, X(tj−1)

)
Y

}
du′du

+
1
ε2

∑
j

n∑
p=1

tj+1∫
tj

tj+1∫
tj

E
{
Vp

( u
ε2
, X(tj−1)

)
Vp

(
u′

ε2
, X(tj−1)

)
Y

}
du′du =

∑
i≤j

Iij .

The idea is to use separation between ti−1 and tj−1 and apply the mixing lemma. Accordingly
we look at the cases i ≤ j − 2, i = j − 1 and i = j separately as the terms end up being of a
different order. The terms with i ≤ j−2 may be estimated with the help of the mixing Lemma
1.3.2 using the time gap between the times u′ and tj−1 ≥ ti+1 ≥ u which is much larger than
the correlation time ε2:

M∑
j=0

∑
i≤j−2

|Iij | ≤
C

ε2

M∑
j=0

∑
i≤j−2

ti+1∫
ti

tj+1∫
tj

β

(
u′ − tj−1

ε2

)
E {Y } du′du

≤ C

ε2
β
(
ε2−γ

)
(t− s)2E {Y } ≤ Cεp(t− s)E {Y }
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for any p > 0 since γ < 2 and β(s) decays faster than any power of s. The term I3 corresponding
to i = j can be estimated using the mixing lemma again, using the fact that tj−1 is smaller
than both u and u′:

M∑
j=0

|Ijj | ≤
C

ε2

M∑
j=0

tj+1∫
tj

tj+1∫
tj

E
{
Vp

( u
ε2
, X(tj−1)

)
Vp

(
u′

ε2
, X(tj−1)

)
Y

}
du′du (1.59)

≤ 2C
ε2

∑
j∈I

tj+1∫
tj

tj+1∫
u′

β

(
u− u′

ε2

)
dudu′E {Y } ≤ C(t− s)E {Y }

∫ ∞

0
β(u)du.

The integral I2 with i = j − 1 is estimated similarly.
A better estimate estimate for L1. Let us now go one step further and actually identify

the limit of E{L1,j(s, t)L1,m(s, t)Y } with 1 ≤ j,m ≤ n. The previous calculations already show
that the term corresponding to the previous I1 (but now with Vj and Vm replacing Vp and Vp)
satisfies |I1| ≤ Cεα(t− s)E{Y } with α > 0 so we are interested only in the limit of I2 and I3.
The term I3 is computed as in (1.59) with the help of the mixing lemma:

∑
j∈I

|Ijj | =
1
ε2

M∑
j=0

tj+1∫
tj

tj+1∫
tj

E
{
Vj

( u
ε2
, X(tj−1)

)
Vm

(
u′

ε2
, X(tj−1)

)
Y

}
du′du (1.60)

=
1
ε2

M∑
j=0

tj+1∫
tj

tj+1∫
tj

Rjm

(
u− u′

ε2
, 0
)
dudu′E {Y }+ o(1)(t− s)E {Y }

=
[∫ ∞

−∞
Rjm(τ, 0)dτ + o(1)

]
(t− s)E {Y } .

Finally, I2 corresponding to i = j − 1 is computed as

∑
j∈I

|Ij−1,j | =
1
ε2

M∑
j=0

tj+1∫
tj

tj∫
tj−1

E
{
Vj

( u
ε2
, X(tj−1)

)
Vm

(
u′

ε2
, X(tj−2)

)
Y

}
du′du (1.61)

=
1
ε2

∑
j∈I

tj+1∫
tj

tj∫
tj−1

Rjm

(
u− u′

ε2
, 0
)
dudu′E {Y }+ o(1)(t− s)E {Y } = o(1)(t− s)E {Y } .

because tj+1 − tj = εγ � ε2. Therefore we actually have a more precise estimate

E {(L1,j(s, t)L1,m(s, t))Y } =
[∫ ∞

−∞
Rjm(τ, 0)dτ + o(1)

]
(t− s)E {Y } . (1.62)

An estimate for L2. Following the above steps one also establishes the required estimate
for L2:

E
{

(L2(s, t))2Y
}
≤ C(t− s)E{Y }. (1.63)

There is no reason to repeat these calculations separately for L2 except that an even stronger
estimate than (1.63) holds with an appropriate choice of γ:

E
{

(L2(s, t))2Y
}
≤ Cεα(t− s)E{Y } (1.64)
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with α > 0. We will need (1.64) in the identification of the limit, thus we will show it now:
E
{

(L2(s, t))2Y
}

is equal to

1
ε4

∑
i,j

ti+1∫
ti

du

tj+1∫
tj

du′
u∫

ti−1

du1

u′∫
tj−1

du′1E
{
G1

( u
ε2
,
u1

ε2
, X(ti−1)

)
G1

(
u′

ε2
,
u′1
ε2
, X(tj−1)

)
Y

}
.

Once again, you split the sum above into terms with i ≤ j− 2, i = j− 1 and i = j: those with
i ≤ j − 2 add up to

1
ε4

∑
i≤j−2

ti+1∫
ti

du

tj+1∫
tj

du′
u∫

ti−1

du1

u′∫
tj−1

du′1E
{
G1

( u
ε2
,
u1

ε2
, X(ti−1)

)
G1

(
u′

ε2
,
u′1
ε2
, X(tj−1)

)
Y

}
≤ Cε2γ−4β

(
εγ−2

)
(t− s)2E{Y }.

We used in the above estimate the mixing lemma with the gap between ti−1 and tj−1 as well
as the fact that the length of each time interval is εγ while the total number of terms in the
sum is not more than (2(t− s)/εγ)2. The important difference with L1 is that the term with
i = j is also small:

1
ε4

∑
i

ti+1∫
ti

du

ti+1∫
ti

du′
u∫

ti−1

du1

u′∫
ti−1

du′1E
{
G1

( u
ε2
,
u1

ε2
, X(ti−1)

)
G1

(
u′

ε2
,
u′1
ε2
, X(ti−1)

)
Y

}
≤ Cε3γ−4(t− s)E{Y }

simply because now the number of summands is bounded by (2(t−s)/εγ) (without the square).
This means that if we take γ > 4/3 this term is bounded by the right side of (1.64). The
contribution of the terms with i = j − 1 is estimated identically – hence (1.64) indeed holds.

Summarizing our work so far (and restoring the missing indices) we have shown that

E {(Xm(t)−Xm(s))(Xn(t)−Xn(s))Y } =
[∫ ∞

−∞
Rmn(τ, 0)dτ + o(1)

]
(t− s)E {Y } (1.65)

for all t > s with t − s ≥ 10εγ . This, of course, implies (1.57) and hence the tightness of the
family Xε(t) follows.

Identification of the limit

In order to identify the limit, using the Levy theorem (the martingale characterization of the
Brownian motion) (see, for instance, Theorem 3.16 in [37]) all we have to do is verify that the
limit is continuous (that we already know) and the following two conditions hold: first,

lim
ε→0

E
{[

(Xε
j (t)−Xε

j (s))(Xε
m(t)−Xε

m(s))− ajm(t− s)
]

Ψ
}

= 0

for all bounded non-negative continuous functions Ψ = Ψ(Xε(t1), . . . , Xε(tn)) with 0 ≤ t1 ≤
t2 ≤ · · · ≤ tn ≤ s < t ≤ T . Second, we need

lim sup
ε→0

E
{

(Xε
j (t))4

}
< +∞

for all t > 0. These conditions allow us to conlude that the limit process is a martinagle. The
former condition we have already verified in the previous section in the proof of tightness. The
latter may be checked using very similar arguments. This finishes the proof of Theorem 1.3.1.
�
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Chapter 2

Random geometric optics II: the
long time limit, from rays to
diffusion

Here we study the long time asymptotics of rays in a weakly random medium. This problem
is analyzed in the general setting of a particle in a weakly random Hamiltonian field. This
chapter is based on the results of [6] and [44].

2.1 A particle in a random Hamiltonian

We have considered in Chapter 1 the asymptotic behavior of a ray in a medium with weakly
random sound speed and have seen that on a short time scale the rescaled deviation of the
direction of the ray from its original value becomes a diffusion process. The long time behavior
of this system is an example of the analysis of the long time, large distance behavior of a particle
in a weakly random time-independent Hamiltonian flow. It turns out that this limit is also
described by the momentum diffusion but now, of course, without rescaling of the momentum:
the particle momentum itself undergoes the Brownian motion on the energy sphere. This
intuitive result has been first proved in [40] for a classical particle in dimensions higher than
two, and later extended to two dimensions with the Poisson distribution of scatterers in [22],
and in a general two-dimensional setting in [45]. On the other hand, the long time limit of
a momentum diffusion is the standard spatial Brownian motion. Hence, a natural question
arises if it is possible to obtain such a Brownian motion directly as the limiting description
in the original problem of a particle in a quenched random potential. This necessitates the
control of the particle behavior over times longer than those when the momentum diffusion
holds. This is what we do in this chapter.

We consider a particle that moves in an isotropic weakly random Hamiltonian flow with
the Hamiltonian of the form Hδ(x, k) = H0(k) +

√
δH1(x, k), k = |k|, and x, k ∈ Rd with

d ≥ 3:

dXδ

dt
= ∇kHδ,

dKδ

dt
= −∇xHδ, Xδ(0) = 0, Kδ(0) = k0. (2.1)

Here H0(k) is the background Hamiltonian and H1(x, k) is a random perturbation, while the
small parameter δ � 1 measures the relative strength of random fluctuations. One expects
that the effect of the random fluctuation would be of order one on the time scale of the order
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t ∼ O(δ−1). And indeed, as we have mentioned, it has been shown in [40] that, when

Hδ(x, k) =
k2

2
+
√
δV (x),

and under certain mixing assumptions on the random potential V (x), the momentum process
Kδ(t/δ) converges to a diffusion process K(t) on the sphere k = k0 and the rescaled spatial
component X̃δ(t) = δXδ(t/δ) converges to X(t) =

∫ t
0 K(s)ds. This is the momentum diffusion

mentioned above. Another special case,

Hδ(x, k) = (c0 +
√
δc1(x))|k|, (2.2)

arises in the geometrical optics limit of wave propagation and this is the problem we are mostly
interested in these notes. Here c0 is the background sound speed, and c1(x) is a random
perturbation. This case has been considered in [6], where it has been shown that, once again,
Kδ(t/δ) converges to a diffusion process K(t) on the sphere {k = k0} while X̃δ(t) = δXδ(t/δ)
converges to X(t) = c0

∫ t
0 K̂(s)ds, K̂(t) := K(t)/|K(t)|.

We show in this chapter how the momentum diffusion may be obtained and that this
analysis may be pushed beyond the time of the momentum diffusion, so that under certain
assumptions concerning the mixing properties of H1 in the spatial variable there exists α0 > 0
such that the process δ1+αXδ(t/δ1+2α) converges to the standard Brownian motion in Rd for all
α ∈ (0, α0). The main difficulty of the proof is to obtain error estimates in the convergence of
Kδ(·) to the momentum diffusion. The error estimates allow us to push the analysis to times
much longer than δ−1 where the momentum diffusion converges to the standard Brownian
motion. The method of the proof is a modification of the cut-off technique used in [6] and
[40].

A similar question arises in the semi-classical limit of the quantum mechanics and high
frequency wave propagation. The Wigner transform, or the phase space energy density of
the solution of the Schrödinger equation, is approximated in a weakly random medium by
the solution of a deterministic linear Boltzmann equation. This behavior is also conjectured
for the acoustic and other waves in a weakly random medium [53]. As in the momentum
diffusion model for a particle, the long time limit of the Boltzmann equation is the spatial
diffusion equation. It has been recently shown by Erdös, Salmhofer and Yau in [24, 25] that,
indeed, one may push the Erdös-Yau analysis of [23] beyond the times on which the Boltzmann
equation holds and obtain the diffusive behavior of the energy density of the solutions of the
Schrödinger equation in the weak coupling limit.

We also discuss in some detail the application our results to the problem of multiple
scattering of the acoustic waves. Our approach is different from that of [24, 25] mentioned
above: we first consider the random geometrical optics approximation of the wave phase space
energy density. The rays in the phase space satisfy the Hamiltonian equations (2.1) with the
Hamiltonian given by (2.2). Therefore, the aforementioned convergence result of the solutions
of (2.1) to the standard Brownian motion, combined with the standard error estimates [6, 49]
on the geometrical optics approximation of the Wigner distribution of the solutions of the wave
equation, allows us to establish rigorously the diffusive behavior of the wave energy density.
To the best of our knowledge, this is the first result of such kind for classical waves.

2.2 The main result and preliminaries

2.2.1 The notation

As we will avoid the singular point k = 0, where the dynamics may not be well-defined, it is
convenient to introduce Rd

∗ := Rd \ {0} and R2d
∗ := Rd×Rd

∗. Also Sd−1
R (x) (BR(x)) shall stand
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for a sphere (open ball) in Rd of radius R > 0 centered at x. We shall drop writing either x,
or R in the notation of the sphere (ball) in the particular cases when either x = 0, or R = 1.
For a fixed M > 0 we define the spherical shell A(M) := [k ∈ Rd

∗ : M−1 ≤ |k| ≤ M ] in the
k-space, and A(M) := Rd×A(M) in the whole phase space. Given a vector v ∈ Rd

∗ we denote
by v̂ := v/|v| ∈ Sd−1 the unit vector in the direction of v.

For any non-negative integers p, q, r, positive times T > T∗ ≥ 0 and a function G : [T∗, T ]×
R2d
∗ → R that has p, q and r derivatives in the respective variables we define

‖G‖[T∗,T ]
p,q,r :=

∑
sup

(t,x,k)∈[T∗,T ]×R2d

|∂α
t ∂

β
x∂

γ
kG(t, x, k)|. (2.3)

The summation range covers all integers 0 ≤ α ≤ p and all integer valued multi-indices |β| ≤ q

and |γ| ≤ r. In the special case when T∗ = 0, T = +∞ we write ‖G‖p,q,r = ‖G‖[0,+∞)
p,q,r . We

denote by Cp,q,r
b ([0,+∞) × R2d

∗ ) the space of all functions G with ‖G‖p,q,r < +∞. We shall
also consider spaces of bounded and a suitable number of times continuously differentiable
functions Cp,q

b (R2d
∗ ) and Cp

b (Rd
∗) with the respective norms ‖ · ‖p,q and ‖ · ‖p.

2.2.2 The background Hamiltonian

We assume that the background Hamiltonian H0(k) is isotropic, that is, it depends only on
k = |k|, and is uniform in space. Moreover, we assume that H0 : [0,+∞) → R is a strictly
increasing function satisfying H0(0) ≥ 0 and such that it is of C3-class of regularity in (0,+∞)
with H ′

0(k) > 0 for all k > 0, and let

h∗(M) := max
k∈[M−1,M ]

(H ′
0(k) + |H ′

0
′(k)|+ |H ′′′

0 (k)|), h∗(M) := min
k∈[M−1,M ]

H ′
0(k). (2.4)

Two examples of such Hamiltonians are the quantum Hamiltonian H0(k) = k2/2 and the
acoustic wave Hamiltonian H0(k) = c0k. The qualitative reason for the above assumptions on
H0(k) is that we need the background dynamics ‘to take the particle to various regions where
it will sample the nearly independent random fluctuations. The overall effect will then lead to
a Markovian limit. This makes the problem much simpler than a seemingly similar problem

Ẋ = V (X), (2.5)

with a mixing in space and time-independent random field V (x). Unlike our problem, (2.5)
lack any mechanism to move the particle around which makes it extremely difficult to obtain
any rigorous, or even formal results for the particle behavior in (2.5).

2.2.3 The random medium

Let (Ω,Σ,P) be a probability space, and let E denote the expectation with respect to P. We
denote by ‖X‖Lp(Ω) the Lp-norm of a given random variable X : Ω → R, p ∈ [1,+∞]. Let
H1 : Rd× [0,+∞)×Ω → R be a random field that is measurable and strictly stationary in the
first variable. This means that for any shift x ∈ Rd, k ∈ [0,+∞), and a collection of points
x1, . . . , xn ∈ Rd the laws of (H1(x1 + x, k), . . . ,H1(xn + x, k)) and (H1(x1, k), . . . ,H1(xn, k))
are identical. In addition, we assume that EH1(x, k) = 0 for all k ≥ 0, x ∈ Rd, the realizations
of H1(x, k) are P–a.s. C2-smooth in (x, k) ∈ Rd × (0,+∞) and they satisfy

Di,j(M) := max
|α|=i

ess-sup
(x,k,ω)∈Rd×[M−1,M ]×Ω

|∂α
x∂

j
kH1(x, k;ω)| < +∞, i, j = 0, 1, 2. (2.6)

We define D̃(M) :=
∑

0≤i+j≤2Di,j(M).
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We suppose further that the random field is strongly mixing in the uniform sense. More
precisely, for any R > 0 we let Ci

R and Ce
R be the σ–algebras generated by random variables

H1(x, k) with k ∈ [0,+∞), x ∈ BR and x ∈ Bc
R respectively. The uniform mixing coefficient

between the σ–algebras is

φ(ρ) := sup[ |P(B)− P(B|A)| : R > 0, A ∈ Ci
R, B ∈ Ce

R+ρ ],

for all ρ > 0. We suppose that φ(ρ) decays faster than any power: for each p > 0

hp := sup
ρ≥0

ρpφ(ρ) < +∞. (2.7)

The two-point spatial correlation function of the random field H1 is

R(y, k) := E[H1(y, k)H1(0, k)].

Note that (2.7) implies that for each p > 0

hp(M) :=
4∑

i=0

∑
|α|=i

sup
(y,k)∈Rd×[M−1,M ]

(1 + |y|2)p/2|∂α
yR(y, k)| < +∞, M > 0. (2.8)

We also assume that the correlation function R(y, l) is of the C∞-class for a fixed l > 0, is
sufficiently smooth in l, and that for any fixed l > 0

R̂(k, l) does not vanish identically on any hyperplane Hp = {k : (k · p) = 0}. (2.9)

Here R̂(k, l) =
∫
R(x, l) exp(−ik · x)dx is the power spectrum of H1.

The above assumptions are satisfied, for example, if H1(x, k) = c1(x)h(k), where c1(x) is
a stationary uniformly mixing random field with a smooth correlation function, and h(k) is a
smooth deterministic function.

2.2.4 The path-spaces

For fixed integers d,m ≥ 1 we let Cd,m := C([0,+∞); Rd × Rm
∗ ): we shall omit the subscripts

in the notation of the path space if m = d. We define (X(t),K(t)) : Cd,m → Rd × Rm
∗ as the

canonical mapping (X(t;π),K(t;π)) := π(t), π ∈ Cd,m and also let θs(π)(·) := π(·+ s) be the
standard shift transformation.

For any u ≤ v denote by Mv
u the σ-algebra of subsets of C generated by (X(t),K(t)),

t ∈ [u, v]. We write Mv := Mv
0 and M for the σ algebra of Borel subsets of C. It coincides

with the smallest σ–algebra that contains all Mt, t ≥ 0.
Let δ∗(M) := H0

(
M−1

)
/(2D̃(M)). For a given M > 0 and δ ∈ (0, δ∗(M)] we let

Mδ := max

{
H−1

0 (H0(M) + 2
√
δD̃(M)),

[
H−1

0

(
H0

(
1
M

)
− 2

√
δD̃(M)

)]−1
}
. (2.10)

For a particle that is governed by the Hamiltonian flow generated by Hδ(x, k) we have

M−1
δ ≤ |K(t)| ≤Mδ

for all t provided that K(0) ∈ A(M). Accordingly, we define C(T, δ) as the set of paths π ∈ C
so that both (2Mδ)−1 ≤ |K(t)| ≤ 2Mδ, and∣∣∣∣∣∣X(t)−X(u)−

t∫
u

H ′
0(K(s))K̂(s)ds

∣∣∣∣∣∣ ≤ D̃(2Mδ)
√
δ(t− u), for all 0 ≤ u < t ≤ T.

In the case when δ = 1, or T = +∞ we shall write simply C(T ), or C(δ) respectively.
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2.2.5 The main results

Let the function φδ(t, x, k) satisfy the Liouville equation

∂φδ

∂t
+∇xHδ (x, k) · ∇kφ

δ −∇kHδ (x, k) · ∇xφ
δ = 0, (2.11)

φδ(0, x, k) = φ0(δx, k).

We assume that the initial data φ0(x, k) is a compactly supported function four times dif-
ferentiable in k, twice differentiable in x whose support is contained inside a spherical shell
A(M) = {(x, k) : M−1 < |k| < M} for some positive M > 0.

Let us define the diffusion matrix Dmn by

Dmn(k̂, l) = −1
2

∫ ∞

−∞

∂2R(H ′
0(l)sk̂, l)

∂xn∂xm
ds = − 1

2H ′
0(l)

∫ ∞

−∞

∂2R(sk̂, l)
∂xn∂xm

ds, m, n = 1, . . . , d.

(2.12)
Then we have the following result.

Theorem 2.2.1 Let φδ be the solution of (2.11) and let φ̄ satisfy

∂φ̄

∂t
=

d∑
m,n=1

∂

∂km

(
Dmn(k̂, k)

∂φ̄

∂kn

)
+H ′

0(k) k̂ · ∇xφ̄ (2.13)

φ̄(0, x, k) = φ0(x, k).

Suppose that M ≥ M0 > 0 and T ≥ T0 > 0. Then, there exist two constants C, α0 > 0 such
that for all T ≥ T0

sup
(t,x,k)∈[0,T ]×K

∣∣∣∣Eφδ

(
t

δ
,
x

δ
, k

)
− φ̄(t, x, k)

∣∣∣∣ ≤ CT (1 + ‖φ0‖1,4)δα0 (2.14)

for all compact sets K ⊂ A(M).

Remark 2.2.2 We shall denote by C, C1, . . ., α0, α1, . . ., γ0, γ1, . . . throughout this article
generic positive constants. Unless specified otherwise the constants denoted this way shall
depend neither on δ, nor on T . We will also assume that T ≥ T0 > 0 and M ≥M0 > 0.

Remark 2.2.3 Classical results of the theory of stochastic differential equations, see e.g.
Theorem 6 of Chapter 2, p. 176 and Corollary 4 of Chapter 3, p. 303 of [32], imply that there
exists a unique solution to the Cauchy problem (2.13) that belongs to the class C1,1,2

b ([0,+∞)×
R2d
∗ ). This solution admits a probabilistic representation using the law of a time homogeneous

diffusion Qx,k whose Kolmogorov equation is given by (2.13), see Section 2.3.3 below.

Note that

d∑
m=1

Dnm(k̂, k)k̂m = −
d∑

m=1

1
2H ′

0(k)

∫ ∞

−∞

∂2R(sk̂, k)
∂xn∂xm

k̂mds

= −
d∑

m=1

1
2H ′

0(k)

∫ ∞

−∞

d

ds

(
∂R(sk̂, k)
∂xn

)
ds = 0

and thus the K-process generated by (2.13) is indeed a diffusion process on a sphere k = const,
or, equivalently, equations (2.13) for different values of k are decoupled. Assumption (2.9)
implies the following.
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Proposition 2.2.4 The matrix D(k̂, l) has rank d− 1 for each k̂ ∈ Sd−1 and each l > 0.

The proof can be found in [6] (Proposition 4.3 in [6]). It can be shown, using the argument
given on pp. 122-123 of this paper that, under assumption (2.9), equation (2.13) is hypoelliptic
on the manifold Rd × Sd−1

k for each k > 0.
We also show that solutions of (2.13) converge in the long time limit to the solutions of

the spatial diffusion equation. More, precisely, we have the following result. Let φ̄γ(t, x, k) =
φ̄(t/γ2, x/γ, k), where φ̄ satisfies (2.13) with an initial data φ̄γ(0, t, x, k) = φ0(γx, k). We also
let w(t, x, k) be the solution of the spatial diffusion equation:

∂w

∂t
=

d∑
m,n=1

amn(k)
∂2w

∂xn∂xm
, (2.15)

w(0, x, k) = φ̄0(x, k)

with the averaged initial data

φ̄0(x, k) =
1

Γd−1

∫
Sd−1

φ0(x, k)dΩ(k̂).

Here dΩ(k̂) is the surface measure on the unit sphere Sd−1 and Γn is the area of an n-
dimensional sphere. The diffusion matrix A := [anm] in (2.15) is given explicitly as

anm(k) =
1

Γd−1

∫
Sd−1

H ′
0(k)k̂nχm(k)dΩ(k̂). (2.16)

The functions χj appearing above are the mean-zero solutions of

d∑
m,n=1

∂

∂km

(
Dmn(k̂, k)

∂χj

∂kn

)
= −H ′

0(k)k̂j . (2.17)

Note that equations (2.17) for χm are elliptic on each sphere {|k| = k}. This follows from the
fact that the equations for each such sphere are all decoupled and Proposition 2.2.4. Also note
that the matrix A is positive definite. Indeed, let c = (c1, . . . , cd) ∈ Rd be a fixed vector and
let χc :=

∑d
m=1 cmχm. Since the matrix D is non-negative we have

(Ac, c)Rd = − 1
Γd−1

d∑
m,n=1

∫
Sd−1

χc(k̂, l)
∂

∂km

(
Dmn(k̂, l)

∂χc(k̂, l)
∂kn

)
dΩ(k̂) (2.18)

= − 1
Γd−1

d∑
m,n=1

∫
Rd

χc(k̂, l)
∂

∂km

(
Dmn(k̂, l)

∂χc(k̂, l)
∂kn

)
δ(k − l)

dk

ld−1

=
1

Γd−1

∫
Sd−1

(D(k̂, l)∇χc(k̂, l),∇χc(k̂, l))RddΩ̂(k̂) ≥ 0.

The last equality holds after integration by parts because D(k̂, l)k̂ = 0. Moreover, the in-
equality appearing in the last line of (2.18) is strict. This can be seen as follows. Since the
null-space of the matrix D(k̂, l) is one-dimensional and consists of the vectors parallel to k̂,
in order for (Ac, c)Rd to vanish one needs that the gradient ∇χc(k̂, l) is parallel to k̂ for all
k̂ ∈ Sd−1. This, however, together with (2.17) would imply that k̂ · c = 0 for all k̂, which is
impossible.

The following theorem holds.
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Theorem 2.2.5 For every pair of times 0 < T∗ < T < +∞ the re-scaled solution φ̄γ(t, x, k) =
φ̄(t/γ2, x/γ, k) of (2.13) converges as γ → 0 in C([T∗, T ];L∞(R2d)) to w(t, x, k). Moreover,
there exists a constant C > 0 so that we have

‖w(t, ·)− φ̄γ(t, ·)‖0,0 ≤ C (γT +
√
γ) ‖φ0‖1,1 (2.19)

for all T∗ ≤ t ≤ T .

Remark 2.2.6 In fact, as it will become apparent in the course of the proof, we have a
stronger result, namely T∗ can be made to vanish as γ → 0. For instance, we can choose
T∗ = γ3/2, see (2.105). We can not set T∗ = 0 since there is a small initial layer when the
solution of (2.13) adjusts to become independent of the direction k̂.

The proof of Theorem 2.2.5 is based on some classical asymptotic expansions and is quite
straightforward. As an immediate corollary of Theorems 2.2.1 and 2.2.5 we obtain the following
result, which is the main result of this chapter.

Theorem 2.2.7 Let φδ be solution of (2.11) with the initial data φδ(0, x, k) = φ0(δ1+αx, k)
and let w̄(t, x) be the solution of the diffusion equation (2.15) with the initial data w(0, x, k) =
φ̄0(x, k). Then, there exists α0 > 0 and a constant C > 0 so that for all 0 ≤ α < α0 and all
0 < T∗ ≤ T we have for all compact sets K ⊂ A(M):

sup
(t,x,k)∈[T∗,T ]×K

∣∣w(t, x, k)− Eφ̄δ(t, x, k)
∣∣ ≤ CTδα0−α, (2.20)

where φ̄δ(t, x, k) := φδ

(
t/δ1+2α, x/δ1+α, k

)
.

Theorem 2.2.7 shows that the movement of a particle in a weakly random quenched Hamil-
tonian is, indeed, approximated by a Brownian motion in the long time-large space limit, at
least for times T � δ−α0 . In fact, according to Remark 2.2.6 we can allow T∗ to vanish as
δ → 0 choosing T∗ = δ3α/2.

In the isotropic case when R = R(|x|, k) we may simplify the above expressions for the
diffusion matrices Dmn and amn. In that case we have

Dmn(k̂, k) = −1
2

∫ ∞

−∞

∂2R(H ′
0(k)sk̂, k)

∂xn∂xm
ds

= −
∫ ∞

0

[
knkm

k2
R′′(H ′

0(k)s, k) +
(
δnm − knkm

k2

)
R′(H ′

0(k)s, k)
H ′

0(k)s

]
ds

= − 1
H ′

0(k)

∫ ∞

0

R′(s, k)
s

ds

(
δnm − knkm

k2

)
,

so that the matrix [Dmn(k̂, k)] has the form

D(k̂, k) = D0(k)
(
I − k̂ ⊗ k̂

)
, D0(k) = − 1

H ′
0(k)

∫ ∞

0

R′(s, k)
s

ds.

The functions χj are given explicitly in this case by

χj(k̂, k) = −|H
′
0(k)|2|k|2k̂j

(d− 1)D̄0(k)
, D̄0(k) = −

∫ ∞

0

R′(s, k)
s

ds

and

anm(k) =
|H ′

0(k)|3|k|2

Γd−1(d− 1)D̄0(k)

∫
Sd−1

k̂nk̂mdΩ(k̂) =
|H ′

0(k)|3|k|2

d(d− 1)D̄0(k)
δnm.
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2.2.6 A formal derivation of the momentum diffusion

We now recall how the diffusion operator in (2.13) can be derived in a quick formal way. We
represent the solution of (2.11) as φδ(t, x, k) = ψδ(δt, δx, k) and write an asymptotic multiple
scale expansion for ψδ

ψδ(t, x, k) = φ̄(t, x, k) +
√
δφ1

(
t, x,

x

δ
, k
)

+ δφ2

(
t, x,

x

δ
, k
)

+ . . . (2.21)

We assume formally that the leading order term φ̄ is deterministic and independent of the fast
variable z = x/δ. We insert this expansion into (2.11) and obtain in the order O

(
δ−1/2

)
:

∇zH1(z, k) · ∇kφ̄−H ′
0(k)k̂ · ∇zφ1 = 0. (2.22)

Let θ � 1 be a small positive regularization parameter that will be later sent to zero, and
consider a regularized version of (2.22):

1
H ′

0(k)
∇zH1(z, k) · ∇kφ̄− k̂ · ∇zφ1 + θφ1 = 0,

Its solution is

φ1(z, k) = − 1
H ′

0(k)

∫ ∞

0

d∑
m=1

∂H1(z + sk̂, k)
∂zm

∂φ̄(t, x, k)
∂km

e−θsds. (2.23)

The next order equation becomes upon averaging

∂φ̄

∂t
= E

(
∂H1(z, k)

∂k
k̂ · ∇zφ1

)
− E (∇zH1(z, k) · ∇kφ1) +H ′

0(k)k̂ · ∇xφ̄. (2.24)

The first two terms on the right hand side above may be computed explicitly using expression
(2.23) for φ1:

E
(
∂H1(z, k)

∂k
k̂ · ∇zφ1

)
− E (∇zH1(z, k) · ∇kφ1)

= −E

 d∑
m,n=1

∂H1(z, k)
∂k

k̂m
∂

∂zm

(
1

H ′
0(k)

∫ ∞

0

∂H1(z + sk̂, k)
∂zn

∂φ̄(t, x, k)
∂kn

e−θsds

)
+E

 d∑
m,n=1

∂H1(z, k)
∂zm

∂

∂km

(
1

H ′
0(k)

∫ ∞

0

∂H1(z + sk̂, k)
∂zn

∂φ̄(t, x, k)
∂kn

e−θsds

) .
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Using spatial stationarity of H1(z, k) we may rewrite the above as

−E

 d∑
m,n=1

∂H1(z, k)
∂k

k̂m
∂

∂zm

(
1

H ′
0(k)

∫ ∞

0

∂H1(z + sk̂, k)
∂zn

∂φ̄(t, x, k)
∂kn

e−θsds

)
−E

 d∑
m,n=1

H1(z, k)
∂

∂zm

∂

∂km

(
1

H ′
0(k)

∫ ∞

0

∂H1(z + sk̂, k)
∂zn

∂φ̄(t, x, k)
∂kn

e−θsds

)
= −

d∑
m,n=1

∂

∂km

[
1

H ′
0(k)

∫ ∞

0
E

(
H1(z, k)

∂2H1(z + sk̂, k)
∂zn∂zm

)
∂φ̄(t, x, k)

∂kn
e−θsds

]

= −
d∑

m,n=1

∂

∂km

(
1

H ′
0(k)

∫ ∞

0

∂2R(sk̂, k)
∂xn∂xm

∂φ̄(t, x, k)
∂kn

e−θsds

)

→ −1
2

d∑
m,n=1

∂

∂km

(
1

H ′
0(k)

∫ ∞

−∞

∂2R(sk̂, k)
∂xn∂xm

∂φ̄(t, x, k)
∂kn

ds

)
, as θ → 0+.

We insert the above expression into (2.24) and obtain

∂φ̄

∂t
=

d∑
m,n=1

∂

∂kn

(
Dnm(k̂, k)

∂φ̄

∂km

)
+H ′

0(k)k̂ · ∇xφ̄ (2.25)

with the diffusion matrix D(k̂, k) as in (2.12). Observe that (2.25) is nothing but (2.13).
However, the naive asymptotic expansion (2.21) may not be justified. The rigorous proof
presented in the next section is based on a quite different method.

2.3 From the Liouville equation to the momentum diffusion.
Estimation of the convergence rates: proof of Theorem
2.2.1

Outline of the proof

The basic idea of the proof of Theorem 2.2.1 is a modification of that of [6, 40]. We consider
the trajectories corresponding to the Liouville equation (2.11) and introduce a stopping time,
called τδ, that, among others, prevents near self-intersection of trajectories. This fact ensures
that until the stopping time occurs the particle is “exploring a new territory” and, thanks to
the strong mixing properties of the medium, “memory effects” are lost. Therefore, roughly
speaking, until the stopping time the process is approximately characterized by the Markov
property. Furthermore, since the amplitude of the random Hamiltonian is not strong enough
to destroy the continuity of its path, it becomes a diffusion in the limit, as δ → 0. We
introduce also an augmented process that follows the trajectories of the Hamiltonian flow
until the stopping time τδ and becomes a diffusion after t = τδ. We show that the law of the
augmented process is close to the law of a diffusion, see Proposition 2.3.4, with an explicit
error bound. We also prove that the stopping time tends to infinity as δ → 0, once again with
the error bound that is proved in Theorem 2.3.6. The combination of these two results allows
us to estimate the difference between the solutions of the Liouville and the diffusion equations
in a rather straightforward manner (see Section 2.3.6): they are close until the stopping time
as the law of the diffusion is always close to that of the augmented process, while the latter
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coincides with the true process until τδ. On the other hand, the fact that τδ → ∞ as δ → 0
shows that with a large probability the augmented process is close to the true process. This
combination finishes the proof.

The random characteristics corresponding to (2.11)

Consider the motion of a particle governed by a Hamiltonian system of equations

dz(δ)(t;x,k)
dt = (∇kHδ)

(
z(δ)(t;x,k)

δ ,m(δ)(t; x,k)
)

dm(δ)(t;x,k)
dt = − 1√

δ
(∇zHδ)

(
z(δ)(t;x,k)

δ ,m(δ)(t; x,k)
)

z(δ)(0; x,k) = x, m(δ)(0; x,k) = k,

(2.26)

where the Hamiltonian Hδ(x, k) := H0(k) +
√
δH1(x, k), k = |k|. The trajectories of (2.26)

are the characteristics of the Liouville equation (2.11). The hypotheses made in Section 2.2
imply that the trajectory (z(δ)(t; x, k),m(δ)(t; x, k)) necessarily lies in C(T, δ) for each T >
0, δ ∈ (0, δ∗(M)], provided that the initial data (x, k) ∈ A(M). Indeed, it follows from
the Hamiltonian structure of (2.26) that the Hamiltonian Hδ(x,m) = H0(m) +

√
δH1(z,m)

must be conserved along the trajectory. Hence, the definition (2.10) implies that M−1
δ ≤

|m(δ)(·; x, k)| ≤ Mδ. We denote by Qδ
s,x,k(·) the law over C of the process corresponding to

(2.26) starting at t = s from (x,k) (this law is actually supported in C(δ)). We shall omit
writing the subscript s when it equals to 0.

The stopping times

We now define the stopping time τδ, described in Section 2.3, that prevents the trajectories of
(2.26) to have near self-intersections (recall that the intent of the stopping time is to prevent
any “memory effects” of the trajectories). As we have already mentioned, we will later show
that the probability of the event [ τδ < T ] for a fixed T > 0 goes to zero, as δ → 0.

Let 0 < ε1 < ε2 < 1/2, ε3 ∈ (0, 1/2− ε2), ε4 ∈ (1/2, 1− ε1− ε2) be small positive constants
that will be further determined later and set

N = [δ−ε1 ], p = [δ−ε2 ], q = p [δ−ε3 ], N1 = Np [δ−ε4 ]. (2.27)

We will specify additional restrictions on the constants εj as the need for such constraints
arises. However, the basic requirement is that εi, i = 1, 2, 3 should be sufficiently small and
ε4 is bigger than 1/2, less than one and can be made as close to one as we would need it. It
is important that ε1 < ε2 so that N � p when δ � 1. We introduce the following (Mt)t≥0–
stopping times. Let t(p)

k := kp−1 be a mesh of times, and π ∈ C be a path. We define the
“violent turn” stopping time

Sδ(π) := inf
[
t ≥ 0 : for some k ≥ 0 we have t ∈

[
t
(p)
k , t

(p)
k+1

)
and (2.28)

K̂(t(p)
k−1) · K̂(t) ≤ 1− 1

N
, or K̂

(
t
(p)
k − 1

N1

)
· K̂(t) ≤ 1− 1

N

]
,

where by convention we set K̂(−1/p) := K̂(0). Note that with the above choice of ε4 we
have K̂

(
t
(p)
k − 1/N1

)
· K̂(t(p)

k ) > 1 − 1/N , provided that δ ∈ (0, δ0] and δ0 is sufficiently
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small. We adopt in (2.28) a customary convention that the infimum of an empty set equals
+∞. The stopping time Sδ is triggered when the trajectory performs a sudden turn – this is
undesirable as the trajectory may then return back to the region it has already visited and
create correlations with the past.

For each t ≥ 0, we denote by Xt(π) :=
⋃

0≤s≤t
X (s;π) the trace of the spatial component of

the path π up to time t, and by Xt(q;π) := [x : dist (x,Xt(π)) ≤ 1/q] a tubular region around
the path. We introduce the stopping time

Uδ(π) := inf
[
t ≥ 0 : ∃ k ≥ 1 and t ∈ [t(p)

k , t
(p)
k+1) for which X(t) ∈ X

t
(p)
k−1

(q)
]
. (2.29)

It is associated with the return of the X component of the trajectory to the tube around its
past – this is again an undesirable way to create correlations with the past. Finally, we set
the stopping time

τδ(π) := Sδ(π) ∧ Uδ(π). (2.30)

2.3.1 The cut-off functions and the corresponding dynamics

Let M > 0 be fixed and p, q,N,N1 be the positive integers defined in Section 2.3. We define
now several auxiliary functions that will be used to introduce the cut-offs in the dynamics.
These cut-offs will ensure that the particle moving under the modified dynamics will avoid
self-intersections, will have no violent turns and the changes of its momentum will be under
control. In addition, up to the stopping time τδ the motion of the particle will coincide with
the motion under the original Hamiltonian flow.

Let a1 = 2 and a2 = 3/2. The functions ψj : Rd × Sd−1
1 → [0, 1], j = 1, 2 are of C∞ class

and satisfy

ψj(k, l) =


1, if k̂ · l ≥ 1− 1/N and M−1

δ ≤ |k| ≤Mδ

0, if k̂ · l ≤ 1− aj/N, or |k| ≤ (2Mδ)−1, or |k| ≥ 2Mδ.

(2.31)
One can construct ψj in such a way that for arbitrary nonnegative integers m,n it is possible
to find a constant Cm,n for which ‖ψj‖m,n ≤ Cm,nN

m+n. The cut-off function

Ψ(t,k;π) :=

 ψ1

(
k, K̂

(
t
(p)
k−1

))
ψ2

(
k, K̂

(
t
(p)
k − 1/N1

))
for t ∈ [t(p)

k , t
(p)
k+1) and k ≥ 1

ψ2(k, K̂(0)) for t ∈ [0, t(p)
1 )

(2.32)
will allow us to control the direction of the particle motion over each interval of the partition
as well as not to allow the trajectory to escape to the regions where the change of the size of
the velocity can be uncontrollable.

Let φ : Rd × Rd → [0, 1] be a function of the C∞ class that satisfies φ(y,x) = 1, when
|y − x| ≥ 3/q and φ(y,x) = 0, when |y − x| ≤ 2/q. Again, in this case we can construct φ in
such a way that ‖φ‖m,n ≤ Cqm+n for arbitrary integers m,n and a suitably chosen constant
C. The function φk : Rd × C → [0, 1] for a fixed path π is given by

φk(y;π) =
∏

0≤l/q≤t
(p)
k−1

φ

(
y, X

(
l

q

))
. (2.33)
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We set

Φ(t,y;π) :=

 1, if 0 ≤ t < t
(p)
1

φk(y;π), if t(p)
k ≤ t < t

(p)
k+1.

(2.34)

The function Φ shall be used to modify the dynamics of the particle in order to avoid a
possibility of near self-intersections of its trajectory.

For a given t ≥ 0, (y,k) ∈ R2d
∗ and π ∈ C let us denote Θ(t,y,k;π) := Ψ(t,k;π)Φ (t,y;π) .

The following lemma can be verified by a direct calculation.

Lemma 2.3.1 Let (β1, β2) be a multi-index with nonnegative integer valued components, m =
|β1|+ |β2|. There exists a constant C depending only on m and M such that

|∂β1
y ∂β2

k Θ(t,y,k;π)| ≤ CT |β1|q2|β1|N |β2|

for all t ∈ [0, T ], (y,k) ∈ A(2M), π ∈ C.

Finally, let us set

Fδ(t,y, l;π, ω) = Θ(t, δy, l;π)∇yH1 (y, |l|;ω) . (2.35)

For a fixed (x,k) ∈ R2d
∗ , δ > 0 and ω ∈ Ω we consider the modified particle dynamics with

the cut-off that is described by the stochastic process (y(δ)(t; x,k, ω), l(δ)(t; x,k, ω))t≥0 whose
paths are the solutions of the following equation

dy(δ)(t;x,k)
dt =

[
H ′

0(|l(δ)(t; x,k)|) +
√
δ ∂lH1

(
y(δ)(t;x,k)

δ , |l(δ)(t; x,k)|
)]

l̂
(δ)

(t; x,k, )

dl(δ)(t;x,k)
dt = − 1√

δ
Fδ

(
t, y(δ)(t;x,k)

δ , l(δ)(t; x,k); y(δ)(·; x,k), l(δ)(·; x,k)
)

y(δ)(0; x,k) = x, l(δ)(0; x,k) = k.

(2.36)

We will denote by Q̃
(δ)
x,k the law of the modified process (y(δ)(·; x,k), l(δ)(·; x,k)) over C for a

given δ > 0 and by Ẽ(δ)
x,k the corresponding expectation. We assume that the initial momentum

k ∈ A(M). From the construction of the cut-offs we immediately conclude that

l̂
(δ)

(t) · l̂(δ)(t(p)
k−1) ≥ 1− 2

N
, t ∈ [t(p)

k−1, t
(p)
k+1), ∀ k ≥ 0. (2.37)

2.3.2 Some consequences of the mixing assumption

For any t ≥ 0 we denote by Ft the σ-algebra generated by (y(δ)(s), l(δ)(s)), s ≤ t. Here we
suppress, for the sake of abbreviation, writing the initial data in the notation of the trajectory.
In this section we assume that M > 0 is fixed, X1, X2 : (R × Rd × Rd2

)2 → R are certain
continuous functions, Z is a random variable and g1, g2 are Rd × [M−1,M ]-valued random
vectors. We suppose further that Z, g1, g2, are Ft-measurable, while X̃1, X̃2 are random fields
of the form

X̃i(x, k) = Xi

((
∂j

kH1(x, k),∇x∂
j
kH1(x, k),∇2

x∂
j
kH1(x, k)

)
j=0,1

)
.

For i = 1, 2 we denote gi := (g(1)
i , g

(2)
i ) where g(1)

i ∈ Rd and g
(2)
i ∈ [M−1,M ]. We also let

U(θ1, θ2) := E
[
X̃1(θ1)X̃2(θ2)

]
, θ1, θ2 ∈ Rd × [M−1,M ]. (2.38)
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The following mixing lemma is useful in formalizing the “memory loss effect” and can be
proved in the same way as Lemmas 5.2 and 5.3 of [6]. It is also similar in spirit to Lemma
1.3.2.

Lemma 2.3.2 (i) Assume that r, t ≥ 0 and

inf
u≤t

∣∣∣∣∣g(1)
i − y(δ)(u)

δ

∣∣∣∣∣ ≥ r

δ
, (2.39)

P–a.s. on the set Z 6= 0 for i = 1, 2. Then, we have∣∣∣E [X̃1(g1)X̃2(g2)Z
]
− E [U(g1, g2)Z]

∣∣∣ ≤ 2φ
( r

2δ

)
‖X1‖L∞‖X2‖L∞‖Z‖L1(Ω). (2.40)

(ii) Let EX1(0, k) = 0 for all k ∈ [M−1,M ]. Furthermore, we assume that g2 satisfies (2.39),

inf
u≤t

∣∣∣∣∣g(1)
1 − y(δ)(u)

δ

∣∣∣∣∣ ≥ r + r1
δ

(2.41)

and |g(1)
1 − g

(1)
2 | ≥ r1δ

−1 for some r1 ≥ 0, P-a.s. on the event Z 6= 0. Then, we have∣∣∣E [X̃1(g1)X̃2(g2)Z
]
− E [U(g1, g2)Z]

∣∣∣ ≤ Cφ1/2
( r

2δ

)
φ1/2

( r1
2δ

)
‖X1‖L∞‖X2‖L∞‖Z‖L1(Ω)

(2.42)
for some absolute constant C > 0. Here the function U is given by (2.38).

2.3.3 The momentum diffusion

Let k(t) be a diffusion, starting at k ∈ Rd
∗ at t = 0, with the generator of the form

LF (k) =
d∑

m,n=1

Dmn(k̂, |k|)∂2
km,kn

F (k) +
d∑

m=1

Em(k̂, |k|)∂kmF (k) (2.43)

=
d∑

m,n=1

∂km

(
Dm,n(k̂, |k|)∂knF (k)

)
, F ∈ C∞0 (Rd

∗).

Here the diffusion matrix is given by (2.12) and the drift vector is

Em(k̂, l) = − 1
H ′

0(l)l

d∑
n=1

∫ +∞

0
s
∂3R(sk̂, l)
∂xm∂x2

n

ds, m = 1, . . . , d.

Employing exactly the same argument as the one used in Section 4 of [6] it can be easily seen
that this diffusion is supported on Sd−1

k , where k = |k|. Moreover, it is non-degenerate on the
sphere, for instance, under the assumption (2.9), cf. Proposition 4.3 of ibid.

Let Qx,k be the law of the process (x(t),k(t)) that starts at t = 0 from (x,k) given by
x(t) = x +

∫ t
0 H

′
0(|k(s)|)k̂(s)ds, where k(t) is the diffusion described by (2.43). This process

is a degenerate diffusion whose generator is given by

L̃F (x,k) = LkF (x,k) +H ′
0(|k|) k̂ · ∇xF (x,k), F ∈ C∞0 (R2d

∗ ). (2.44)

Here the notation Lk stresses that the operator L defined in (2.43) acts on the respective
function in the k variable. We denote by Mx,k the expectation corresponding to the path
measure Qx,k.
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2.3.4 The augmented process

The following construction of the augmentation of path measures has been carried out in
Section 6.1 of [58]. Let s ≥ 0 be fixed and π ∈ C. Then, according to Lemma 6.1.1 of ibid. there
exists a unique probability measure, that is denoted by δπ⊗s QX(s),K(s), such that for any pair
of events A ∈Ms, B ∈M we have δπ⊗s QX(s),K(s)[A] = 1A(π) and δπ⊗s QX(s),K(s)[θs(B)] =
QX(s),K(s)[B]. The following result is a direct consequence of Theorem 6.2.1 of [58].

Proposition 2.3.3 There exists a unique probability measure R(δ)
x,k on C such that R(δ)

x,k[A] :=

Q
(δ)
x,k[A] for all A ∈ Mτδ and the regular conditional probability distribution of R(δ)

x,k[ · |Mτδ ] is

given by δπ ⊗τδ(π) QX(τδ(π)),K(τδ(π)), π ∈ C. This measure shall be also denoted by Q
(δ)
x,k ⊗τδ

QX(τδ),K(τδ).

Note that for any (x,k) ∈ A(M) and A ∈Mτδ we have

R
(δ)
x,k[A] = Q

(δ)
x,k[A] = Q̃

(δ)
x,k[A], (2.45)

that is, the law of the augmented process coincides with that of the true process, and of
the modified process with the cut-offs until the stopping time τδ. Hence, according to the
uniqueness part of Proposition 2.3.3, in such a case Q(δ)

x,k⊗τδ
QX(τδ),K(τδ) = Q̃

(δ)
x,k⊗τδ

QX(τδ),K(τδ).

We denote by E(δ)
x,k the expectation with respect to the augmented measure described by the

above proposition. Let also R(δ)
x,k,π, E(δ)

x,k,π denote the respective conditional law and expectation

obtained by conditioning R(δ)
x,k on Mτδ .

The following proposition is of crucial importance for us, as it shows that the law of the
augmented process is close to that of the momentum diffusion as δ → 0. To abbreviate the
notation we let

Nt(G) := G(t,X(t),K(t))−G(0, X(0),K(0))−
t∫

0

(∂% + L̃)G(%,X(%),K(%))) d%

for any G ∈ C1,1,3
b ([0,+∞)× R2d

∗ ) and t ≥ 0.

Proposition 2.3.4 Suppose that (x, k) ∈ A(M) and ζ ∈ Cb((R2d
∗ )n) is nonnegative. Let

γ0 ∈ (0, 1/2) and let 0 ≤ t1 < · · · < tn ≤ T∗ ≤ t < v ≤ T . We assume further that v− t ≥ δγ0.
Then, there exist constants γ1, C such that for any function G ∈ C1,1,3([T∗, T ]×R2d

∗ ) we have∣∣∣E(δ)
x,k

{
[Nv(G)−Nt(G)] ζ̃

}∣∣∣ ≤ Cδγ1(v − t)‖G‖[T∗,T ]
1,1,3 T 2E

(δ)
x,kζ̃. (2.46)

Here ζ̃(π) := ζ(X(t1),K(t1), . . . , X(tn),K(tn)), π ∈ C(T, δ). The choice of the constants γ1, C
does not depend on (x, k), δ ∈ (0, 1], ζ, times t1, . . . , tn, T∗, T, v, t, or the function G.

Proof. Let 0 = s0 ≤ s1 ≤ . . . ≤ sn ≤ t and B1, . . . , Bn ∈ B(R2d
∗ ) be Borel sets. We denote

A0 := C and for any k ∈ {1, . . . , n}, s ≤ sk we define the events

Ak := [π : (X(s1),K(s1)) ∈ B1, . . . , (X(sk),K(sk)) ∈ Bk]

and their shifted counterparts

A
(s)
k := [π : (X(sk − s),K(sk − s)) ∈ Bk, . . . , (X(sn − s),K(sn − s)) ∈ Bn].
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For (x,k) ∈ R2d
∗ , π ∈ C and G ∈ C1,1,2([0,+∞)× R2d

∗ ) we let

L̂tG(t, x,k;π) := H ′
0(|k|) k̂ · ∇xG(t,x,k) + Θ2(t,X(t),K(t);π)LkG(t, x,k)

−Θ(t,X(t),K(t);π)
d∑

m,n=1

∂KmΘ(t,X(t),K(t);π)Dm,n(k̂, |k|)∂knG(t, x,k)

and

N̂t(G) := G(t,X(t),K(t))−G(0, X(0),K(0))−
t∫

0

(∂% + L̂%)G(%,X(%),K(%);π) d%.

It follows from the definition of the stopping time τδ(π) and the cut-off function Θ that

∇KΘ(t,X(t),K(t);π) = 0, t ∈ [0, τδ(π)],

hence
L̂tG(t,X(t),K(t);π) = L̃G(t,X(t),K(t);π), t ∈ [0, τδ(π)].

We need the following result.

Lemma 2.3.5 Suppose that (x, k) ∈ A(M) and ζ ∈ Cb((R2d
∗ )n) is nonnegative. Let γ′0 ∈

(0, 1), 0 ≤ t1 < · · · < tn ≤ T∗ ≤ t < v ≤ T and t − T∗ ≥ δγ′0. Then, there exist constants γ′1,
C ′ > 0 such that for any function G ∈ C1,1,3([T∗, T ]× R2d

∗ ) we have∣∣∣Ẽ(δ)
x,k

{
[N̂v(G)− N̂t(G)]ζ̃

}∣∣∣ ≤ C ′δγ′1(v − t)‖G‖[T∗,T ]
1,1,3 T 2Ẽ

(δ)
x,kζ̃. (2.47)

The choice of the constants γ′1, C
′ does not depend on (x, k), δ ∈ (0, 1], times t1, . . . , tn, T∗,

T, v, t, or function G.

The proof of this lemma follows very closely the argument presented in Section 5.3 of [6] and
we postpone it until Section 2.6. In the meantime we apply this result to conclude the proof
of Proposition 2.3.4. We write

E
(δ)
x,k,π[Nv(G)−Nv∧τδ(π)(G), An]

=
n−1∑
p=0

1[sp,sp+1)(τδ(π))1Ap(π)MX(τδ(π)),K(τδ(π))[Nv−τδ(π)(G), A(τδ(π))
p+1 ]

+1[sn,v)(τδ(π))1An(π)MX(τδ(π)),K(τδ(π))[Nv−τδ(π)(G)]. (2.48)

When τδ(π) ∈ [sp, sp+1) we obviously have

MX(τδ(π)),K(τδ(π))[Nv−τδ(π)(G), A(τδ(π))
p+1 ] = MX(τδ(π)),K(τδ(π))[Nt−τδ(π)(G), A(τδ(π))

p+1 ]

and MX(τδ(π)),K(τδ(π))[Nv−τδ(π)(G)] = 0. Hence the left hand side of (2.48) equals

n−1∑
p=0

1[sp,sp+1)(τδ(π))1Ap(π)MX(τδ(π)),K(τδ(π))[Nt−τδ(π)(G), A(τδ(π))
p+1 ] (2.49)

= E
(δ)
x,k,π[Nt(G)−Nt∧τδ(π)(G), An].
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We conclude from (2.48), (2.49) that

E
(δ)
x,k,π[Nv(G), An] = E

(δ)
x,k,π[Nv∧τδ(π)(G) +Nt(G)−Nt∧τδ(π)(G), An] (2.50)

= E
(δ)
x,k,π[N(v∧τδ(π))∨t(G), An]

and therefore

E
(δ)
x,k[Nv(G), An] = E

(δ)
x,k

[
E

(δ)
x,k,π[N(v∧τδ(π))∨t(G), An]

]
(2.51)

= E
(δ)
x,k

[
E

(δ)
x,k,π

[
N(v∧τδ(π))∨t(G), An

]
, τδ(π) ≤ t

]
+ E

(δ)
x,k

[
E

(δ)
x,k,π

[
N(v∧τδ(π))∨t(G), An

]
, τδ(π) > t

]
.

The first term on the utmost right hand side of (2.51) equals E(δ)
x,k [Nt(G), An, τδ ≤ t], while

the second one equals Ẽ(δ)
x,k

[
N(v∧τδ)∨t(G), B

]
. Here B := An ∩ [τδ > t] is an Mt–measurable

event. Suppose that γ′0 ∈ (γ0 + 1/2, 1) and let L := [δ−γ′0 ] be yet another mesh size parameter.
We define

σ := L−1[([L(v ∧ τδ)] + 2) ∨ ([Lt] + 2)]

and note that

Ẽ
(δ)
x,k [Nσ(G), B] =

[Lv]+2∑
p=[Lt]+2

Ẽ
(δ)
x,k

[
Np/L(G), B, σ =

p

L

]
(2.52)

Representing the event [σ = p/L] as the difference of [σ ≥ p/L] and [σ ≥ (p+ 1)/L] (note that
[σ ≥ ([Lv] + 3)/L] = ∅) and grouping the terms of the sum that correspond to the same index
p we obtain that the right hand side of (2.52) equals

Ẽ
(δ)
x,k

[
N([Lt]+2)/L(G), B

]
+

[Lv]+2∑
p=[Lt]+2

Ẽ
(δ)
x,k

[
Np+1/L(G)−Np/L(G), B, σ ≥ p+ 1

L

]
. (2.53)

Since the event B ∩ [σ ≥ (p + 1)/L] is M(p−1)/L-measurable, from Lemma 2.3.5 we conclude
that the absolute value of each term appearing under the summation sign in (2.53) can be
estimated by C ′‖G‖1,1,3δ

γ′1L−1Q̃
(δ)
x,k[B] which implies∣∣∣Ẽ(δ)

x,k [Nσ(G), B]− Ẽ
(δ)
x,k

[
N([Lt]+2)L−1(G), B

]∣∣∣ ≤ C ′δγ′1‖G‖[T∗,T ]
1,1,3 T 2 Q̃

(δ)
x,k[B]

[Lv] + 1− [Lt]
L

.

A direct calculation using formulas (2.26) allows us to conclude also that both |Nσ(G) −
N(v∧τδ)∨t(G)| and |N([Lt]+2)L−1(G)−Nt(G)| are estimated by C‖G‖[T∗,T ]

1,1,3 δγ′0−1/2. Hence, (since
γ′0 > 1/2 + γ0)∣∣∣Ẽ(δ)

x,k

[
N(v∧τδ)∨t(G), B

]
− Ẽ

(δ)
x,k [Nt(G), B]

∣∣∣ ≤ ∣∣∣Ẽ(δ)
x,k

[
Nσ(G)−N(v∧τδ)∨t(G), B

]∣∣∣
+
∣∣∣Ẽ(δ)

x,k [Nσ(G), B]− Ẽ
(δ)
x,k

[
N([Lt]+2)L−1(G), B

]∣∣∣+
∣∣∣Ẽ(δ)

x,k

[
N([Lt]+2)L−1(G)−Nt, B

]∣∣∣
≤ Cδγ1‖G‖[T∗,T ]

1,1,3 T 2Q̃
(δ)
x,k[B] (v − t) ∨ δγ0 (2.54)

for a certain constant C > 0 and γ1 := min[γ′0 − γ0 − 1/2, γ′1]. From (2.51), (2.54) and the
observation just below (2.51), we obtain∣∣∣E(δ)

x,k[Nv(G)−Nt(G), An]
∣∣∣ ≤ Cδγ1‖G‖[T∗,T ]

1,1,3 T 2R
(δ)
x,k[An] (v − t) ∨ δγ0

for a certain constant C > 0 and the conclusion of Proposition 2.3.4 follows. �
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2.3.5 An estimate of the stopping time

The purpose of this section is to prove the following estimate for R(δ)
x,k [τδ < T ].

Theorem 2.3.6 Assume that the dimension d ≥ 3. Then, one can choose ε1, ε2, ε3, ε4 in such
a way that there exist constants C, γ > 0 for which

R
(δ)
x,k [ τδ < T ] ≤ CδγT, ∀ δ ∈ (0, 1], T ≥ 1, (x, k) ∈ A(M). (2.55)

Proof. We obviously have

[ τδ < T ] = [Uδ ≤ τδ, Uδ < T ] ∪ [Sδ ≤ τδ, Sδ < T ] (2.56)

with the stopping times Sδ and Uδ defined in (2.28) and (2.29). Let us denote the first and
second event appearing on the right hand side of (2.56) by A(δ) and B(δ) respectively. To
show that (2.56) holds we prove that the R(δ)

x,k probabilities of both events can be estimated
by CδγT for some C, γ > 0: see (2.64), (2.65) and (2.69).

An estimate of R(δ)
x,k[A(δ)]

The first step towards obtaining the desired estimate will be to replace the event A(δ) whose
definition involves a stopping time by an event C(δ) whose definition depends only on deter-
ministic times, see (2.57) below. Next we use the estimate (2.46) of Proposition 2.3.4 for an
appropriately chosen function G to reduce the question of bounding the R(δ)

x,k probability of
Ã(δ) by an easier problem of estimating its Qx,k probability (Qx,k corresponds to a degener-
ate diffusion determined by (2.44)). The latter is achieved by using bounds on heat kernels
corresponding to hypoelliptic diffusions due to Kusuoka and Stroock.

We assume in this section to simplify the notation and without any loss of generality that
h∗(M) = 1. Note that then

A(δ) ⊂ Ã(δ) :=
[∣∣∣∣X (jq

)
−X

(
i

q

)∣∣∣∣ ≤ 3
q

: 1 ≤ i ≤ j ≤ [Tq], |i− j| ≥ q

p

]
(2.57)

and thus

R
(δ)
x,k[A(δ)] ≤ [Tq]2 max

{
R

(δ)
x,k

[∣∣∣∣X (jq
)
−X

(
i

q

)∣∣∣∣ ≤ 3
q

]
: 1 ≤ i ≤ j ≤ [Tq], |i− j| ≥ q

p

}
.

(2.58)
Suppose that f (δ) : Rd → [0, 1] is a C∞–regular function that satisfies f(x) = 1, if |x| ≤ 4h/q
and f (δ)(x) = 0, if |x| ≥ 5/q. We assume furthermore that i, j are positive integers such that
(j − i)/q ∈ [0, 1] and ‖f (δ)‖3 ≤ 2q3. For any x0 ∈ Rd and i/q ≤ t ≤ j/q define

Gj(t, x, k;x0) := Mx,kf
(δ)

(
X

(
j

q
− t

)
− x0

)
.

Obviously, we have
∂tGj(t, x, k;x0) + L̃Gj(t, x, k;x0) = 0.

Hence, using Proposition 2.3.4 with v = j/q and t = i/q (note that v − t ≥ 1/p ≥ δε2 and
ε2 ∈ (0, 1/2)), we obtain that there exists γ1 > 0 such that∣∣∣∣E(δ)

x,k

[
f (δ)

(
X

(
j

q

)
− x0

)
−Gj

(
i

q
,X

(
i

q

)
,K

(
i

q

)
;x0

) ∣∣∣∣Mi/q

]∣∣∣∣ (2.59)

≤ C
j − i

q
‖Gj(·, ·, ·;x0)‖[i/q,j/q]

1,1,3 T 2δγ1 , ∀ δ ∈ (0, 1].

43



According to [57] Theorem 2.58, p. 53 we have

‖Gj(·, ·, ·;x0)‖[i/q,j/q]
1,1,3 ≤ C‖f (δ)‖3 ≤ Cq3 ≤ Cδ−3(ε2+ε3), j ∈ {0, . . . , [qT ]}. (2.60)

Hence combining (2.59) and (2.60) we obtain that the left hand side of (2.59) is less than, or
equal to C δγ1−3(ε2+ε3) for all δ ∈ (0, 1]. Let now i0 = j − q

p
so that 1 ≤ i ≤ i0 ≤ j ≤ [Tq]. We

have

R
(δ)
x,k

[∣∣∣∣X (jq
)
−X

(
i

q

)∣∣∣∣ ≤ 3
q

]
≤ E

(δ)
x,k

[
f (δ)

(
X

(
j

q

)
−X

(
i

q

))]
(2.61)

= E
(δ)
x,k

E(δ)
x,k

[
f (δ)

(
X

(
j

q

)
− y

) ∣∣∣∣Mi0/q

]
˛̨̨
y=X(i/q)

 .
According to (2.59) and (2.60) we can estimate the utmost right hand side of (2.61) by

sup
x,y,k

{
Mx,kf

(δ)

(
X

(
1
p

)
− y

)
: x,y ∈ Rd, k ∈ A(2M)

}
+ C δγ1−3(ε2+ε3)T 2. (2.62)

To estimate the first term in (2.62) we use the following.

Lemma 2.3.7 Let p, q be as in (2.27). Then, there exist positive constants C1, C2 and C3

such that for all x,y ∈ Rd, k ∈ A(2M), j ∈ {1, . . . , [pT ]}, δ ∈ (0, 1] we have

Qx,k

[∣∣∣∣X ( jp
)
− y

∣∣∣∣ ≤ 5
q

]
≤ C1

(
pC2

qd
+ e−C3p

)
. (2.63)

We postpone the proof of the lemma for a moment in order to finish the estimate of R(δ)
x,k[A(δ)].

Using (2.63) we obtain that the expression in (2.62) can be estimated by

C1

(
pC2

qd
+ e−C3p

)
+ C δγ1−3(ε2+ε3)T 2 ≤ C1δ

(d−C2)ε2+dε3 + exp
{
−C3δ

−ε2
}

+ C δγ1−3(ε2+ε3)T 2.

Hence, from (2.58), we obtain that

R
(δ)
x,k[A(δ)] ≤ [Tq]2

(
C1δ

(d−C2)ε2+dε3 + exp
{
−C3δ

−ε2
}

+ C δγ1−3(ε2+ε3)T 2
)

(2.64)

≤ CT 2
(
δ(d−2−C1)ε2+(d−2)ε3 + δ−2(ε2+ε3) exp

{
−C3δ

−ε2
}

+ δγ1−5(ε2+ε3)T 2
)
≤ Cδγ2T 4

for γ2 := min[(d − 2 − C1)ε2 + (d − 2)ε3, γ1 − 5(ε2 + ε3)] > 0, provided that ε2 + ε3 < γ1/5
and ε2 ∈ (0, (d − 2)ε3/(C1 + 2 − d)). Here with no loss of generality we have assumed that
C1 + 2 > d. Recall also that d ≥ 3. Now suppose that γ3 ∈ (0, γ2). Consider two cases:
T 3 < δ−γ3 and T 3 ≥ δ−γ3 . In the first one, the utmost right hand side of (2.64) can be bound
from above by Cδγ2−γ3T . In the second we have a trivial bound of the left side by δγ3/3T . We
have proved therefore that

R
(δ)
x,k[A(δ)] ≤ CδγT (2.65)

for some C, γ > 0 independent of δ and T .
The proof of Lemma 2.3.7. We prove this lemma by induction on j. First, we verify

it for j = 1. Without any loss of generality we may suppose that k = (k1, . . . , kd) and
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kd > (4dMδ)−1. Let D̃mn : Rd−1 → R, m,n = 1, . . . , d − 1, Ẽm : Rd−1 → R, m = 1, . . . , d be
given by

D̃pq(l) := Dpq(k−1l, k−1
√
k2 − l2, k), Ẽp(l) := Ep(k−1l, k−1

√
k2 − l2, k),

when l ∈ Z := [l ∈ Bd−1
k : k−1

√
k2 − l2 > (4dMδ)−1], l = |l|. These functions are C∞

smooth and bounded together with all their derivatives. Note also that the matrix D̃ = [D̃mn]
is symmetric and D̃ξ · ξ ≥ λ0|ξ|2 for all ξ ∈ Rd−1 and a certain λ0 > 0. The projection
K(t) = (K1(t), . . . ,Kd(t)) of the canonical path process (X(t;π),K(t;π)) considered over the
probability space (C,M,Qx,k0), where k0 := (l,

√
k2 − l2), with l ∈ Z, is a diffusion whose

generator equals L, see (2.43). It can be easily seen that (K1(t), . . . ,Kd−1(t))t≥0, is then a
diffusion starting at l, whose generator N is of the form

NF (l,x) :=
d−1∑
p=1

X2
pF (l) +

d−1∑
q=1

aq(l)∂lqF (l), F ∈ C∞0 (Rd−1), (2.66)

where aq(l), q = 1, . . . , d− 1 are certain C∞-functions and

Xp(l) :=
d−1∑
q=1

D̃1/2
pq (l)∂lq , p = 1, . . . , d− 1.

The (d− 1)× (d− 1) matrix [D̃1/2
pq (l)] is non-degenerate when l ∈ Z. Let

ÑF (l,x) :=
d−1∑
p=1

X̃2
pF (l,x) + X̃0F (l,x), F ∈ C∞0 (Rd−1 × Rd),

where X̃0 is a C∞–smooth extension of the field

X0(l) :=
H ′

0(k)
k

d−1∑
q=1

lq∂xq +
H ′

0(k)
k

√
k2 − l2 ∂xd

+
d−1∑
q=1

aq(l)∂lq , l ∈ Z.

It can be shown, by the same type of argument as that given on pp. 122-123 of [6], that for
each (x, l), with l ∈ Z, the linear space spanned at that point by the fields belonging to the
Lie algebra generated by X0, . . . , Xd−1 is of dimension 2d−1. One can also guarantee that the
extensions X̃0, . . . , X̃d−1 satisfy the same condition. We shall denote the respective extension
of N by the same symbol.

Set l0 := (k1, . . . , kd−1). Let Rl0 , R̃x,l0 be the path measures supported on Cd−1 and
Cd,d−1 respectively that solve the martingale problems corresponding to the generators N and
Ñ with the respective initial conditions at t = 0 given by l0 and (x, l0). Let r(t, x− y, l1, l2),
t ∈ (0,+∞), x,y ∈ Rd, l1, l2 ∈ Rd−1 be the transition of probability density that corresponds
to R̃x,l0 . Using Corollary 3.25 p. 22 of [47] we have that for some constants C,m > 0

r (t,y, k, l) ≤ Ct−m, ∀y ∈ Rd, k, l ∈ Rd−1, t ∈ (0, 1]. (2.67)

Denote by τZ(π) the exit time of a path π ∈ Cd−1 from the set Z. For any π ∈ Cd,d−1 we set
also τ̃Z(π) = τZ(K(·;π)). Let S : Bd−1

k → Sd−1
k be given by

S(l) := (l1, . . . , ld−1,
√
k2 − l2), l = (l1, . . . , ld−1) ∈ Bd−1

k , l := |l|
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and let S̃ : Cd,d−1 → C be given by S̃(π)(t) := (X(t;π), S ◦K(t;π)), t ≥ 0. For any A ∈ Mτ̃Z

we have R̃x,l0 [S̃−1(A)] = Qx,S(l0)[A]. Since the event [|X (1/p)− y| ≤ 5/q] ∩ [τ̃Z ≥ 1/p] is
Mτ̃Z –measurable we have

Qx,k

[∣∣∣∣X (1
p

)
− y

∣∣∣∣ ≤ 5
q

]
≤ R̃x,l0

[∣∣∣∣X (1
p

)
− y

∣∣∣∣ ≤ 5
q
, τ̃Z ≥

1
p

]
+Rl0

[
τZ <

1
p

]
(2.68)

≤ Cω̄dp
m

(
4
q

)d

+ Ce−C3p.

Here ω̄d denotes the volume of Bd. To obtain the last inequality we have used (2.67) and an
estimate for non-degenerate diffusions stating that Rl0 [τZ < 1/p] < Ce−C3p for some constants
C,C3 > 0 depending only on d and λ0, see e.g. (2.1) p. 87 of [58]. Inequality (2.68) implies
easily (2.63) for j = 1 with C1 = m. To finish the induction argument assume that (2.63)
holds for a certain j. We show that it holds for j + 1 with the same constants C1, C2 and
C3 > 0. The latter follows easily from the Chapman-Kolmogorov equation, since

Qx,k

[∣∣∣∣X (j + 1
p

)
− y

∣∣∣∣ ≤ 5
q

]
=

∫ ∫
Rd×Sd−1

k

Qy,l

[∣∣∣∣X ( jp
)
− y

∣∣∣∣ ≤ 5
q

]
Q

(
1
p
, x, k, dy, dl

)
induction assumpt.

≤ C1

[
pC2

qd
+ e−C3p

] ∫ ∫
Q

(
1
p
, x, k, dy, dl

)
= C1

[
pC2

qd
+ e−C3p

]
and the formula (2.63) for j + 1 follows. Here Q(t, x, k, ·, ·) is the transition of probability
corresponding to the path measure Qx,k. �

An estimate of R(δ)
x,k[B(δ)]

We start with a simple observation concerning the Hölder regularity of the K component of
any path π ∈ B(δ). Let us denote ρ := 2M−1

δ N−1/2 and

D :=
[
π ∈ C(T, δ) : |K(t)−K(s)| ≥ ρ for some k s.t. t(p)

k ≤ T and t
(p)
k−1 ≤ s ≤ t

(p)
k ≤ t ≤ t

(p)
k+1

]
,

where Mδ has been defined in (2.10) and N in (2.27). Suppose that π ∈ B(δ), then we can
find t ∈ [t(p)

k , t
(p)
k+1], s ∈ [t(p)

k−1, t
(p)
k ] for which K̂(t) · K̂(s) ≤ 1 − 1/N . This, however, implies

that
|K(t)−K(s)|2 ≥ 1

M2
δ

|K̂(t)− K̂(s)|2 ≥ 2
M2

δN
,

thus π ∈ D. Hence the desired estimate of R(δ)
x,k[B(δ)] follows from the following lemma.

Lemma 2.3.8 Under the assumptions of Theorem 2.3.6 there exist C, γ > 0 such that

R
(δ)
x,k[D] ≤ CTδγ , ∀ δ ∈ (0, 1], T ≥ 1, (x, k) ∈ A(M). (2.69)

Proof. We define the following events:

F1 :=
[
|K(t)−K(s)| ≥ ρ for some s, t ∈ [0, T ], 0 < t− s <

2
p
, t ≤ τδ

]
,

F2 :=
[
|K(t)−K(s)| ≥ ρ for some s, t ∈ [0, T ], 0 < t− s <

2
p
, s ≥ τδ

]
,

F3 :=
[
|K(τδ)−K(s)| ≥ ρ

2
for some s ∈ [0, T ], 0 < τδ − s <

2
p
, τδ ≤ T

]
,

F4 :=
[
|K(τδ)−K(t)| ≥ ρ

2
for some t ∈ [0, T ], 0 < t− τδ <

2
p

]
.
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Observe that D ⊂
4⋃

i=1
Fi. Note that F1, F3 are Mτδ–measurable, hence

R
(δ)
x,k[Fi] = Q̃

(δ)
x,k[Fi], i = 1, 3. (2.70)

On the other hand for i = 2, 4 we have

R
(δ)
x,k[Fi] =

∫
QX(τδ(π)),K(τδ(π))[Fi,π]Q̃(δ)

x,k(dπ),

where for a given π ∈ C

F2,π :=
[
|K(t)−K(s)| ≥ ρ for some s, t ∈ [0, (T − τδ(π)) ∧ 0], 0 < t− s <

2
p

]
,

F4,π :=
[
|K(0)−K(t)| ≥ ρ

2
for some t ∈ [0, (T − τδ(π)) ∧ 0], 0 < t <

2
p

]
.

Since all Fi, i = 1, 3 and Fi,π, i = 2, 4, π ∈ C are contained in the event

F :=
[
|K(t)−K(s)| ≥ ρ

2
for some s, t ∈ [0, T ], 0 < t− s <

2
p

]
,

(2.69) would follow if we show that there exist C > 0 and γ > 0 for which

Q̃
(δ)
x,k[F ] ≤ CTδγ for all (x,k) ∈ A(M) (2.71)

and
Qx,k[F ] ≤ CTδγ for all (x,k) ∈ A(Mδ). (2.72)

The estimate (2.72) follows from elementary properties of diffusions, see e.g. (2.46) p. 47
of [57]. We carry on with the proof of (2.71). The argument is analogous to the proof of
Theorem 1.4.6 of [58]. Let L be a multiple of p such that L := [δ−γ′0 ], where γ′0 ∈ (1/2, 1)
is to be specified even further later on. Let also s

(L)
k := k/L, k = 0, 1, . . .. We now define

the stopping times τk(π) that determine the times at which the K component of the path π
performs k–th oscillation of size ρ/8. Let τ0(π) := 0 and for any k ≥ 0

τk+1(π) := inf
[
s
(L)
k ≥ τk(π) : |K(s(L)

k )−K(τk(π))| ≥ ρ

8

]
,

with the convention that τn+1 = +∞ when τn = +∞, or when the respective event is impos-
sible. Let N# := min[n : τn+1 > T ] and δ∗ := min[τn − τn−1 : n = 1, . . . , N#]. Then, for a
sufficiently small δ0 and δ ∈ (0, δ0) we have F ⊂ [δ∗ ≤ 1/p] so we only need to estimate Q̃(δ)

x,k

probability of the latter event.
Let f : Rd → [0, 1] be a function of C∞0 (Rd) class such that f(0) ≡ 1, when |k| ≤ ρ/16 and

f(k) ≡ 0, when |k| ≥ ρ/8. Let also fl(·) := f(· − l) for any l ∈ Rd. Note that according to
Lemma 2.3.5 we can choose constants Aρ, C > 0, where C is independent of ρ, in such a way
that Aρ < CT 2ρ−3 and the random sequence

Sl
N := Ẽ

(δ)
x,k

[
fl

(
K

(
N + 1
L

)) ∣∣∣∣ MN/L

]
+Aρ

N

L
, N ≥ 0 (2.73)

is a Q̃
(δ)
x,k–submartingale with respect to the filtration

(
MN/L

)
N≥0

for all l with the norm
|l| ∈ ((3Mδ)−1, 3Mδ) provided that δ is sufficiently small. We can decompose

Q̃
(δ)
x,k

[
δ∗ ≤ 2

p

]
≤ Q̃

(δ)
x,k

[
δ∗ ≤ 2

p
, N# ≤ [δ−α]

]
+ Q̃

(δ)
x,k

[
δ∗ ≤ 2

p
, N# > [δ−α]

]
(2.74)

≤
[δ−α]∑
i=1

Q̃
(δ)
x,k

[
τi − τi−1 ≤

2
p

]
+ Q̃

(δ)
x,k[N# > [δ−α]],
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where α > 0 is to be determined later. We will show that

Q̃
(δ)
x,k[N# > [δ−α]] ≤ CeT

(
1− δ1/2(ε1+ε2)

2

)δ−α

(2.75)

and

Q̃
(δ)
x,k

[
τn+1 − τn ≤ [Lδε

2]/L
∣∣∣∣Mτn

]
≤ CδγT 2, (2.76)

for 0 < γ < min[ε2 − 3ε1/2, γ′0 − (1 + ε1)/2]. From (2.73), (2.74) (2.75) and (2.76) we further
conclude that

Q̃
(δ)
x,k

[
δ∗ ≤ 1

p

]
≤ CT 2δγ−α + CeT

(
1− δ1/2(ε1+ε2)

2

)δ−α

(2.77)

for some C > 0, independent of δ ∈ (0, 1] and T ≥ T0, provided that we choose α ∈ (1/2(ε1 +
ε2), γ). This is possible if min[ε2 − 3ε1/2, γ′0 − (1 + ε1)/2] > (ε1 + ε2)/2, which is true if we
assume ε2 > 10ε1 > 0 and 1 > γ′0 > (1 + ε2)/2 + ε1. Now, by the argument made after
(2.64) we can always replace the first term on the right side of (2.77) by CTδγ1 . We can also
assume that the second term on the right hand side of (2.77) is less than or equal to CTδγ1 .
This can be seen as follows. Let β := α − 1/2(ε1 + ε2). The term in question is bounded by
C exp

{
T − C1δ

−β
}

with C1 := infρ∈(0,1] ρ
−1 log (1− ρ/2)−1. For δ−β ≥ 2T/C1 we get that

exp
{
T − C1δ

−β
}

is less than or equal to exp
{
−C1δ

−β/2
}

, while for δ−β < 2T/C1 the left
side of (2.77) is obviously less than 2Tδβ/C1. In both cases we can find a bound as claimed.
This proves (2.71) and hence the proof of Lemma 2.3.8 will be complete if we prove (2.75) and
(2.76).

To this end, let Q̃(δ)
x,k,π, π ∈ C denote the family of the regular conditional probability

distributions that corresponds to Q̃
(δ)
x,k [ · | Mτn ]. Then, there exists a Mτn measurable, null

Q̃
(δ)
x,k probability event Z such that for each π 6∈ Z and each l ∈ Rd

∗ the random sequence

Sl
N,π := Sl

N1[0,N/L](τn(π)), N ≥ 0

is an
(
MN/L

)
N≥0

submartingale under Q̃(δ)
x,k,π. Let Tn,π := τn+1 ∧ (τn(π) + 2[Lδε]/L), where

ε ∈ (0, 1) is a constant to be chosen later on. We can choose the event Z in such a way that

Q̃
(δ)
x,k,π[Tn,π ≥ τn(π)] = 1, ∀π 6∈ Z. (2.78)

Let S̃N,π := S
K(τn(π))
N,π , then the submartingale property of

(
S̃N,π

)
N≥0

and (2.78) imply that

Ẽ
(δ)
x,k,πS̃LTn,π ,π ≥ Ẽ

(δ)
x,k,πS̃Lτn(π),π = 1 +Aρτn(π), (2.79)

provided that γ0 ≥ (1 + ε1)/2. The latter condition assures that ρ ≥ C/(L
√
δ) so that K does

not change by more than ρ during the time 1/L. In consequence of (2.79) we have

Ẽ
(δ)
x,k,π

[
fK(τn(π))

(
K

(
Tn,π +

1
L

))]
+ 2Aρδ

ε ≥ 1, (2.80)

as Tn,π − τn(π) ≤ 2[Lδε]/L. Since∣∣∣∣fK(τn(π))

(
K

(
Tn,π +

1
L

))
− fK(τn(π)) (K (Tn,π))

∣∣∣∣ ≤ C

Lρδ1/2
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we obtain from (2.80)

2Aρδ
ε ≥ Ẽ

(δ)
x,k,π

[
1− fK(τn(π)) (K (Tn,π))

]
− C

Lρδ1/2

so in particular

2Aρδ
ε +

C

Lρδ1/2
≥ Ẽ

(δ)
x,k,π

[
1− fK(τn(π)) (K (τn+1)) , τn+1 ≤ τn(π) +

[Lδε]
L

]
(2.81)

= Q̃
(δ)
x,k,π

[
τn+1 ≤ τn(π) +

[Lδε]
L

]
.

We have shown, therefore, that

Q̃
(δ)
x,k

[
τn+1 − τn ≤

[Lδε]
L

∣∣∣∣Mτn

]
≤ CT 2δε

ρ3
+

C

Lρδ1/2
≤ C(δε−3ε1/2T 2 + δγ′0−(1+ε1)/2) ≤ Cδγ1T 2

(2.82)
for γ1 < min[ε − 3ε1/2, γ′0 − (1 + ε1)/2] and some constant C > 0. We can always assume
that T 2δγ1/2 ≤ 1. If otherwise, we can always write Q̃(δ)

x,k[F ] ≤ Tδγ/4 and (2.71) follows. In
particular, selecting ε := (ε1 + ε2)/2, one concludes from (2.82) that

Ẽ
(δ)
x,k[exp{−(τn+1 − τn)}|Mτn ] ≤ e−δ(ε1+ε2)/2

Q̃
(δ)
x,k

[
τn+1 − τn ≥

[Lδ(ε1+ε2)/2]
L

∣∣∣∣Mτn

]

+Q̃(δ)
x,k

[
τn+1 − τn ≤

[Lδ(ε1+ε2)/2]
L

∣∣∣∣Mτn

]
(2.82)

≤ e−δ(ε1+ε2)/2
+ C

(
1− e−δ(ε1+ε2)/2

)
δγ/2

< 1− δ(ε1+ε2)/2

2
(2.83)

provided that δ is sufficiently small. From (2.83) one concludes easily, see e.g. Lemma 1.4.5
p. 38 of [58], that (2.75) holds.

On the other hand, taking ε = ε2 in (2.82) we obtain (2.76) with 0 < γ < min[ε2 −
3ε1/2, γ′0 − (1 + ε1)/2]. Hence the proof of Lemma 2.3.8 is now complete. �

2.3.6 The estimation of the convergence rate. The proof of Theorem 2.2.1.

Recall that φδ, φ̄ satisfy (2.11), (2.13), respectively, with the initial condition φ0. We start
with the following lemma.

Lemma 2.3.9 Assume that φ0 satisfies the hypotheses formulated in Section 2.2.5. Then,

‖φ̄‖[0,T ]
0,0,0 ≤ ‖φ0‖0,0,

d∑
i=1

‖∂xi φ̄‖
[0,T ]
0,0,0 ≤ ‖φ0‖1,0. (2.84)

Furthermore, there exists a constant C > 0 such that for all T ≥ 1

‖∂tφ̄‖[0,T ]
0,0,0 ≤ C‖φ0‖1,2. (2.85)

In addition, for any nonnegative integer valued multi-index γ = (α1, α2, α3) satisfying |γ| ≤ 3
we have

d∑
i1,i2,i3=1

‖∂γ
ki1

,ki2
,ki3

φ̄‖[0,T ]
0,0,0 ≤ CT |γ|‖φ0‖1,4, (2.86)
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Proof. The estimates (2.84) follow directly from differentiating (2.13) with respect to x. To
obtain the estimates (2.85) and (2.86) we note first that the application of the operator L̃ to
both sides of (2.13) and the maximum principle leads to the estimate ‖L̃φ̄(t, x, ·)‖L∞(A(M)) ≤
‖L̃φ0‖L∞(A(M)) for all t ≥ 0, hence we conclude bound (2.85).

In fact, thanks to already proven estimate (2.84) we conclude that ‖Lφ̄(t, x, ·)‖L∞(A(M)) ≤
C‖φ0‖1,2 for some constant C > 0 and all (t, x) ∈ [0,+∞) × Rd. Let Z be as in the proof of
Lemma 2.3.7. Define S : Z × [M−1,M ] → A(M) as S(l, k) := (l,

√
k2 − l2), where l = |l|. Let

also ψ(l, k) = φ̄ ◦S(l, k). We have (Lkφ̄) ◦S(l, k) = Nψ(l, k), see (2.66). The Lp estimates for
elliptic partial differential equations, see e.g. Theorem 9.13 p. 239 of [33] allow us to estimate

‖ψ‖W 2,p(Z) ≤ C(‖ψ‖Lp(Z) + ‖Nψ‖Lp(Z)) ≤ C‖φ0‖1,2.

Choosing p sufficiently large we obtain that
∑

i ‖∂liψ‖L∞(Z) ≤ C‖φ0‖1,2, which in fact implies
that ‖D(·)∇kφ̄(t, ·)‖L∞(S(Z)) ≤ C‖φ0‖1,2. Obviously, one can find a covering of A(M) with
charts corresponding to different choices of the components of k being projected onto the
hyperplane Rd−1 and we obtain in that way that ‖D(·)∇kφ̄(t, ·)‖L∞(A(M)) ≤ C‖φ0‖1,2 for all
t ≥ 0. Since the rank of the matrix D(k̂, k) equals d − 1, with the kernel spanned by the
vector k, we obtain in that way the L∞ estimates of directional derivatives in any direction
perpendicular to k. We still need to obtain the L∞ bound on the derivative in the direction
k, denoted by ∂n := k1∂k1 + . . .+ kd∂kd

. To that purpose we apply ∂n to both sides of (2.13)
and after a straightforward calculation we get ∂t∂nφ̄ = L̃∂nφ̄ − 2Lkφ̄ + L1φ̄ + H ′

0
′(k)k̂ · ∇xφ̄,

where

L1φ̄ :=
d∑

m,n=1

∂

∂km

(
∂kDmn(k̂, k)

∂φ̄

∂kn

)
.

Note that D(k̂, k)k̂ = 0 implies that ∂kD(k̂, k)k̂ = 0 hence ‖L1φ̄(t, ·)‖L∞(A(M)) ≤ C‖φ0‖1,2.
We already know that Lkφ̄ and ‖∇xφ̄‖L∞(A(M)) are bounded, hence ‖∂nφ̄(t, ·)‖L∞(A(M)) ≤
C‖φ0‖1,2T for t ∈ [0, T ]. We have shown therefore that ‖φ̄(t, ·)‖1,1 ≤ C‖φ0‖1,2T for t ∈ [0, T ].
The above procedure can be iterated in order to obtain the estimates of the suprema of
derivatives of the higher order. �

Proof of Theorem 2.2.1. Let u ∈ [δγ′0 , T ], where we assume that γ′0 (as in the statement
of Lemma 2.3.5) belongs to the interval (1/2, 1). Substituting for G(t, x, k) := φ̄(u − t, x, k),
ζ ≡ 1 into (2.46) we obtain (taking v = u, t = δγ′0)∣∣∣∣∣∣∣Ẽ(δ)

x,k

φ0(X(u),K(u))− φ̄(u− δγ′0 , X(δγ′0),K(δγ′0))−
u∫

δγ′0

(∂% + L̂%)G(%,X(%),K(%)) d%


∣∣∣∣∣∣∣

≤ C‖G‖[0,T ]
1,1,3δ

γ1T 2, ∀ δ ∈ (0, 1]. (2.87)

Using the fact that |X(δγ′0) − x| ≤ Cδγ′0 , |K(δγ′0) − k| ≤ Cδγ′0−1/2, Q̃(δ)
x,k–a.s. for some deter-

ministic constant C > 0, cf. (2.36), and Lemma 2.3.9 we obtain that there exist constants
C, γ > 0 such that∣∣∣∣∣∣Ẽ(δ)

x,k

φ0(X(u),K(u))− φ̄(u, x, k)−
u∫

0

(∂% + L̂%)G(%,X(%),K(%)) d%

∣∣∣∣∣∣
≤ C‖G‖[0,T ]

1,1,3δ
γT 2, δ ∈ (0, 1], T ≥ 1, u ∈ [0, T ]. (2.88)
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We have however∣∣∣∣∣∣E(δ)
x,k

[
φ0(X(u),K(u))− φ̄(u, x, k), τδ ≥ T

]∣∣∣∣∣∣ =

∣∣∣∣∣∣Ẽ(δ)
x,k

[
φ0(X(u),K(u))− φ̄(u, x, k), τδ ≥ T

]∣∣∣∣∣∣
(2.88)

≤ C‖G‖[0,T ]
1,1,3δ

γT 2 +
(

2‖φ0‖0,0 + T‖G‖[0,T ]
1,1,2

)
Q̃

(δ)
x,k[τδ < T ]. (2.89)

Using Mτδ measurability of the event [τδ < T ] we obtain that Q̃(δ)
x,k [τδ < T ] = R

(δ)
x,k [ τδ < T ]

and by virtue of Theorem 2.3.6 we can estimate the right hand side of (2.89) by

C‖G‖[0,T ]
1,1,3δ

γT 2 + CδγT
(

2‖φ0‖0,0 + T‖G‖[0,T ]
1,1,2

)
Lemma 2.3.9

≤ CδγT 5.

On the other hand, the expression under the absolute value on the utmost left hand side
of (2.89) equals

E
(δ)
x,k

[
φ0(X(u),K(u))− φ̄(u, x, k)

]
− E

(δ)
x,k

[
φ0(X(u),K(u))− φ̄(u, x, k), τδ < T

]
.

The second term can be estimated by

2‖φ0‖0,0R
(δ)
x,k [τδ < T ]

(2.55)

≤ Cδγ‖φ0‖0,0T,

by virtue of Theorem 2.3.6. Since

Eφδ

(u
δ
,
x

δ
, k
)

= Eφ0(z(δ)(u;x, k),m(δ)(u;x, k)) = E
(δ)
x,kφ0(X(u),K(u))

we conclude from the above that the left hand side of (2.14) can be estimated by Cδγ‖φ0‖1,4T
5

for some constants C, γ > 0 independent of δ > 0, T ≥ 1. The bound appearing on the right
hand side of (2.14) can be now concluded by the same argument as the one used after (2.64).
�

2.4 Momentum diffusion to spatial diffusion: proof of Theorem
2.2.5

We show in this section that solutions of the momentum diffusion equation (2.13) in the long-
time, large space limit converge to the solutions of the spatial diffusion equation (2.15). We
first recall the setup of Theorem 2.2.5. Let φ̄γ(t, x, k) = φ̄(t/γ2, x/γ, k), where φ̄ satisfies (2.13)
and let w(t, x, k) be the solution of the spatial diffusion equation (2.15). In order to prove
Theorem 2.2.5 we need to show that the re-scaled solution φγ(t, x, k) converges as γ → 0 in
the space C([0, T ];L∞(A(M))) to w(t, x, k), so that

‖w(t)− φ̄γ(t)‖L∞(A(M)) ≤ C
(
γT + γ1/2

)
‖φ0‖2,0, 0 ≤ t ≤ T. (2.90)

Proof of Theorem 2.2.5. The proof is quite standard. We present it for the sake of com-
pleteness and convenience to the reader. The function φ̄γ is the unique C1,1,2

b ([0,+∞),R2d
∗ )-

solution to

γ2∂φ̄γ

∂t
=

d∑
m,n=1

∂

∂km

(
Dmn(k̂, k)

∂φ̄γ

∂kn

)
+ γH ′

0(k)k̂ · ∇xφ̄γ . (2.91)

φ̄γ(0, x, k) = φ0(x, k),
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see Remark 2.2.3. We represent φ̄γ as

φ̄γ = w + γw1 + γ2w2 +R. (2.92)

Here w is the solution of the diffusion equation (2.15), the correctors w1 and w2 will be
constructed explicitly, and the remainder R will be shown to be small. The first corrector w1

is the unique solution of zero mean over each sphere Sd−1
k of the equation

d∑
m,n=1

∂

∂km

(
Dmn(k̂, k)

∂w1

∂kn

)
= −H ′

0(k)k̂ · ∇xw. (2.93)

It has an explicit form

w1(t, x, k) =
d∑

j=1

χj(k)
∂w(t, x, k)

∂xj
(2.94)

with the functions χj defined in (2.17). The second order corrector w2 is the unique zero mean
over each sphere Sd−1

k solution of the equation

d∑
m,n=1

∂

∂km

(
Dmn(k̂, k)

∂w2

∂kn

)
=
∂w

∂t
−H ′

0(k)k̂ · ∇xw1. (2.95)

Note that the expression on the right hand side of (2.95) is of zero mean since thanks to (2.15)
and equality (2.16) we have

∂w

∂t
=

1
Γd−1

∫
Sd−1

H ′
0(k)k̂ · ∇xw1dΩ(k̂).

Equations (2.93) and (2.95) for various values of k = |k| are decoupled. As a consequence of
this fact and the regularity properties for solutions of elliptic equations on a sphere we have
that w1, w2 belong to C([0, T ];L∞(A(M))). More explicitly, we may represent the function
w2 as

w2(t, x, k) =
d∑

j,l=1

ψjl(k)
∂2w(t, x, k)
∂xj∂xl

.

The functions ψjm(k) satisfy

d∑
m,n=1

∂

∂km

(
Dmn(k̂, k)

∂ψjl

∂kn

)
= −H ′

0(k)k̂jχl(k) + ajl(k). (2.96)

A unique mean-zero, bounded solution of (2.96) exists according to the Fredholm alternative
combined the regularity properties for solutions of (2.96) on each sphere Sd−1

k . With the above
definitions of w, w1, w2, equation (2.91) for φ̄γ implies that the remainder R in (2.92) satisfies

γ2∂R

∂t
+ γ3∂w1

∂t
+ γ4∂w2

∂t
− γH ′

0(k)k̂ ·∇xR− γ3H ′
0(k)k̂ ·∇xw2 =

d∑
m,n=1

∂

∂km

(
Dmn(k̂, k)

∂R

∂kn

)
.

We re-write this equation in the form

∂R

∂t
− 1
γ
H ′

0(k)k̂ · ∇xR−
1
γ2

d∑
m,n=1

∂

∂km

(
Dmn(k̂, k)

∂R

∂kn

)
= f (2.97)

R(0, x, k) = φ0(x, k)− φ̄0(x, k)− γw1(0, x, k)− γ2w2(0, x, k),
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where f := −γ∂tw1−γ2∂tw2−γH ′
0(k)k̂ ·∇xw2. Here, as before, R is understood as the unique

solution to (2.97) that belongs to C1,1,2
b ([0,+∞),R2d

∗ ). We may split R = R1 + R2 according
to the initial data and forcing in the equation: R1 satisfies

∂R1

∂t
− 1
γ
H ′

0(k)k̂ · ∇xR1 −
1
γ2

d∑
m,n=1

∂

∂km

(
Dmn(k̂, k)

∂R1

∂kn

)
= f,

R(0, x, k) = −γw1(0, x, k)− γ2w2(0, x, k) (2.98)

and the initial time boundary layer corrector R2 satisfies

∂R2

∂t
− 1
γ
H ′

0(k)k̂ · ∇xR2 −
1
γ2

d∑
m,n=1

∂

∂km

(
Dmn(k̂, k)

∂R2

∂kn

)
= 0 (2.99)

R2(0, x, k) = φ0(x, k)− φ̄0(x, k).

Using the probabilistic representation for the solution of (2.98) as well as the regularity of w1

and w2 we obtain that
‖R1(t)‖L∞(A(M)) ≤ CγT, 0 ≤ t ≤ T. (2.100)

To obtain the bound for R2 we consider Rγ
2(t, x, k) := R2(γ3/2t, x, k). This function satisfies

∂Rγ
2

∂t
− γ1/2H ′

0(k)k̂ · ∇xR
γ
2 −

1
γ1/2

d∑
m,n=1

∂

∂km

(
Dmn(k̂, k)

∂Rγ
2

∂kn

)
= 0

Rγ
2(0, x, k) = φ0(x, k)− φ̄0(x, k).

We also define R̃γ
2 , the solution of

∂R̃γ
2

∂t
− 1
γ1/2

d∑
m,n=1

∂

∂km

(
Dmn(k̂, k)

∂R̃γ
2

∂kn

)
= 0 (2.101)

R̃γ
2(0, x, k) = φ0(x, k)− φ̄0(x, k).

The uniform ellipticity of the right hand side of (2.101) on each sphere Sd−1
k implies, see e.g.

Proposition 13.3, p. 55 of [60] that the function R̃γ
2 satisfies the decay estimate on each sphere

‖R̃γ
2(t)‖L∞(Sd−1) ≤

Cγ(d−1)/4

t(d−1)/2
‖φ0‖L1(Sd−1

k ) ≤
Cγ(d−1)/4

t(d−1)/2
‖φ0‖L∞(Sd−1

k ) (2.102)

for t ∈ [0, T ] and, similarly,

‖∇xR̃
γ
2(t)‖L∞(Sd−1

k ) ≤
Cγ(d−1)/4

t(d−1)/2
‖φ0‖1,0.

Furthermore, the difference qγ = Rγ
2 − R̃γ

2 satisfies

∂qγ

∂t
− γ1/2H ′

0(k)k̂ · ∇xq
γ − 1

γ1/2

d∑
m,n=1

∂

∂km

(
Dmn(k̂, k)

∂qγ

∂kn

)
= γ1/2H ′

0(k)k̂ · ∇xR̃
γ
2(2.103)

qγ(0, x, k) = 0.

We conclude, using the probabilistic representation of the solution of (2.103), that

‖qγ(t)‖L∞(A(M)) ≤ Cγ1/2t‖φ0‖1,0
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and thus

‖R2(γ3/2)‖L∞(A(M)) ≤ ‖Rγ
2(1)‖L∞(A(M)) + ‖qγ(1)‖L∞(A(M))

≤ C
(
γ(d−1)/4‖φ0‖0,0 + γ2‖φ0‖1,0

)
.

The maximum principle for (2.99) implies that we have the above estimate for all t ≥ γ3/2:

‖R2(t)‖L∞(A(M)) ≤ C
(
γ(d−1)/4‖φ0‖0,0 + γ1/2‖∇xφ0‖1,0

)
, t ≥ γ3/2. (2.104)

Combining (2.92), (2.100) and (2.104) we conclude that

‖w(t)− φ̄γ(t)‖L∞(A(M)) ≤ C
(
γT + γ(d−1)/4 + γ1/2

)
‖φ0‖1,0, γ3/2 ≤ t ≤ T, (2.105)

and thus (2.90) follows, as d ≥ 3. This finishes the proof of Theorem 2.2.5. �

2.5 The spatial diffusion of wave energy

In this section we consider an application of the previous results to the random geometrical
optics regime of propagation of acoustic waves. We show that when the wave length is much
shorter than the correlation length of the random medium, there exist temporal and spatial
scales where the energy density of the wave undergoes the spatial diffusion. We start with the
wave equation in dimension d ≥ 3

1
c2(x)

∂2φ

∂t2
−∆φ = 0 (2.106)

and assume that the wave speed has the form c(x) = c0 +
√
δc1 (x). Here c0 > 0 is the constant

sound speed of the uniform background medium, while the small parameter δ � 1 measures
the strength of the mean zero random perturbation c1. Rescaling the spatial and temporal
variables x = x′/δ and t = t′/δ we obtain (after dropping the primes) equation (2.106) with a
rapidly fluctuating wave speed

cδ(x) = c0 +
√
δc1

(x
δ

)
. (2.107)

It is convenient to rewrite (2.106) as the system of acoustic equations for the “pressure”
p = φt/c and “acoustic velocity” u = −∇φ:

∂u
∂t

+∇ (cδ(x)p) = 0 (2.108)

∂p

∂t
+ cδ(x)∇ · u = 0.

We will denote for brevity v = (u, p) ∈ Rd+1 and write (2.108) in the more general form of a
first order linear symmetric hyperbolic system. To do so we introduce symmetric matrices Aδ

and Dj defined by

Aδ(x) = diag(1, 1, 1, cδ(x)), and Dj = ej ⊗ ed+1 + ed+1 ⊗ ej , j = 1, . . . , d. (2.109)

Here em ∈ Rd+1 is the standard orthonormal basis: (em)k = δmk.
We consider the initial data for (2.108) as a mixture of states. Let S be a measure space

equipped with a non-negative finite measure µ. A typical example is that the initial data
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is random, S is the state space and µ is the corresponding probability measure. We as-
sume that for each parameter ζ ∈ S and ε, δ > 0 the initial data is given by vδ

ε(0, x; ζ) :=
(−ε∇φε

0(x), 1/cδ(x)φ̇ε
0(x)) and vδ

ε(t, x; ζ) solves the system of equations

∂vδ
ε

∂t
+

d∑
j=1

Aδ(x)Dj ∂

∂xj

(
Aδ(x)vδ

ε(x)
)

= 0. (2.110)

The set of initial data is assumed to form an ε-oscillatory and compact at infinity family [31]
as ε → 0. By the above we mean that for any continuous, compactly supported function
ϕ : Rd → R we have

lim
R→+∞

lim sup
ε→0+

∫
|k|≥R/ε

|ϕ̂vδ
ε|2dk → 0 and lim

R→+∞
lim sup

ε→0+

∫
|x|≥R

|vδ
ε|2dx→ 0

for a fixed realization ζ ∈ S of the initial data and each δ > 0. In the regime of geometric
acoustics the scale ε of oscillations of the initial data is much smaller than the correlation
length δ of the medium: ε� δ � 1.

The dispersion matrix for (2.110) is

P δ
0 (x, k) = i

d∑
j=1

Aδ(x)kjD
jAδ(x) = i

d∑
j=1

cδ(x)kjD
j = icδ(x)

(
k̃ ⊗ ed+1 + ed+1 ⊗ k̃

)
, (2.111)

where k̃ =
∑d

j=1 kjej . The self-adjoint matrix (−iP δ
0 ) has an eigenvalue H0 = 0 of the

multiplicity d− 1, and two simple eigenvalues

Hδ
±(x, k) = ±cδ(x)|k|. (2.112)

Its eigenvectors are

b0m =
(
k⊥m, 0

)
, m = 1, . . . , d− 1; b± =

1√
2

(
k̃

|k|
± ed+1

)
, (2.113)

where k⊥m ∈ Rd is the orthonormal basis of vectors orthogonal to k.
The (d+ 1)× (d+ 1) Wigner matrix of a mixture of solutions of (2.110) is defined by

W δ
ε (t, x, k) =

1
(2π)d

∫
Rd

∫
S

eik·yvδ
ε(t, x− εy

2
; ζ)vδ∗

ε (t, x+
εy

2
; ζ)dyµ(dζ). (2.114)

It is well-known, see [31, 49, 53], that for each fixed δ > 0 (and even without introduction of
a mixture of states) when W δ

ε (t = 0) converges weakly in S ′(Rd × Rd), as ε→ 0, to

W0(x, k) = u0
+(x, k)b+(k)⊗ b+(k) + u0

−(x, k)b−(k)⊗ b−(k). (2.115)

then W δ
ε (t) converges weakly in S ′(Rd × Rd) to

U δ(t, x, k) = uδ
+(t, x, k)b+(k)⊗ b+(k) + uδ

−(t, x, k)b−(k)⊗ b−(k).

The scalar amplitudes u(δ)
± satisfy the Liouville equations:
∂tu

δ
± +∇kH

δ
± · ∇xu

δ
± −∇xH

δ
± · ∇ku

δ
± = 0,

uδ
±(0, x, k) = u0

±(x, k).

(2.116)
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These equations are of the form (2.11), written in the macroscopic variables, with the Hamil-
tonian given by (2.112).

One may obtain an L2-error estimate for this convergence when a mixture of states is
introduced, as in (2.114). In order to make the scale separation ε � δ � 1 precise we define
the set

Kµ :=
{

(ε, δ) : | ln ε|−2/3+µ ≤ δ ≤ 1
}
.

The parameter µ is a fixed number in the interval (0, 2/3). The following proposition has been
proved in Theorem 3.2 of [6], using straightforward if tedious asymptotic expansions.

Proposition 2.5.1 Let the acoustic speed cδ(x) be of the form (2.107) and such that the
Hamiltonian Hδ(x) given by (2.112) satisfies assumptions (2.6). We assume that the Wigner
transform W δ

ε satisfies

W δ
ε (0, x, k) →W0(x, k) strongly in L2(Rd × Rd) as Kµ 3 (ε, δ) → 0. (2.117)

We also assume that the limit W0 ∈ C2
c (Rd × Rd) with a support that satisfies

supp W0(x, k) ⊆ A(M) (2.118)

for some M > 0. Moreover, we assume that the initial limit Wigner transform W0 is of the
form

W0(x, k) =
∑
q=±

u0
q(x, k)Πq(k), Πq(k) = bq(k)⊗ bq(k). (2.119)

Let U δ(t, x, k) =
∑
p=±

uδ
p(t, x, k)Πp(k), where the functions uδ

p satisfy the Liouville equations

(2.116). Then there exists a constant C1 > 0 that is independent of δ so that

‖W δ
ε (t, x, k)−U δ(t, x, k)‖2 ≤ C(δ)

(
ε‖W0‖H2eC1t/δ3/2

+ ε2‖W0‖H3eC1t/δ3/2
)

+‖W δ
ε (0)−W0‖2,

(2.120)
where C(δ) is a rational function of δ with deterministic coefficients that may depend on the
constant M > 0 in the bound (2.118) on the support of W0.

The Liouville equations (2.116) are of the form (2.11). Therefore, one may pass to the limit
δ → 0 in (2.116) using Theorem 2.2.1 and conclude that Euδ

± converge to the respective
solutions of

∂ū±
∂t

=
d∑

m,n=1

∂

∂km

(
|k|2Dmn(k̂)

∂ū±
∂kn

)
± c0k̂ · ∇xū± (2.121)

with the initial conditions as in (2.116). Here the diffusion matrix D(k̂) = [Dmn(k̂)] is given
by

Dmn(k̂) = −1
2

∫ ∞

−∞

∂2R(c0sk̂)
∂xn∂xm

ds, (2.122)

where R(x) is the correlation function of the random field c1(x): E [c1(z)c1(x+ z)] = R(x).
Furthermore, it follows from Theorem 2.2.7 that there exists α0 > 0 so that solutions of (2.116)
with the initial data of the form uδ

±(0, x, k) = u0
±(δαx, k) with 0 < α < α0, converge in the long

time limit to the solutions of the spatial diffusion equation. More precisely, in that case the
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function ūδ(t, x, k) = uδ
+(t/δ2α, x/δα, k) (and similarly for uδ

−) converges as δ → 0 to w(t, x, k)
– the solution of the spatial diffusion equation

∂w

∂t
=

d∑
m,n=1

amn(k)
∂2w

∂xn∂xm
, (2.123)

w(0, x, k) = ū0
+(x; k) :=

1
Γd−1

∫
Sd−1

u0
+(x, k)dΩ(k̂).

with the diffusion matrix amn given by:

anm(k) =
c0

Γd−1

∫
Sd−1

k̂nχm(k)dΩ(k̂), (2.124)

and the functions χj above are the mean-zero solutions of

d∑
m,n=1

∂

∂km

(
k2Dmn(k̂)

∂χj

∂kn

)
= −c0k̂j . (2.125)

Theorems 2.2.1, 2.2.5 and 2.2.7 allow us to make the passage to the limit ε, δ, γ → 0 rigorous.
The assumption that ε� δ � γ is formalized as follows. We let

Kµ,ρ :=
{

(ε, δ, γ) : δ ≥ | ln ε|−2/3+µ and γ ≥ δρ
}
,

with 0 < µ < 2/3, ρ ∈ (0, 1). Suppose also that u±0 ∈ C3
c (R2d

∗ ) and supp u±0 ⊆ A(M). Let

W 0(x, k) := u0
+(x, k)b+(k)⊗ b+(k) + u0

−(x, k)b−(k)⊗ b−(k), (2.126)

and
W (t, x, k) := w+(t, x; k)b+(k)⊗ b+(k) + w−(t, x; k)b−(k)⊗ b−(k). (2.127)

Our main result regarding the diffusion of wave energy can be stated as follows.

Theorem 2.5.2 Assume that the dimension d ≥ 3 and M ≥ 1 are fixed. Suppose for some
0 < µ < 2/3, ρ ∈ (0, 1) we have, with W 0 as in (2.126) and W δ

ε defined by (2.114)∫
R2d

∣∣∣∣EW δ
ε

(
0,
x

γ
, k

)
−W 0(x, k)

∣∣∣∣2 dxdk → 0, as (ε, δ, γ) → 0 and (ε, δ, γ) ∈ Kµ,ρ.

Then, there exists ρ1 ∈ (0, ρ] such that for any T > T∗ > 0 we have

sup
t∈[T∗,T ]

∫ ∣∣∣∣EW δ
ε

(
t

γ2
,
x

γ
, k

)
−W (t, x, k)

∣∣∣∣2 dxdk → 0, as (ε, δ, γ) → 0 and (ε, δ, γ) ∈ Kµ,ρ1 .

Here W (t, x, k) is of the form (2.127) with the functions w± that satisfy (2.123) with the initial
data w±(0, x, k) = u0

±(x, k).

The proof follows immediately from Theorems 2.2.1, 2.2.5 and 2.2.7 as well as Proposition
2.5.1.
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2.6 The proof of Lemma 2.3.5.

Given s ≥ σ > 0, π ∈ C we define the linear approximation of the trajectory

L(σ, s;π) := X(σ) + (s− σ)H ′
0(K(σ))K̂(σ) (2.128)

and for any v ∈ [0, 1] let

R(v, σ, s;π) := (1− v)L(σ, s;π) + vX(s). (2.129)

The following simple fact can be verified by a direct calculation, see Lemma 5.4 of [6].

Proposition 2.6.1 Suppose that s ≥ σ ≥ 0 and π ∈ C(δ). Then,

|X(s)−L(σ, s;π)| ≤ D̃(2Mδ)
√
δ(s− σ) +

s∫
σ

|H ′
0(K(ρ))K̂(ρ)−H ′

0(K(σ))K̂(σ)|dρ.

We obtain from Proposition 2.6.1 for each s ≥ σ an error for the first-order approximation of
the trajectory

|z(δ)(s)− l(δ)(σ, s)| ≤ D̃(2Mδ)
√
δ(s− σ) +

C(s− σ)2

2
√
δ

, δ ∈ (0, δ∗(M)].

Here l(δ)(σ, s) := z(δ)(σ) + (s−σ)m̂(δ)(σ) is the linear approximation between the times σ and
s and

C := sup
δ∈(0,δ∗(M)]

(Mδh
∗
0(Mδ) + h̃∗0(Mδ))D̃(2Mδ).

With no loss of generality we may assume that x = 0 and that there exists k such that
t, u ∈ [t(p)

k , t
(p)
k+1). We shall omit the initial condition in the notation of the solution to (2.36).

Throughout this argument we use Proposition 2.6.1 with

σ(s) := s− δ1−γA for some γA ∈ (0, 1/16 ∧ (1− ε4)), s ∈ [t, u]. (2.130)

The aforementioned proposition proves that for this choice of σ we have

|L(δ)(σ, s)− y(δ)(s)| ≤ CAδ
3/2−2γA , ∀ δ ∈ (0, 1]. (2.131)

Throughout this section we denote ζ̃ = ζ(y(δ)(t1), l(δ)(t1), . . . , y(δ)(tn), l(δ)(tn)). We assume
first that G ∈ C2(Rd

∗) and ‖G‖2 < +∞. Note that

G(l(δ)(u))−G(l(δ)(t)) = − 1√
δ

d∑
j=1

u∫
t

∂jG(l(δ)(s))Fj,δ

(
s,
y(δ)(s)
δ

, l(δ)(s)

)
ds. (2.132)

We can rewrite then (2.132) in the form I(1) + I(2) + I(3), where

I(1) := − 1√
δ

d∑
j=1

u∫
t

∂jG(l(δ)(σ))Fj,δ

(
s,
y(δ)(s)
δ

, l(δ)(σ)

)
ds,

I(2) :=
1
δ

d∑
i,j=1

u∫
t

s∫
σ

∂jG(l(δ)(ρ))∂`i
Fj,δ

(
s,
y(δ)(s)
δ

, l(δ)(ρ)

)
Fi,δ

(
ρ,
y(δ)(ρ)
δ

, l(δ)(ρ)

)
ds dρ,

I(3) :=
1
δ

d∑
i,j=1

u∫
t

s∫
σ

∂2
i,jG(l(δ)(ρ))Fj,δ

(
s,
y(δ)(s)
δ

, l(δ)(ρ)

)
Fi,δ

(
ρ,
y(δ)(ρ)
δ

, l(δ)(ρ)

)
ds dρ

and σ is given by (2.130). Each of these terms will be estimated separately below.
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The term E[I(1)ζ̃]

The term I(1) can be rewritten in the form J (1) + J (2), where

J (1) := − 1√
δ

d∑
j=1

u∫
t

∂jG(l(δ)(σ))Fj,δ

(
s,

L(δ)(σ, s)
δ

, l(δ)(σ)

)
ds,

and

J (2) := − 1
δ3/2

d∑
i,j=1

u∫
t

1∫
0

∂jG(l(δ)(σ))∂yiFj,δ

(
s,

R(δ)(v, σ, s)
δ

, l(δ)(σ)

)
(y(δ)

i (s)−L(δ)
i (σ, s)) ds dv,

(2.133)
where (see (2.128) and (2.129) for the definition of L and R) we abbreviate L(δ)(σ, s) =
L(σ, s; y(δ)(·), l(δ)(·)), R(δ)(σ, s) = R(σ, s; y(δ)(·), l(δ)(·)). We use part (i) of Lemma 2.3.2 to
handle the term E[J (1)ζ̃]. Let X̃1(x, k) = −∂xiH1(x, k), X̃2(x, k) ≡ 1,

Z = Θ

(
t
(p)
k ,

L(δ)(σ, s)
δ

, l(δ)(σ)

)
∂jG(l(δ)(σ))ζ̃

and g1 = (L(δ)(σ, s)δ−1, |l(δ)(σ)|). Note that g1 and Z are both Fσ measurable. We need to
verify (2.39). Suppose therefore that Z 6= 0. For ρ ∈ [0, t(p)

k−1] we have |L(δ)(σ, s) − y(δ)(ρ)| ≥
(2q)−1, provided that CAδ

3/2−2γA < 1/(2q), which holds for sufficiently small δ, since our
assumptions on the exponents ε2, ε3, γA (namely that ε2, ε3 < 1/8, γA < 1/8) guarantee that
ε2 + ε3 < 3/4− γA/2. For ρ ∈ [t(p)

k−1, σ] we have

(L(δ)(σ, s)− y(δ)(ρ)) · l̂(δ)
(
t
(p)
k−1

)
≥ (s− σ)H ′

0(|l(δ)(σ)|) l̂
(δ)

(σ) · l̂(δ)
(
t
(p)
k−1

)
(2.134)

+

σ∫
ρ

[
H ′

0(|l(δ)(ρ1)|) +
√
δ ∂lH1

(
y(δ)(ρ1)

δ
, |l(δ)(ρ1)|

)]
l̂
(δ)

(ρ1) · l̂(δ)
(
t
(p)
k−1

)
dρ1

(2.37)

≥ (s− σ)h∗(2Mδ)
(

1− 2
N

)
+
[
h∗(2Mδ)−

√
δD̃(2Mδ)

]
(s− ρ)

(
1− 2

N

)
≥ (s− σ)h∗(2Mδ)

(
1− 2

N

)
,

provided that δ ∈ (0, δ0] and δ0 is sufficiently small. We see from (2.134) that (2.39) is satisfied
with r = (1− 2/N)h∗(2Mδ)δ1−γA . Using Lemma 2.3.2 we estimate

∣∣∣E[J (1)ζ̃]
∣∣∣ ≤ D̃(2Mδ)√

δ
‖G‖1E[ζ̃]

u∫
t

φ

(
C

(1)
A

s− σ

δ

)
ds (2.135)

≤ C
(2)
A ‖G‖1E[ζ̃]δ−1/2φ

(
C

(1)
A δ−γA

)
(u− t) ≤ C

(3)
A ‖G‖1E[ζ̃]δ(u− t)

and C
(3)
A exists by virtue of assumption (2.7). On the other hand, the term J (2) defined by

(2.133) may be written as J (2) = J
(2)
1 + J

(2)
2 , where

J
(2)
1 := − 1

δ3/2

d∑
i,j=1

u∫
t

∂jG(l(δ)(σ))∂yiFj,δ

(
s,

L(δ)(σ, s)
δ

, l(δ)(σ)

)
(y(δ)

i (s)− L
(δ)
i (σ, s)) ds
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and

J
(2)
2 := − 1

δ5/2

d∑
i,j,k=1

u∫
t

1∫
0

1∫
0

∂2
yi,yk

Fj,δ

(
s,

R(δ)(θv, σ, s)
δ

, l(δ)(σ)

)
v (2.136)

× ∂jG(l(δ)(σ))(y(δ)
i (s)− L

(δ)
i (σ, s))(y(δ)

k (s)− L
(δ)
k (σ, s)) ds dv dθ.

The term involving J (2)
2 may be handled easily with the help of (2.131) and Lemma 2.3.1. We

have then
|E[J (2)

2 ζ̃]| ≤ C
(4)
A D̃(2Mδ)E[ζ̃]‖G‖1(u− t)δ−5/2δ3−4γA−4(ε2+ε3)T 2 (2.137)

≤ C
(5)
A δ1/2−4γA−4(ε2+ε3)T 2(u− t)E[ζ̃]‖G‖1.

In order to estimate the term corresponding to J (2)
1 we write J (2)

1 = J
(2)
1,1 + J

(2)
1,2 , where

J
(2)
1,1 := − 1

δ3/2

d∑
i,j=1

u∫
t

s∫
σ

∂jG(l(δ)(σ))∂yiFj,δ

(
s,

L(δ)(σ, s)
δ

, l(δ)(σ)

)
(2.138)

× (s− ρ1)
d

dρ1

[
H ′

0(|l(δ)(ρ1)|) l̂(δ)i (ρ1)
]
ds dρ1

and

J
(2)
1,2 :=−1

δ

d∑
i,j=1

u∫
t

s∫
σ

∂jG(l(δ)(σ))∂yiFj,δ

(
s,

L(δ)(σ, s)
δ

, l(δ)(σ)

)

×∂lH1

(
y(δ)(ρ)
δ

, |l(δ)(ρ)|

)
l̂
(δ)
i (ρ) ds dρ,

with

d

dρ1

[
H ′

0(|l(δ)(ρ1)|) l̂(δ)i (ρ1)
]

= H ′
0
′(|l(δ)(ρ1)|) (̂l

(δ)
(ρ1),

d

dρ1
l(δ)(ρ1))Rd l̂

(δ)
i (ρ1) (2.139)

+H ′
0(|l(δ)(ρ1)|)|l(δ)(ρ1)|−1

[
d

dρ1
l
(δ)
i (ρ1)− (̂l

(δ)
(ρ1),

d

dρ1
l(δ)(ρ1))Rd l̂

(δ)
i (ρ1)

]
.

We deal with J
(2)
1,2 first. It may be split as J (2)

1,2 = J
(2)
1,2,1 + J

(2)
1,2,2 + J

(2)
1,2,3, where

J
(2)
1,2,1 := −1

δ

d∑
i,j=1

u∫
t

(s− σ)∂jG(l(δ)(σ))∂yiFj,δ

(
s,

L(δ)(σ, s)
δ

, l(δ)(σ)

)
(2.140)

× ∂lH1

(
L(δ)(σ, ρ)

δ
, |l(δ)(σ)|

)
l̂
(δ)
i (σ) ds

J
(2)
1,2,2 := − 1

δ2

d∑
i,j=1

u∫
t

s∫
σ

1∫
0

∂jG(l(δ)(σ))∂yiFj,δ

(
s,

L(δ)(σ, s)
δ

, l(δ)(σ)

)

× (∂yi∂lH1)

(
R(δ)(v, σ, ρ)

δ
, |l(δ)(ρ)|

)
(y(δ)

i (ρ)− L
(δ)
i (σ, ρ)) l̂(δ)i (ρ) ds dρ dv
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and

J
(2)
1,2,3 := −1

δ

d∑
i,j=1

u∫
t

s∫
σ

ρ∫
σ

∂jG(l(δ)(σ))∂yiFj,δ

(
s,

L(δ)(σ, s)
δ

, l(δ)(σ)

)

× d

dρ1

[
∂lH1

(
L(δ)(σ, s)

δ
, |l(δ)(ρ1)|

)
l̂
(δ)
i (ρ1)

]
ds dρ dρ1.

By virtue of (2.131), definition (2.35) and Lemma 2.3.1 we obtain easily that

|E[J (2)
1,2,2ζ̃]| ≤ C

(6)
A δ1/2−(3γA+2ε2+2ε3)‖G‖1T (u− t)Eζ̃. (2.141)

The same argument and equality (2.139) also allow us to estimate |E[J (2)
1,2,3ζ]| by the right hand

side of (2.141).
Using Lemma 2.3.1 and the definition (2.35) we conclude that there exists a constant

C
(7)
A > 0 independent of δ such that∣∣∣∣∣∂yiFj,δ

(
s,

L(δ)(σ, s)
δ

, l(δ)(σ)

)
−Θ

(
t
(p)
k ,L(δ)(σ, s), l(δ)(σ)

)
∂2

yi,yj
H1

(
L(δ)(σ, s)

δ
, |l(δ)(σ)|

)∣∣∣∣∣
≤ C

(7)
A δ1−2(ε2+ε3)T, i, j = 1, . . . , d.

Therefore, we can write∣∣∣∣∣∣E[J (2)
1,2,1ζ̃] +

1
δ

d∑
i,j=1

u∫
t

s∫
σ

E
[
∂jG(l(δ)(σ))Θ

(
t
(p)
k ,L(δ)(σ, s), l(δ)(σ)

)
(2.142)

× ∂2
yi,yj

H1

(
L(δ)(σ, s)

δ
, |l(δ)(σ)|

)
∂lH1

(
L(δ)(σ, ρ)

δ
, |l(δ)(σ)|

)
l̂
(δ)
i (σ) ζ̃

]
ds dρ

∣∣∣∣∣
≤ C

(8)
A δ1−γA−2(ε2+ε3)(u− t)‖G‖1TEζ̃.

With our choice of the exponents we have δ < (2q)[1−γA−2(ε2+ε3)]−1
for all δ ∈ [0, δ0) where

δ0 > 0 is sufficiently small. We apply now part (ii) of Lemma 2.3.2 with

Z = ∂jG(l(δ)(σ))Θ
(
t
(p)
k ,L(δ)(σ, s), l(δ)(σ)

)
l̂
(δ)
i (σ) ζ̃,

X̃1(x, k) := ∂2
xi,xj

H1(x, k), X̃2(x) := ∂kH1(x, k),

g1 :=

(
L(δ)(σ, s)

δ
, |l(δ)(σ)|

)
, g2 :=

(
L(δ)(σ, ρ)

δ
, |l(δ)(σ)|

)
,

r = C
(9)
A (ρ− σ), r1 = C

(9)
A (s− ρ).

We conclude that∣∣∣∣∣∣E
[
J

(2)
1,2,1ζ

]
+

1
δ

d∑
i,j=1

u∫
t

s∫
σ

E
[
∂jG(l(δ)(σ))Θ

(
t
(p)
k ,L(δ)(σ, s), l(δ)(σ)

)
(2.143)

×∂2
yi,yj

R1

(
L(δ)(σ, s)−L(δ)(σ, ρ)

δ
, |l(δ)(σ)|

)
l̂
(δ)
i (σ)ζ̃

]
ds dρ

∣∣∣∣∣
≤ C

(8)
A δ1−γA−2(ε2+ε3)(u− t)‖G‖1TEζ̃

+
C

(10)
A

δ
‖G‖1E[ζ̃]

u∫
t

s∫
σ

φ1/2

(
C

(9)
A (ρ− σ)

2δ

)
φ1/2

(
C

(9)
A (s− ρ)

2δ

)
ds dρ,
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where
R1(y, k) := E[H1(y, k)∂kH1(0, k)], (y, k) ∈ Rd × [0,+∞). (2.144)

We can use assumption (2.7) to estimate the second term on the right hand side of (2.143) e.g.
by C(11)

A δ(u− t)‖G‖1Eζ̃. The second term appearing on the left hand side of (2.143) equals to

d∑
j=1

u∫
t

E
{
∂jG(l(δ)(σ))Θ

(
t
(p)
k ,L(δ)(σ, s), l(δ)(σ)

)
(2.145)

× 1
H ′

0(|l(δ)(σ)|)

− s∫
σ

d

dρ
∂yjR1

(
s− ρ

δ
H ′

0(|l(δ)(σ)|) l̂
(δ)

(σ), |l(δ)(σ)|
)
dρ

 ζ̃
 ds

and integrating over dρ we obtain that it equals

−
d∑

j=1

u∫
t

E

{
∂jG(l(δ)(σ))

H ′
0(|l(δ)(σ)|)

Θ
(
t
(p)
k ,L(δ)(σ, s), l(δ)(σ)

)
∂yjR1

(
0, |l(δ)(σ)|

)
ζ̃

}
ds (2.146)

+
d∑

j=1

u∫
t

E

{
∂jG(l(δ)(σ))

H ′
0(|l(δ)(σ)|)

Θ
(
t
(p)
k ,L(δ)(σ, s), l(δ)(σ)

)
∂yjR1

(
δ−γA l̂

(δ)
(σ), |l(δ)(σ)|

)
ζ̃

}
ds.

By virtue of (2.8) the second term appearing in (2.146) is bounded e.g. by C(12)
A δ(u−t)‖G‖1Eζ̃

for some constant C(12)
A > 0, thus we have shown that∣∣∣∣∣∣E[J (2)

1,2,1ζ]−
d∑

j=1

u∫
t

E

{
∂jG(l(δ)(σ))

H ′
0(|l(δ)(σ)|)

Θ
(
t
(p)
k ,L(δ)(σ, s), l(δ)(σ)

)
∂yjR1

(
0, |l(δ)(σ)|

)
ζ̃

}
ds

∣∣∣∣∣∣
(2.147)

≤ C
(13)
A δ1−γA−2(ε2+ε3)(u− t)‖G‖1TEζ̃.

Let us consider the term corresponding to J (2)
1,1 , cf. (2.138). Note that according to (2.139)

and (2.36) we have J (2)
1,1 = J

(2)
1,1,1 + J

(2)
1,1,2, where

J
(2)
1,1,1 := − 1

δ2

d∑
i,j=1

u∫
t

s∫
σ

∂jG(l(δ)(σ))∂yiFj,δ

(
s,

L(δ)(σ, s)
δ

, l(δ)(σ)

)

× (s− ρ1)Γi

(
ρ1,

y(δ)(ρ1)
δ

, l(δ)(σ)

)
ds dρ1,

with

Γi (ρ,y, l) := |l|−1H ′
0(|l|)

[(̂
l, Fδ (ρ,y, l)

)
Rd
li − Fi,δ (ρ,y, l)

]
−H ′

0
′(|l|)

(̂
l, Fδ (ρ,y, l)

)
Rd
l̂i,

while

J
(2)
1,1,2 := − 1

δ2

d∑
i,j=1

u∫
t

s∫
σ

ρ1∫
σ

∂jG(l(δ)(σ))∂yiFj,δ

(
s,

L(δ)(σ, s)
δ

, l(δ)(σ)

)

× (s− ρ1)
d

dρ2
Γi

(
ρ1,

y(δ)(ρ1)
δ

, l(δ)(ρ2)

)
ds dρ1 dρ2. (2.148)
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Note that | d
dρ2

Γi| ≤ C
(14)
A δ−1/2 for some constant C(14)

A > 0. A straightforward computa-

tion, using (2.130) and Lemma 2.3.1, shows that |E[J (2)
1,1,2ζ]| ≤ C

(15)
A δ1/2−(3γA+2ε2+2ε3)(u −

t)‖G‖1TE[ζ̃]. An application of (2.131), in the same fashion as it was done in the calculations
concerning the terms E[J (2)

1,2,2ζ] and E[J (2)
1,2,3ζ], yields that∣∣∣∣∣∣E[J (2)

1,1,1ζ] +
1
δ2

d∑
i,j=1

u∫
t

s∫
σ

(s− ρ1)E

[
∂jG(l(δ)(σ))∂yiFj,δ

(
s,

L(δ)(σ, s)
δ

, l(δ)(σ)

)
(2.149)

× Γi

(
ρ1,

L(δ)(σ, ρ1)
δ

, l(δ)(σ)

)
ζ̃

]
ds dρ1

∣∣∣∣∣ ≤ C
(16)
A δ1/2−(4γA+2ε2+2ε3)(u− t)‖G‖1TE[ζ̃].

For j = 1, . . . , d we let

Vj(y,y′, l) :=
d∑

i,k=1

(
H ′

0
′(|l|)−H ′

0(|l|)
)
∂3

yi,yj ,yk
R(y − y′, |l|)l̂i l̂k

+
d∑

i=1

H ′
0(|l|)|l|−1∂3

yi,yi,yj
R(y − y′, |l|),

and also

Λ(t,y,y′, l;π) := Θ(t,y, l;π)Θ(t,y′, l;π), t ≥ 0, y,y′ ∈ Rd, l ∈ Rd
∗, π ∈ C, (2.150)

P :=
(
L(δ)(σ, s),L(δ)(σ, ρ1), l(δ)(σ)

)
, Pδ :=

(
δ−1L(δ)(σ, s), δ−1L(δ)(σ, ρ1), l(δ)(σ)

)
and

Θ(s) := Θ(s, y(δ)(s), l(δ)(s); y(δ)(·), l(δ)(·)).

Applying Lemma 2.3.1 and part ii) of Lemma 2.3.2, as in (2.142) and (2.143), we conclude
that the difference between the second term on the left hand side of (2.149) and

1
δ2

d∑
j=1

u∫
t

s∫
σ

(s− ρ1)E
[
∂jG(l(δ)(σ))Λ(σ, P )Vj (Pδ) ζ̃

]
ds dρ1, (2.151)

can be estimated by C(17)
A δγ

(1)
A (u− t)‖G‖1E[ζ̃] for some γ(1)

A > 0. Using the fact that

|l(δ)(ρ)− l(δ)(σ)| ≤ C
(22)
A δ1/2−γA , ρ ∈ [σ, s], (2.152)

estimate (2.131) and Lemma 2.3.1 we can argue that∣∣∣Λ (σ, P )−Θ2(s)
∣∣∣ ≤ C

(18)
A (δ1/2−γA−ε1 + δ1/2−2(γA+ε2+ε3)T ).

We conclude therefore that the magnitude of the difference between the expression in (2.151)
and

1
δ2

d∑
j=1

u∫
t

E

∂jG(l(δ)(σ))Θ2(s)

 s∫
σ

(s− ρ1)Vj(Pδ) dρ1

 ζ̃

 ds, (2.153)

63



can be estimated by C(19)
A δγ

(2)
A (u− t)‖G‖1TE[ζ̃] for some γ(2)

A > 0. Using shorthand notation

Q(σ) := H ′
0(|l(δ)(σ)|) l̂

(δ)
(σ) we can write the integral from σ to s appearing above as being

equal to

1
δ2

s∫
s−δ1−γA

(s− ρ1)

 d∑
i,k=1

(
H ′

0
′(|l(δ)(σ)|)−H ′

0(|l(δ)(σ)|)
)
∂3

yi,yj ,yk
R

(
s− ρ1

δ
Q(σ), |l(δ)(σ)|

)

×l̂(δ)i (σ)l̂(δ)k (σ) +H ′
0(|l(δ)(σ)|)|l(δ)(σ)|−1

d∑
i=1

∂3
yi,yi,yj

R

(
s− ρ1

δ
Q(σ), |l(δ)(σ)|

)]
dρ1,

which upon the change of variables ρ1 := (s− ρ1)/δ is equal to

δ−γA∫
0

ρ1

 d∑
i,k=1

(
H ′

0
′(|l(δ)(σ)|)−H ′

0(|l(δ)(σ)|)
)
∂3

yi,yj ,yk
R
(
ρ1Q(σ), |l(δ)(σ)|

)
l̂
(δ)
i (σ)l̂(δ)k (σ)

+H ′
0(|l(δ)(σ)|)|l(δ)(σ)|−1

d∑
i=1

∂3
yi,yi,yj

R
(
ρ1Q(σ), |l(δ)(σ)|

)]
dρ1. (2.154)

Using the fact that

d∑
k=1

∂3
yi,yj ,yk

R
(
ρ1Q(σ), |l(δ)(σ)|

)
l̂
(δ)
k (σ) =

1
H ′

0(|l(δ)(σ)|)
d

dρ1

[
∂2

yi,yj
R
(
ρ1Q(σ), |l(δ)(σ)|

)]
we obtain, upon integrating by parts in the first term on the right hand side of (2.154), that
this expression equals

H ′
0(|l(δ)(σ)|)−1

(
H ′

0
′(|l(δ)(σ)|)−H ′

0(|l(δ)(σ)|)
) d∑

i=1

δ−γA∂2
yi,yj

R
(
δ−γA Q(σ), |l(δ)(σ)|

)
l̂
(δ)
i (σ)

−
δ−γA∫
0

∂2
yi,yj

R
(
ρ1Q(σ), |l(δ)(σ)|

)
l̂
(δ)
i (σ) dρ1

 (2.155)

+H ′
0(|l(δ)(σ)|)|l(δ)(σ)|−1

δ−γA∫
0

ρ1∂
3
yi,yi,yj

R
(
ρ1Q(σ), |l(δ)(σ)|

)
dρ1.

(2.156)

Note that ∇R(0) = 0 and

d∑
i=1

∂2
yi,yj

R
(
ρ1Q(σ), |l(δ)(σ)|

)
l̂
(δ)
i (σ) =

1
H ′

0(|l(δ)(σ)|)
d

dρ1
∂yjR

(
ρ1Q(σ), |l(δ)(σ)|

)
.
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We obtain therefore that the expression in (2.155) equals

H ′
0(|l(δ)(σ)|)−1

(
H ′

0
′(|l(δ)(σ)|)−H ′

0(|l(δ)(σ)|)
) d∑

i=1

δ−γA∂2
yi,yj

R
(
δ−γA Q(σ), |l(δ)(σ)|

)
l̂
(δ)
i (σ)

−H ′
0(|l(δ)(σ)|)−1∂yjR

(
δ−γA Q(σ), |l(δ)(σ)|

) (2.157)

+H ′
0(|l(δ)(σ)|)|l(δ)(σ)|−1

d∑
i=1

δ−γA∫
0

ρ1∂
3
yi,yi,yj

R
(
ρ1Q(σ), |l(δ)(σ)|

)
dρ1.

Recalling assumption (2.8) we conclude that the expressions corresponding to the first two
terms appearing in (2.157) are of order of magnitude O(δγ

(3)
A ) for some γ(3)

A > 0. Summarizing
work done in this section, we have shown that∣∣∣∣∣∣E


I(1) −

d∑
j=1

u∫
t

Cj(l(δ)(σ))Θ2(s)∂jG(l(δ)(σ)) ds

 ζ̃

∣∣∣∣∣∣ ≤ C

(20)
A δγ

(4)
A (u− t)‖G‖1T

2Eζ̃

(2.158)
for some constants C(20)

A , γ
(4)
A > 0 and (cf. (2.144))

Cj(l) := Ej (̂l, |l|) +
∂yjR1 (0, |l|)
H ′

0(|l|)
,

Ej (̂l, k) := −H
′
0(k)
k

d∑
i=1

+∞∫
0

ρ1∂
3
yi,yi,yj

R
(
ρ1H

′
0(k)̂l, k

)
dρ1, j = 1, . . . , d.

The terms E[I(2)ζ̃] and E[I(3)ζ̃]

The calculations concerning these terms essentially follow the respective steps performed in
the previous section so we only highlight their main points. First, we note that the difference
between E[I(2)ζ̃] and

1
δ

d∑
i,j=1

u∫
t

s∫
σ

E

[
∂jG(l(δ)(σ))∂`i

Fj,δ

(
s,
y(δ)(s)
δ

, l(δ)(σ)

)
Fi,δ

(
ρ,
y(δ)(ρ)
δ

, l(δ)(σ)

)
ζ̃

]
ds dρ

(2.159)
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is less than, or equal to C(21)
A δγ

(5)
A (u−t)‖G‖1E[ζ̃], cf. (2.152). Next we note that (2.159) equals

1
δ

d∑
i,j=1

u∫
t

s∫
σ

E

[
∂jG(l(δ)(σ))∂`i

Fj,δ

(
s,

L(δ)(σ, s)
δ

, l(δ)(σ)

)
Fi,δ

(
ρ,

L(δ)(σ, ρ)
δ

, l(δ)(σ)

)
ζ̃

]
ds dρ

+
1
δ2

d∑
i,j,k=1

u∫
t

s∫
σ

1∫
0

E

[
∂jG(l(δ)(σ))∂`i

∂yk
Fj,δ

(
s,

R(δ)(v, σ, s)
δ

, l(δ)(σ)

)
(2.160)

× Fi,δ

(
ρ,

L(δ)(σ, ρ)
δ

, l(δ)(σ)

)
(y(δ)

k (s)− L
(δ)
k (σ, s))ζ̃

]
ds dρ dv

+
1
δ2

d∑
i,j,k=1

u∫
t

s∫
σ

1∫
0

E

[
∂jG(l(δ)(σ))∂`i

Fj,δ

(
s,
y(δ)(s)
δ

, l(δ)(σ)

)

× ∂yk
Fi,δ

(
ρ,

R(δ)(v, σ, ρ)
δ

, l(δ)(σ)

)
(y(δ)

k (ρ)− L
(δ)
k (σ, ρ))ζ̃

]
ds dρ dv.

A straightforward argument using Lemma 2.3.1 and (2.131) shows that both the second and
third terms of (2.160) can be estimated by C(23)

A δ1/2−(3γA+2ε2+2ε3)(u− t)‖G‖1T
2E[ζ̃]. The first

term, on the other hand, can be handled with the help of part ii) of Lemma 2.3.2 in the same
fashion as we have dealt with the term J

(2)
1,2,1, given by (2.140) of Section 2.6, and we obtain

that∣∣∣∣∣∣E

I(2) −

d∑
j=1

u∫
t

(
Dj(|l(δ)(σ)|)Θ2(s) + Jj(s; y(δ)(·), l(δ)(·))Θ(s)

)
∂jG(l(δ)(σ)) ds

 ζ̃

∣∣∣∣∣∣

(2.161)

≤ C
(24)
A δγ

(6)
A (u− t)‖G‖1TE[ζ̃].

Here

Dj(l) :=
∂yjR2(0, l)
H ′

0(l)
, R2(y, l) := E[∂lH1(y, l)H1(0, l)], (2.162)

Jj(s; y(δ)(·), l(δ)(·)) := −
d∑

i=1

Θi(s)Di,j (̂l
(δ)

(σ), |l(δ)(σ)|),

Θi(s) := ∂liΘ(s, y(δ)(s), l(δ)(s); y(δ)(·), l(δ)(·)).
Finally, concerning the limit of E[I(3)ζ̃], another application of (2.131) yields∣∣∣E[I(3)ζ̃]− I

∣∣∣ ≤ C
(25)
A δγ

(7)
A (u− t)‖G‖1E[ζ̃], (2.163)

where

I :=
1
δ

u∫
t

s∫
σ

E

{
∂2

i,jG(l(δ)(σ))Fj,δ

(
s,

L(δ)(σ, s)
δ

, l(δ)(σ)

)
Fi,δ

(
ρ,

L(δ)(σ, ρ)
δ

, l(δ)(σ)

)
ζ̃

}
ds dρ.

Then, we can use part ii) of Lemma 2.3.2 in order to obtain∣∣∣∣∣∣I −
d∑

i,j=1

u∫
t

Di,j (̂l
(δ)

(σ), |l(δ)(σ)|)Θ2(s)∂2
i,jG(l(δ)(σ)) ds

∣∣∣∣∣∣ ≤ C
(26)
A δγ

(8)
A (u− t)‖G‖2TE[ζ̃].

(2.164)
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Next we replace the argument σ, in formulas (2.158), (2.161) and (2.163), by s. This can
be done thanks to estimate (2.152) and the assumption on the regularity of the random field
H1(·, ·). In order to make this approximation work we will be forced to use the third derivative
of G(·).

Finally (cf. (2.144), (2.162)) note that

∇yR1(0, l) +∇yR2(0, l) = ∇
y |y=0

E[∂lH1(y, l)H1(y, l)] = 0.

Hence we conclude that the assertion of the lemma holds for any functionG ∈ C3(Rd
∗) satisfying

‖G‖3 < +∞. Generalization to an arbitrary G ∈ C1,1,3
b ([0,+∞)×R2d

∗ ) is fairly standard. Let
r0 be any integer and consider sk := t+ kr−1

0 (u− t), k = 0, . . . , r0. Then

E
{

[G(u, y(δ)(u), l(δ)(u))−G(t, y(δ)(t), l(δ)(t))]ζ̃
}

(2.165)

=
r0−1∑
k=0

E
{

[G(sk+1, y
(δ)(sk+1), l(δ)(sk+1))−G(sk, y

(δ)(sk), l(δ)(sk))]ζ̃
}
.

=
r0−1∑
k=0

E
{

[G(sk, y
(δ)(sk), l(δ)(sk+1))−G(sk, y

(δ)(sk), l(δ)(sk))]ζ̃
}

+
r0−1∑
k=0

E
{

[G(sk+1, y
(δ)(sk+1), l(δ)(sk))−G(sk, y

(δ)(sk), l(δ)(sk))]ζ̃
}

Using the already proven part of the lemma we obtain∣∣∣∣∣
r0−1∑
k=0

E
{

[N̂sk+1
(G(sk, y

(δ)(sk), · ))− N̂sk
(G(sk, y

(δ)(sk), · ))]ζ̃
}∣∣∣∣∣ (2.166)

≤ C
(27)
A δγ

(9)
A (u− t)‖G‖1,1,3T

2Eζ̃.

On the other hand, the second term on the right hand side of (2.165) equals

r0−1∑
k=0

E


sk+1∫
sk

{
∂ρ +

[
H ′

0(|l(δ)(ρ)|) +
√
δ∂lH1

(
y(δ)(ρ)
δ

, |l(δ)(ρ)|

)]
l̂
(δ)

(ρ) · ∇y

}
(2.167)

× G(ρ, y(δ)(ρ), l(δ)(sk))ζ̃ dρ
}

The conclusion of the lemma for an arbitrary function G ∈ C1,1,3
b ([0,+∞) × R2d

∗ ) is an easy
consequence of (2.165)–(2.167) upon passing to the limit with r0 → +∞.
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Chapter 3

The parabolic regime

The geometric optics regime described in the previous chapter fails when inhomegeneities of
the random medium vary on a scale comparable to the wave length. Then the ray theory no
longer applies and kinetic description in terms of the Fokker-Planck equation is not applicable.
Wave direction undergoes not a continuous diffusive process in the angular variable but rather
becomes a jump process. This is the regime of radiative transfer when angularly resolved
energy obeys an equation of the form

∂W (t, x, k)
∂t

+ ck̂ · ∇xW (t, x, k) =
∫
σ(k, p)W (x, p)dp− Σ(x, k)W (x, k).

The differential scattering cross-section σ(k, p) and the total scattering cross-section Σ(x, k)
are determined in terms of the properties of the random medium. The derivation of the
macroscopic transport equations from the microscopic wave equations is a very difficult and
to a great extent open problem. We will consider in this section the simplest case when
fluctuations are “time-dependent” – this dramatically reduces the complexity of rhe problem.

3.1 Derivation of the parabolic wave equation

Let us consider the scalar wave equation for the pressure field p(z, x, t):

1
c2(z, x)

∂2p

∂t2
−∆p = 0. (3.1)

Here c(z, x) is the local wave speed that we will assume to be random, and the Laplacian
operator includes both direction of propagation, z, and the transverse variable x ∈ Rd. In the
physical setting, we have d = 2. We consider dimensions d ≥ 1 to stress that the analysis
of the problem is independent of the number of transverse dimensions. If we assume that at
time t = 0, the wave field has a “beam-like” structure in the z direction, and if back-scattering
may be neglected, we can replace the wave equation by its parabolic (also known as paraxial)
approximation [59]. More precisely, the pressure p may be approximated as

p(z, x, t) ≈
∫

R
ei(−c0κt+κz)ψ(z, x, κ)c0dκ, (3.2)

where the function ψ satisfies the Schrödinger equation

2iκ
∂ψ

∂z
(z, x, κ) + ∆xψ(z, x, κ) + κ2(n2(z, x)− 1)ψ(z, x, κ) = 0,

ψ(z = 0, x, κ) = ψ0(x, κ),
(3.3)
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with ∆x the transverse Laplacian in the variable x. The index of refraction n(z, x) = c0/c(z, x),
and c0 in (3.2) is a reference speed.

A formal justification for the above approximation goes as follows. We start with the
reduced wave equation

∆p̂+ κ2n2(z, x)p̂ = 0, (3.4)

and look for solutions of (3.4) in the form p̂(z, x) = eiκzψ(z, x). We obtain that

∂2ψ

∂z2
+ 2iκ

∂ψ

∂z
+ ∆xψ + κ2(n2 − 1)ψ = 0. (3.5)

The index of refraction n(z, x) is fluctuating in both the axial z and transversal x variables
and thus has the form

n2(z, x) = 1− 2σV
(
z

lz
,
x

lx

)
,

where V is a mean-zero random field, and where lx and lz are the correlation lengths of V in
the transverse and longitudinal directions, respectively. The small parameter σ measures the
strength of the fluctuations.

We now introduce two macroscopic distances of wave proapagation: Lx in the x-plane and
Lz in the z-direction. We also introduce a carrier wave number κ0 and replace κ→ κ0κ, κ now
being a non-dimensional wavenumber. The physical parameters determined by the medium
are the length scales lx, lz and the non-dimensional parameter σ � 1.

We present the relationship between the various scalings introduced above that need be sat-
isfied so that wave propagation occurs in a regime close to that of radiative transfer. Equation
(3.5) in the non-dimensional variables z → z/Lz, x→ x/Lx becomes

1
L2

z

∂2ψ

∂z2
+

2iκκ0

Lz

∂ψ

∂z
+

1
L2

x

∆xψ − 2κ2κ2
0σV

(
zLz

lz
,
xLx

lx

)
ψ = 0. (3.6)

Let us introduce the following parameters

δx =
lx
Lx
, δz =

lz
Lz
, γx =

1
κ0lx

, γz =
1
κ0lz

, (3.7)

and recast (3.6) as

γzδz
∂2ψ

∂z2
+ 2iκ

∂ψ

∂z
+
δ2xγ

2
x

δzγz
∆xψ −

2κ2σ

γzδz
V

(
z

δz
,
x

δx

)
ψ = 0. (3.8)

Let us now assume the following relationships among the various parameters

δx = δz � 1, γz = γ2
x � 1, σ = γz

√
δx, ε = δx. (3.9)

Then (3.8), after multiplication by ε/2, becomes

γzε
2

2
∂2ψ

∂z2
+ iκε

∂ψ

∂z
+
ε2

2
∆xψ − κ2√εV

(z
ε
,
x

ε

)
ψ = 0. (3.10)

We now observe that, when κ = O(1) and γz � 1, the first term in (3.10) is small and
may be neglected in the leading order since |ε2ψzz| = O(1). Then (3.10) becomes

iκε
∂ψ

∂z
+
ε2

2
∆xψ − κ2√εV

(z
ε
,
x

ε

)
ψ = 0 (3.11)

which is the parabolic wave equation (3.3) in the radiative transfer scaling. The rigorous
passage to the parabolic approximation in a three-dimensional layered random medium in a
similar scaling is discussed in [1].
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Exercise 3.1.1 (i) Show that the above choices imply that

lx � lz.

Therefore the correlation length in the longitudinal direction z should be much longer than in
the transverse plane x.
(ii) Show that

Lx = lx
l4x
σ2l4z

, Lz = lz
l4x
σ2l4z

, Lx � Lz.

The latter is the usual constraint for the validity of the parabolic approximation (beam-like
structure of the wave).

In the above scalings, there remains one free parameter, namely γz = l2z/l
2
x, as one can

verify, or equivalently
Lx

Lz
=
lx
lz
≡ εη, η > 0, (3.12)

where η > 0 is necessary since Lx � Lz. Note that as η → 0, we recover an isotropic random
medium (with lz ≡ lx) and the usual regime of radiative transfer. The parabolic (or paraxial)
regime thus shares some of the features of the radiative transfer regime, and because the
fluctuations depend on the variable z, which plays a similar role to the time variable in the
radiative transfer theory, the mathematical analysis is much simplified.

3.2 Wigner Transform and mixture of states

We want to analyze the energy density of the solution to the paraxial wave equation in the
limit ε→ 0. Let us recast the above paraxial wave equation as the following Cauchy problem

iεκ
∂ψε

∂z
+
ε2

2
∆ψε − κ2√εV

(z
ε
,
x

ε

)
ψε = 0

ψε(0, x) = ψ0
ε(x; ζ).

(3.13)

Here, the initial data depend on an additional random variable ζ defined over a state space S
with a probability measure d$(ζ). Its use will become clear very soon.

Let us define the Wigner transform as the usual Wigner transform of the field ψε averaged
over the space (S, d$(ζ)):

Wε(z, x, k) =
∫

Rd×S
eik·yψε

(
z, x− εy

2
; ζ
)
ψ̄ε

(
z, x+

εy

2
; ζ
) dy

(2π)d
d$(ζ). (3.14)

We assume that the initial data Wε(0, x, k) converges strongly in L2(Rd × Rd) to a limit
W0(x, k). This is possible thanks to the introduction of a mixture of states, i.e., an integration
against the measure $(dξ). This is the main reason why the space (S, d$(ζ)) is introduced.

Note that the Wigner transform of a pure state (e.g. when $(dξ) concentrates at one point
in S) is not even bounded in L2(R2d) uniformly in ε unless ψε converge strongly to zero in L2

as ε→ 0. Indeed, if we set

Wε[u, v](x, k) =
∫

Rd

eik·yuε

(
x− εy

2

)
v̄ε

(
x+

εy

2

) dy

(2π)d

then we have ∫
R2d

|Wε[u, v]|2(x, k)dxdk =
1
ε2d

‖u‖2
L2(Rd)‖v‖

2
L2(Rd). (3.15)
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We thus need to regularize the Wigner transform if we want a uniform bound in L2(Rd×Rd).
This may be achieved by taking random initial data as we did here. We will come back to the
effect of not regularizing the Wigner transform at the end of the chapter.

We verify that the Wigner transform satisfies the following evolution equation

∂Wε

∂z
+

1
κ
k · ∇xWε =

κ

i
√
ε

∫
Rd

eip·x/ε

(
Wε(k −

p

2
)−Wε(k +

p

2
)
)dṼ ( z

ε , p
)

(2π)d
. (3.16)

Here, Ṽ (z, p) is the partial Fourier transform of V (z, x) in the variable x. The above evolution
equation preserves the L2(Rd × Rd) norm of Wε(t, ·, ·):

Lemma 3.2.1 Let Wε(t, x, k) be the solution of (3.16) with initial conditions Wε(0, x, k).
Then we have

‖Wε(t, ·, ·)‖L2(Rd×Rd) = ‖Wε(0, ·, ·)‖L2(Rd×Rd), for all t > 0. (3.17)

Proof. This can be obtained by integrations by parts in (3.16), in a way that is similar
to showing that (3.13) preserves the L2 norm. This can also be obtained from the definition
of the Wigner transform in the same way as (3.15) is obtained, and using the preservation of
L2-norm by (3.13).

3.3 Hypotheses on the randomness

We describe here the construction of the random potential V (z, x). Our main hypothesis is
to assume that V (z, x) is a Markov process in the z variable. This is gives us access to a
whole machinery relatively similar to the one used in the previous chapter. The Markovian
hypothesis is crucial to simplify the mathematical analysis because it allows us to treat the
process z 7→ (V (z/ε, x/ε),Wε(z, x, k)) as jointly Markov.

In addition to being Markovian, V (z, x) is assumed to be stationary in x and z, mean zero,
and is constructed in the Fourier space as follows. Let V be the set of measures of bounded
total variation with support inside a ball BL = {|p| ≤ L}

V =
{
V̂ :

∫
Rd

|dV̂ | ≤ C, supp V̂ ⊂ BL, V̂ (p) = V̂ ∗(−p)
}
, (3.18)

and let Ṽ (z) be a mean-zero Markov process on V with infinitesimal generator Q. The random
potential V (z, x) is given by

V (z, x) =
∫

Rd

dṼ (z, p)
(2π)d

eip·x. (3.19)

It is real-valued and uniformly bounded; |V (z, x)| ≤ C. The correlation function R(z, x) of
V (z, x) is

R(z, x) = E {V (s, y)V (z + s, x+ y)} for all x, y ∈ Rd, and z, s ∈ R. (3.20)

In the Fourier domain, this is equivalent to the following statement:

E
{
〈Ṽ (s), φ̂〉〈Ṽ (z + s), ψ̂〉

}
= (2π)d

∫
Rd

dpR̃(z, p)φ̂(p)ψ̂(−p), (3.21)

where 〈·, ·〉 is the usual duality product on Rd ×Rd, and the power spectrum R̃ is the Fourier
transform of R(z, x) in x:

R̃(z, p) =
∫

Rd

dxe−ip·xR(z, x). (3.22)

71



We assume that R̃(z, p) ∈ S(R×Rd), the space of Schwartz functions, for simplicity and define
R̂(ω, p) as

R̂(ω, p) =
∫

R
dze−iωzR̃(z, p), (3.23)

which is the space-time Fourier transform of R.
We now make additional assumptions on the infinitesimal generator so that the Fredholm

alternative holds for the Poisson equation. Namely, we assume that the generator Q is a
bounded operator on L∞(V) with a unique invariant measure π(V̂ ), i.e. a unique normalized
measure such that Q∗π = 0, and assume the existence of a constant α > 0 such that if
〈g, π〉 = 0, then

‖erQg‖L∞V
≤ C‖g‖L∞V

e−αr. (3.24)

The simplest example of a generator with gap in the spectrum and invariant measure π is a
jump process on V where

Qg(V̂ ) =
∫
V
g(V̂1)dπ(V̂1)− g(V̂ ),

∫
V
dπ(V̂ ) = 1.

Given the above hypotheses, the Fredholm alternative holds for the Poisson equation

Qf = g, (3.25)

provided that g satisfies 〈π, g〉 = 0. It has a unique solution f with 〈π, f〉 = 0 and ‖f‖L∞V
≤

C‖g‖L∞V
. The solution f is given explicitly by

f(V̂ ) = −
∫ ∞

0
drerQg(V̂ ), (3.26)

and the integral converges absolutely thanks to (3.24).

3.4 The Main result

Let us summarize the hypotheses. We define Wε(z, x, k) in (3.14) as a mixture of states of
solutions to the paraxial wave equation (3.13). We assume that Wε(0, x, k) converges strongly
in L2(R2d) to its limit W0(0, x, k). We further assume that the random field V (z, x) satistifies
the hypotheses described in Section 3.3. Then we have the following convergence result.

Theorem 3.4.1 Under the above assumptions, the Wigner distribution Wε converges in prob-
ability and weakly in L2(R2d) to the solution W of the following transport equation

κ
∂W

∂z
+ k · ∇xW = κ2LW, (3.27)

where the scattering kernel has the form

LW (x, k) =
∫

Rd

R̂

(
|p|2 − |k|2

2
, p− k

)(
W (x, p)−W (x, k)

)
dp

(2π)d
. (3.28)

More precisely, for any test function λ ∈ L2(R2d) the process 〈Wε(z), λ〉 converges to 〈W (z), λ〉
in probability as ε→ 0, uniformly on finite intervals 0 ≤ z ≤ Z.
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Note that the whole process Wε, and not only its average E{Wε} converges to the (deter-
ministic) limit W . This means that the process Wε is statistically stable in the limit ε→ 0. The
process Wε(z, x, k) does not converge pointwise to the deterministic limit: averaging against
a test function λ(x, k) is necessary.

The next section is devoted to a proof of the theorem. We first summarize the main ingre-
dients of the proof. Recall that the main mathematical assumption is that V (z, x) is Markov
in the z variable. Let us set L > 0 and consider z ∈ [0, L]. Then (V (z/ε, x/ε),Wε(z, x, k)) is
jointly Markov in the space V ×X , where X = C([0, L];BW ), where BW = {‖W‖2 ≤ C} is an
appropriate ball in L2(Rd × Rd).

Step 1. Evolution equation and random process. Since κ plays no role in the deriva-
tion, we set κ = 1 for simplicity. Recall that Wε satisfies the Cauchy problem

∂Wε

∂z
+ k · ∇xWε = LεWε,

with Wε(0, x, k) = W 0
ε (x, k), where

LεWε =
1
i
√
ε

∫
Rd

dṼ (
z

ε
, p)

(2π)d
eip·x/ε

[
Wε(x, k −

p

2
)−Wε(x, k +

p

2
)
]
. (3.29)

The solution to the above Cauchy problem is understood in the sense that for every smooth
test function λ(z, x, k), we have

〈Wε(z), λ(z)〉 − 〈W 0
ε , λ(0)〉 =

∫ z

0
〈Wε(s),

(
∂

∂s
+ k · ∇x + Lε

)
λ(s)〉ds.

Here, we have used that Lε is an anti-self-adjoint operator for 〈·, ·〉. Therefore, for a smooth
function λ0(x, k), we obtain 〈Wε(z), λ0〉 = 〈W 0

ε , λε(0)〉, where λε(s) is the solution of the
backward problem

∂λε

∂s
+ k · ∇xλε + Lελε(s) = 0, 0 ≤ s ≤ z,

with the terminal condition λε(z, x, k) = λ0(x, k).

Step 2. Tightness of the family of ε−measures. The above construction defines the
process Wε(z) in L2(R2d) and generates a corresponding measure Pε on the state space
C([0, L];L2(R2d)) of continuous functions in time with values in L2. The measure Pε is ac-
tually supported on paths inside X defined above, which is the state space for the random
process Wε(z). With its natural topology and the Borel σ−algebra F , (X ,F , Pε) defines a
probability space on which Wε(z) is a random variable. Then Fs is defined as the filtration of
the process Wε(z), that is, the filtration generated by {Wε(τ), τ < s}.

The family Pε parameterized by ε0 > ε > 0 will be shown to be tight. This in turns implies
that Pε converges weakly to a limit probability measure P . This means that we can extract
a subsequence of Pε, still denoted by Pε, such that for all bounded continuous functions f
defined on X , we have

EPε{f} ≡
∫
X
f(ω)dPε(ω) →

∫
X
f(ω)dP (ω) ≡ EP {f}, as ε→ 0. (3.30)
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Step 3. Construction of a first approximate martingale. Once tightness is ensured,
the proof of convergence of Wε to its deterministic limit is obtained in two steps. Let us fix
a deterministic test function λ(z, x, k). We use the Markovian property of the random field
V (z, x) in z to construct a first functional Gλ : X → C[0, L] by

Gλ[W ](z) = 〈W,λ〉(z)−
∫ z

0
〈W, ∂λ

∂z
+ k · ∇xλ+ Lλ〉(ζ)dζ. (3.31)

Here, L is the limiting scattering kernel defined in (3.28). We will show that Gλ is an approx-
imate Pε-martingale (with respect to the filtration Fs), and more precisely that∣∣EPε {Gλ[W ](z)|Fs} −Gλ[W ](s)

∣∣ ≤ Cλ,L

√
ε (3.32)

uniformly for all W ∈ X and 0 ≤ s < z ≤ L. The two convergences (3.30) and (3.32) (weak
against strong) show that

EP {Gλ[W ](z)|Fs} −Gλ[W ](s) = 0, (3.33)

which implies that Gλ[W ] so constructed is a P -martingale. Taking s = 0 above, we obtain
the transport equation (3.27) for W = EP {W (z)} in its weak formulation.

Step 4. Construction of a second approximate martingale and convergence of
the full family of ε−measures. So far, we have characterized the convergence of the first
moment of Pε. We now consider the convergence of the second moment and show that the
variance of the limiting process vanishes, whence the convergence to a deterministic process.

We will show that for every test function λ(z, x, k), the new functional

G2,λ[W ](z) = 〈W,λ〉2(z)− 2
∫ z

0
〈W,λ〉(ζ)〈W, ∂λ

∂z
+ k · ∇xλ+ Lλ〉(ζ)dζ (3.34)

is also an approximate Pε-martingale. We then obtain that

EPε
{
〈W,λ〉2

}
→ 〈W,λ〉2. (3.35)

This crucial convergence implies convergence in probability. It follows that the limit measure
P is unique and deterministic, and that the whole sequence Pε converges.

3.5 Proof of Theorem 3.4.1

The proof of tightness of the family of measures Pε is postponed to the end of the section
as it requires estimates that are developed in the proofs of convergence of the approximate
martingales. We thus start with the latter proofs.

3.5.1 Convergence in expectation

To obtain the approximate martingale property (3.32), one has to consider the conditional
expectation of functionals F (W, V̂ ) with respect to the probability measure P̃ε on the space
C([0, L];V×BW ) generated by V (z/ε) and the Cauchy problem (3.16). The only functions we
need consider are in fact of the form F (W, V̂ ) = 〈W,λ(V̂ )〉 with λ ∈ L∞(V;C1([0, L];S(R2d))).
Given a function F (W, V̂ ) let us define the conditional expectation

EP̃ε

W,V̂ ,z

{
F (W, V̂ )

}
(τ) = EP̃ε

{
F (W (τ), Ṽ (τ))| W (z) = W, Ṽ (z) = V̂

}
, τ ≥ z.
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The weak form of the infinitesimal generator of the Markov process generated by P̃ε is then
given by

d

dh
EP̃ε

W,V̂ ,z

{
〈W,λ(V̂ )〉

}
(z + h)

∣∣∣∣
h=0

=
1
ε
〈W,Qλ〉+

〈
W,

(
∂

∂z
+ k · ∇x +

1√
ε
K[V̂ ,

x

ε
]
)
λ

〉
.

(3.36)
where the operator K is defined by

K[V̂ , η]ψ(x, η, k, V̂ ) =
1
i

∫
Rd

dV̂ (p)
(2π)d

eip·η
[
ψ(x, η, k − p

2
)− ψ(x, η, k +

p

2
)
]
. (3.37)

The above equality implies that

Gε
λ = 〈W,λ(V̂ )〉(z)−

∫ z

0

〈
W,

(
1
ε
Q+

∂

∂z
+ k · ∇x +

1√
ε
K[V̂ ,

x

ε
]
)
λ

〉
(s)ds (3.38)

is a P̃ε-martingale since the drift term has been subtracted.
Given a test function λ(z, x, k) ∈ C1([0, L];S) we construct a function

λε(z, x, k, V̂ ) = λ(z, x, k) +
√
ελε

1(z, x, k, V̂ ) + ελε
2(z, x, k, V̂ ), (3.39)

with λε
1,2(t) bounded in L∞(V;L2(R2d)) uniformly in z ∈ [0, L]. This is the method of per-

turbed test function. Rather than performing asymptotic expansions on the Wigner trans-
form itself, which is not sufficiently smooth to justify Taylor expansions, we perform the
expansion on smooth test functions.

The functions λε
1,2 will be chosen to remove all high-order terms in the definition of the

martingale (3.38), i.e., so that

‖Gε
λε

(z)−Gλ(z)‖L∞(V) ≤ Cλ

√
ε (3.40)

for all z ∈ [0, L]. Here Gε
λε

is defined by (3.38) with λ replaced by λε, and Gλ is defined by
(3.31). The approximate martingale property (3.32) follows from this.

The functions λε
1 and λε

2 are as follows. Let λ1(z, x, η, k, V̂ ) be the mean-zero solution of
the Poisson equation

k · ∇ηλ1 +Qλ1 = −Kλ. (3.41)

It is given explicitly by

λ1(z, x, η, k, V̂ ) =
1
i

∫ ∞

0
drerQ

∫
Rd

dV̂ (p)
(2π)d

eir(k·p)+i(η·p)
[
λ(z, x, k − p

2
)− λ(z, x, k +

p

2
)
]
.

(3.42)
Then we let λε

1(z, x, k, V̂ ) = λ1(z, x, x/ε, k, V̂ ). Furthermore, the second order corrector is
given by λε

2(z, x, k, V̂ ) = λ2(z, x, x/ε, k, V̂ ) where λ2(z, x, η, k, V̂ ) is the mean-zero solution of

k · ∇ηλ2 +Qλ2 = Lλ−Kλ1, (3.43)

which exists because E {Kλ1} = Lλ, and is given by

λ2(z, x, η, k, V̂ ) = −
∫ ∞

0
drerQ

[
Lλ(z, x, k)− [Kλ1](z, x, η + rk, k, V̂ )

]
.

Using (3.41) and (3.43) we have

d

dh
EP̃ε

W,V̂ ,z
{〈W,λε〉} (z + h)

∣∣∣∣
h=0

=
〈
W,

(
∂

∂z
+ k · ∇x +

1√
ε
K[V̂ ,

x

ε
] +

1
ε
Q

)(
λ+

√
ελε

1 + ελε
2

)〉
=
〈
W,

(
∂

∂z
+ k · ∇x

)
λ+ Lλ

〉
+
〈
W,

(
∂

∂z
+ k · ∇x

)(√
ελε

1 + ελε
2

)
+
√
εK[V̂ ,

x

ε
]λε

2

〉
=
〈
W,

(
∂

∂z
+ k · ∇x

)
λ+ Lλ

〉
+
√
ε〈W, ζλ

ε 〉,
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with

ζλ
ε =

(
∂

∂z
+ k · ∇x

)
λε

1 +
√
ε

(
∂

∂z
+ k · ∇x

)
λε

2 +K[V̂ ,
x

ε
]λε

2.

The terms k · ∇xλ
ε
1,2 above are understood as differentiation with respect to the slow variable

x only, and not with respect to η = x/ε. It follows that Gε
λε

is given by

Gε
λε

(z) = 〈W (z), λε〉 −
∫ z

0
ds

〈
W,

(
∂

∂z
+ k · ∇x + L

)
λ

〉
(s)−

√
ε

∫ z

0
ds〈W, ζλ

ε 〉(s) (3.44)

and is a martingale with respect to the measure P̃ε defined on D([0, L];X × V), the space of
right-continuous paths with left-side limits [11]. The estimate (3.32) follows from the following
two lemmas.

Lemma 3.5.1 Let λ ∈ C1([0, L];S(R2d)). Then there exists a constant Cλ > 0 independent
of z ∈ [0, L] so that the correctors λε

1(z) and λε
2(z) satisfy the uniform bounds

‖λε
1(z)‖L∞(V;L2) + ‖λε

2(z)‖L∞(V;L2) ≤ Cλ (3.45)

and ∥∥∥∂λε
1(z)
∂z

+ k · ∇xλ
ε
1(z)

∥∥∥
L∞(V;L2)

+
∥∥∥∂λε

2(z)
∂z

+ k · ∇xλ
ε
2(z)

∥∥∥
L∞(V;L2)

≤ Cλ. (3.46)

Lemma 3.5.2 There exists a constant Cλ such that

‖K[V̂ , x/ε]‖L2→L2 ≤ C

for any V̂ ∈ V and all ε ∈ (0, 1].

Indeed, (3.45) implies that |〈W,λ〉 − 〈W,λε〉| ≤ C
√
ε for all W ∈ X and V̂ ∈ V, while

(3.46) and Lemma 3.5.2 imply that for all z ∈ [0, L]

‖ζλ
ε (z)‖L2 ≤ C, (3.47)

for all V̂ ∈ V so that (3.32) follows.
Proof of Lemma 3.5.2. Lemma 3.5.2 follows immediately from the definition of K, the

bound (3.18) and the Cauchy-Schwarz inequality.
We now prove Lemma 3.5.1. We will omit the z-dependence of the test function λ to

simplify the notation.
Proof of Lemma 3.5.1. We only prove (3.45). Since λ ∈ S(R2d), there exists a constant

Cλ so that

|λ(x, k)| ≤ Cλ

(1 + |x|5d)(1 + |k|5d)
.

The value of the exponents 5d is by no means optimal, and is sufficient in what follows. Then
we obtain using (3.18) and (3.24)

|λε
1(z, x, k, V̂ )| = C

∣∣∣∣∫ ∞

0
drerQ

∫
Rd

dV̂ (p)eir(k·p)+i(x·p)/ε
[
λ(z, x, k − p

2
)− λ(z, x, k +

p

2
)
]∣∣∣∣

≤ C

∫ ∞

0
dre−αr sup

V̂

∫
Rd

|dV̂ (p)|
[
|λ(z, x, k − p

2
)|+ |λ(z, x, k +

p

2
)|
]

≤ C

(1 + |x|5d)(1 + (|k| − L)5dχ|k|≥5L(k))
,
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and the L2-bound on λ1 follows.
We show next that λε

2 is uniformly bounded. We have

λε
2(x, k, V̂ ) = −

∫ ∞

0
drerQ

[
Lλ(x, k)− 1

i

∫
Rd

dV̂ (p)
(2π)d

eip·(x/ε+rk)

×
[
λ1(x,

x

ε
+ rk, k − p

2
, V̂ )− λ1(x,

x

ε
+ rk, k +

p

2
, V̂ )

]]
.

The second term above may be written as

1
i

∫
Rd

dV̂ (p)
(2π)d

eip·(x/ε+rk)
[
λ1(x,

x

ε
+ rk, k − p

2
, V̂ )− λ1(x,

x

ε
+ rk, k +

p

2
, V̂ )

]
= −

∫
Rd

dV̂ (p)
(2π)d

eip·(x/ε+rk)

∫ ∞

0
dsesQ

∫
Rd

dV̂ (q)
(2π)d

eis(k−p/2)·q+i(x/ε+rk)·q

×
[
λ(x, k − p

2
− q

2
)− λ(x, k − p

2
+
q

2
)
]

+
∫

Rd

dV̂ (p)
(2π)d

eip·(x/ε+rk)

∫ ∞

0
dsesQ

∫
Rd

dV̂ (q)
(2π)d

eis(k+p/2)·q+i(x/ε+rk)·q

×
[
λ(x, k +

p

2
− q

2
)− λ(x, k +

p

2
+
q

2
)
]
.

Therefore we obtain

|λε
2(x, k, V̂ )| ≤ C

∫ ∞

0
dre−αr

[
|Lλ(x, k)|+ sup

V̂

∫
Rd

|dV̂ (p)|
∫ ∞

0
dse−αs sup

V̂1

∫
Rd

|dV̂1(q)|

×
(
|λ(x, k − p

2
− q

2
)|+ |λ(x, k − p

2
+
q

2
)|+ |λ(x, k +

p

2
− q

2
)|+ λ(x, k +

p

2
+
q

2
)
)]

≤ C

[
|Lλ(x, k)|+ 1

(1 + |x|5d)(1 + (|k| − L)5dχ|k|≥5L(k))

]
,

and the L2-bound on λε
2 in (3.45) follows because the operator L : L2 → L2 is bounded. The

proof of (3.46) is very similar and is left as a painful exercise.
Lemma 3.5.1 and Lemma 3.5.2 together with (3.44) imply the bound (3.40). The tight-

ness of measures Pε given by Lemma 3.5.4 implies then that the expectation E {Wε(z, x, k)}
converges weakly in L2(R2d) to the solution W (z, x, k) of the transport equation for each
z ∈ [0, L].

3.5.2 Convergence in probability

We now prove that for any test function λ the second moment E
{
〈Wε, λ〉2

}
converges to

〈W,λ〉2. This will imply the convergence in probability claimed in Theorem 3.4.1. The proof
is similar to that for E {〈Wε, λ〉} and is based on constructing an appropriate approximate
martingale for the functional 〈W ⊗ W,µ〉, where µ(z, x1, k1, x2, k2) is a test function, and
W ⊗ W (z, x1, k1, x2, k2) = W (z, x1, k1)W (z, x2, k2). We need to consider the action of the
infinitesimal generator on functions of W and V̂ of the form

F (W, V̂ ) = 〈W (x1, k1)W (x2, k2), µ(z, x1, k1, x2, k2, V̂ )〉 = 〈W ⊗W,µ(V̂ )〉

where µ is a given function. The infinitesimal generator acts on such functions as

d

dh
EP̃ε

W,V̂ ,z

{
〈W ⊗W,µ(V̂ )〉

}
(z + h)

∣∣∣∣
h=0

=
1
ε
〈W ⊗W,Qλ〉+ 〈W ⊗W,Hε

2µ〉, (3.48)
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where

Hε
2µ =

2∑
j=1

1√
ε
Kj

[
V̂ ,

xj

ε

]
µ+ kj · ∇xjµ, (3.49)

with
K1[V̂ , η1]µ =

1
i

∫
Rd

dV̂ (p)ei(p·η1)
[
µ(k1 −

p

2
, k2)− µ(k1 +

p

2
, k2)

]
and

K2[V̂ , η2]µ =
1
i

∫
Rd

dV̂ (p)ei(p·η2)
[
µ(k1, k2 −

p

2
)− µ(k1, k2 +

p

2
)
]
.

Therefore the functional

G2,ε
µ = 〈W ⊗W,µ(V̂ )〉(z) (3.50)

−
∫ z

0

〈
W ⊗W,

(1
ε
Q+

∂

∂z
+ k1 · ∇x1 + k2 · ∇x2 +

1√
ε

(K1[V̂ ,
x1

ε
] +K2[V̂ ,

x2

ε
])
)
µ

〉
(s)ds

is a P̃ ε martingale. We let µ(z, x,K) ∈ S(R2d × R2d) be a test function independent of V̂ ,
where x = (x1, x2), and K = (k1, k2). We define an approximation

µε(z, x,K) = µ(z, x,K) +
√
εµ1(z, x, x/ε,K) + εµ2(x, x/ε,K).

We will use the notation µε
1(z, x,K) = µ1(z, x, x/ε,K) and µε

2(z, x,K) = µ2(z, x, x/ε,K). The
functions µ1 and µ2 are to be determined. We now use (3.48) to get

Dε :=
d

dh

∣∣∣
h=0

EW,V̂ ,z(〈W ⊗W,µε(V̂ )〉)(z + h) =
1
ε

〈
W ⊗W,

Q+
2∑

j=1

kj · ∇ηj

µ

〉
(3.51)

+
1√
ε

〈
W ⊗W,

Q+
2∑

j=1

kj · ∇ηj

µ1 +
2∑

j=1

Kj

[
V̂ , ηj

]
µ

〉

+

〈
W ⊗W,

Q+
2∑

j=1

kj · ∇ηj

µ2 +
2∑

j=1

Kj

[
V̂ , ηj

]
µ1 +

∂µ

∂z
+

2∑
j=1

kj · ∇xjµ

〉

+
√
ε

〈
W ⊗W,

2∑
j=1

Kj

[
V̂ , ηj

]
µ2 +

 ∂

∂z
+

2∑
j=1

kj · ∇xj

 (µ1 +
√
εµ2)

〉
.

The above expression is evaluated at ηj = xj/ε. The term of order ε−1 in Dε vanishes since
µ is independent of V and the fast variable η. We cancel the term of order ε−1/2 in the same
way as before by defining µ1 as the unique mean-zero (in the variables V̂ and η = (η1, η2))
solution of (

Q+
2∑

j=1

kj · ∇ηj

)
µ1 +

2∑
j=1

Kj

[
V̂ , ηj

]
µ = 0. (3.52)

It is given explicitly by

µ1(x, η,K, V̂ ) =
1
i

∫ ∞

0
drerQ

∫
Rd

dV̂ (p)eir(k1·p)+i(η1·p)
[
µ(k1 −

p

2
, k2)− µ(k1 +

p

2
, k2)

]
+

1
i

∫ ∞

0
drerQ

∫
Rd

dV̂ (p)eir(k2·p)+i(η2·p)
[
µ(k1, k2 −

p

2
)− µ(k1, k2 +

p

2
)
]
.
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When µ has the form µ = λ⊗λ, then µ1 has the form µ1 = λ1⊗λ+λ⊗λ1 with the corrector
λ1 given by (3.42). Let us also define µ2 as the mean zero with respect to πV solution of

(
Q+

2∑
j=1

kj · ∇ηj

)
µ2 +

2∑
j=1

Kj

[
V̂ , ηj

]
µ1 =

2∑
j=1

Kj

[
V̂ , ηj

]
µ1, (3.53)

where f =
∫
dπV f . The function µ2 is given by

µ2(x, η,K, V̂ ) = −
∫ ∞

0
drerQ

[
K1[V̂ , η1 + rk1]µ1(x, η + rK,K) (3.54)

− [K1[V̂ , η1 + rk1]µ1](x, η + rK,K, V̂ )
]

−
∫ ∞

0
drerQ

[
K2[V̂ , k2 + rη2]µ1(x, η + rK,K)

− [K2[V̂ , η2 + rk2]µ1](x, η + rK,K, V̂ )
]
.

Unlike the first corrector µ1, the second corrector µ2 may not be written as an explicit sum of
tensor products even if µ has the form µ = λ⊗ λ because µ1 depends on V̂ .

The P̃ ε-martingale G2,ε
µε is given by

G2,ε
µ = 〈W ⊗W,µ(V̂ )〉(z)−

∫ z

0

〈
W ⊗W,

( ∂
∂z

+ k1 · ∇x1 + k2 · ∇x2 + Lε
2

)
µ

〉
(s)ds

−
√
ε

∫ z

0
〈W ⊗W, ζµ

ε 〉(s)ds, (3.55)

where ζµ
ε is given by

ζε
µ =

2∑
j=1

Kj

[
V̂ ,

xj

ε

]
µε

2 +

 ∂

∂z
+

2∑
j=1

kj · ∇xj

 (µε
1 +

√
εµε

2)

and the operator Lε
2 is defined by

Lε
2µ = − 1

(2π)d

∫ ∞

0
dr

∫
Rd

dpR̃(r, p)
[
eir(k1+ p

2
)·p(µ(z, x1, k1, x2, k2)− µ(z, x1, k1 + p, x2, k2))

−eir(k1− p
2
)·p(µ(z, x1, k1 − p, x2, k2)− µ(z, x1, k1, x2, k2))

]
+
[
eip·

x2−x1
ε

+irk2·p(µ(z, x1, k1 + p
2 , x2, k2 − p

2)− µ(z, x1, k1 + p
2 , x2, k2 + p

2))

−eip·
x2−x1

ε
+irk2·p(µ(z, x1, k1 − p

2 , x2, k2 − p
2)− µ(z, x1, k1 − p

2 , x2, k2 + p
2))
]

+
[
eirk1·p+i

x1−x2
ε

·p(µ(z, x1, k1 − p
2 , x2, k2 + p

2)− µ(z, x1, k1 − p
2 , x2, k2 − p

2))

−eirk1·p+i
x1−x2

ε
·p(µ(z, x1, k1 + p

2 , x2, k2 + p
2)− µ(z, x1, k1 + p

2 , x2, k2 − p
2))
]

+
[
eir(k2+ p

2
)·p(µ(z, x1, k1, x2, k2)− µ(z, x1, k1, x2, k2 + p))

−eir(k2− p
2
)·p(µ(z, x1, k1, x2, k2 − p)− µ(z, x1, k1, x2, k2))

]
.

(3.56)
We have used in the calculation of Lε

2 that for a sufficiently regular function f , we have

E

[∫
Rd

dV̂ (q)
(2π)d

∫ ∞

0
dr erQ

∫
Rd

dV̂ (p)f(r, p, q)

]
=
∫ ∞

0
dr

∫
Rd

R̃(r, p)f(r, p,−p)dp.

The bound on ζµ
ε is similar to that on ζλ

ε obtained previously as the correctors µε
j satisfy the

same kind of estimates as the correctors λj :
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Lemma 3.5.3 There exists a constant Cµ > 0 so that the functions µε
1,2 obey the uniform

bounds
‖µε

1(z)‖L2(R2d) + ‖µε
2‖L2(R2d) ≤ Cµ, (3.57)

and∥∥∥∂µε
1(z)
∂z

+
2∑

j=1

kj · ∇xjµ
ε
1(z)

∥∥∥
L2(R2d)

+
∥∥∥∂µε

2(z)
∂z

+
2∑

j=1

kj · ∇xjµ
ε
2(z)

∥∥∥
L2(R2d)

≤ Cµ, (3.58)

for all z ∈ [0, L] and V ∈ V.

The proof of this lemma is very similar to that of Lemma 3.5.1 and is therefore omitted.
Unlike the first moment case, the averaged operator Lε

2 still depends on ε. We therefore do
not have strong convergence of the P̃ ε-martingale G2,ε

µε to its limit yet. However, the a priori
bound on Wε in L2 allows us to characterize the limit of G2,ε

µε and show strong convergence.
This is shown as follows. The first and last terms in (3.56) that are independent of ε give the
contribution:

L2µ =
∫ ∞

0
dr

∫
Rd

dp

(2π)d

[
R̃(r, p− k1)eir

p2−k2
1

2 (µ(z, x1, p, x2, k2)− µ(z, x1, k1, x2, k2))

+R̃(r, k1 − p)eir
k2
1−p2

2 (µ(z, x1, p1, x2, k2)− µ(z, x1, k1, x2, k2))

+R̃(z, p− k2)eir
p2−k2

2
2 (µ(z, x1, k1, x2, p)− µ(z, x1, k1, x2, k2))

+R̃(z, k2 − p)eir
k2
2−p2

2 (µ(z, x1, k1, x2, p)− µ(z, x1, k1, x2, k2))
]

=
∫

Rd

dp

(2π)d
R̂(
p2 − k2

1

2
, p− k1)(µ(z, x1, p, x2, k2)− µ(z, x1, k1, x2, k2))

+R̂(
p2 − k2

2

2
, p− k2)(µ(z, x1, k1, x2, p)− µ(z, x1, k1, x2, k2)).

The two remaining terms give a contribution that tends to 0 as ε→ 0 for sufficiently smooth
test functions. They are given by

(Lε
2 − L2)µ =

1
(2π)d

∫ ∞

0
dr

∫
Rd

dpR̃(r, p)
[(
eip·

x2−x1
ε

+irk2·p + eirk1·p+i
x1−x2

ε
·p
)

×
(
µ(z, x1, k1 +

p

2
, x2, k2 +

p

2
)− µ(z, x1, k1 +

p

2
, x2, k2 −

p

2
)
)

+
(
eip·

x2−x1
ε

+irk2·p + eirk1·p+i
x1−x2

ε
·p
)

×
(
µ(z, x1, k1 −

p

2
, x2, k2 −

p

2
)− µ(z, x1, k1 −

p

2
, x2, k2 +

p

2
)
)]
.

We have
R̃(z, p) = R̃(−z,−p) ≥ 0

by Bochner’s theorem. Since (Lε
2 −L2) and λ are real quantities, we can take the real part of
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the above term and, after the change of variables r → −r and p→ −p, obtain

(Lε
2 − L2)µ =

1
(2π)d

∫ ∞

−∞
dr

∫
Rd

dpR̃(r, p) cos(p · x2 − x1

ε
)(eirk2·p + eirk1·p)

×
(
µ(z, x1, k1 +

p

2
, x2, k2 +

p

2
) + µ(z, x1, k1 −

p

2
, x2, k2 −

p

2
)

−µ(z, x1, k1 +
p

2
, x2, k2 −

p

2
)− µ(z, x1, k1 −

p

2
, x2, k2 +

p

2
)
)

=
2

(2π)d

∫
Rd

dp(R̂(−k1 · p, p) + R̂(−k2 · p, p)) cos(p · x2 − x1

ε
)

×
(
µ(z, x1, k1 +

p

2
, x2, k2 +

p

2
)− µ(z, x1, k1 −

p

2
, x2, k2 +

p

2
)
)

= g1 + g2 + g3 + g4 + c.c.

We have (since µ is real-valued)

I =
∫

R4d

dx1dk1dx2dk2|g1(z, x1, k1, x2, k2)|2

= C

∫
R6d

dx1dk1dx2dk2dpdqR̂(−k1 · p, p)R̂(−k1 · q, q)

×ei(p−q)·x2−x1
ε µ(z, x1, k1 −

p

2
, x2, k2 +

p

2
)µ(z, x1, k1 −

q

2
, x2, k2 +

q

2
).

Using density arguments we may assume that µ has the form

µ(x1, k1, x2, k2) = µ1(x1 − x2)µ2(x1 + x2)µ3(k1)µ4(k2).

Then we have

I = C

∫
R6d

dx1dk1dx2dk2dpdqR̂(−k1 · p, p)R̂(−k1 · q, q)

×e−i(p−q)·x1
ε µ2

1(x1)µ2
2(x2)µ3(k1 −

p

2
)µ4(k2 +

p

2
)µ3(k1 −

q

2
)µ4(k2 +

q

2
)

= C‖µ2‖2
L2

∫
R4d

dk1dk2dpdqR̂(−k1 · p, p)R̂(−k1 · q, q)ν̂(
p− q

ε
)

×µ3(k1 −
p

2
)µ4(k2 +

p

2
)µ3(k1 −

q

2
)µ4(k2 +

q

2
)

where ν(x) = µ2
1(x). We introduceG(p) = supω R̂(ω, p) and use the Cauchy-Schwarz inequality

in k1 and k2:

|I| ≤ C‖µ2‖2
L2‖µ3‖2

L2‖µ4‖2
L2

∫
R2d

dpdqG(p)G(q)
∣∣∣∣ν̂(

p− q

ε
)
∣∣∣∣ .

We use again the Cauchy-Schwarz inequality, now in p, to get

|I| ≤ C‖µ2‖2
L2‖µ3‖2

L2‖µ4‖2
L2‖G‖L2

∫
Rd

dqG(q)
(∫

Rd

dp
∣∣∣ν̂(

p

ε
)
∣∣∣2)1/2

≤ Cεd/2‖µ2‖2
L2‖µ3‖2

L2‖µ4‖2
L2‖G‖L2‖G‖L1‖ν‖L2 .

This proves that ‖(Lε
2 − L2)µ‖L2 → 0 as ε→ 0. Note that oscillatory integrals of the form∫

Rd

ei
p·x
ε µ(p)dp, (3.59)
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are not small in the bigger space A′, which is natural in the context of Wigner transforms. In
this bigger space, we cannot control (Lε

2 − L2)µ and actually suspect that the limit measure
P may no longer be deterministic.

We therefore deduce that

G2
µ = 〈W ⊗W,µ(V̂ )〉(z)−

∫ z

0

〈
W ⊗W,

( ∂
∂z

+ k1 · ∇x1 + k2 · ∇x2 + L2

)
µ

〉
(s)ds

is an approximate P̃ε martingale. The limit of the second moment

W2(z, x1, k1, x2, k2) = EP {W (z, x1, k1)W (z, x2, k2)}

thus satisfies (weakly) the transport equation

∂W2

∂t
+ (k1 · ∇x1 + k2 · ∇x2)W2 = L2W2,

with initial dataW2(0, x1, k1, x2, k2) = W0(x1, k1)W0(x2, k2). Moreover, the operator L2 acting
on a tensor product λ⊗ λ has the form

L2[λ⊗ λ] = Lλ⊗ λ+ λ⊗ Lλ.

This implies that

EP {W (z, x1, k1)W (z, x2, k2)} = EP {W (z, x1, k1)}EP {W (z, x2, k2)}

by uniqueness of the solution to the above transport equation with initial conditions given by
W0(x1, k1)W0(x2, k2). This proves that the limiting measure P is deterministic and unique
(because characterized by the transport equation) and that the sequence Wε(z, x, k) converges
in probability to W (z, x, k).

3.5.3 Tightness of Pε

We now show tightness of the measures Pε in X . We have the lemma

Lemma 3.5.4 The family of measures Pε is weakly compact.

The proof is as follows; see [12]. A theorem of Mitoma and Fouque [50, 29] implies that in order
to verify tightness of the family Pε it is enough to check that for each λ ∈ C1([0, L],S(Rd ×
Rd)) the family of measures Pε on C([0, L]; R) generated by the random processes W ε

λ(z) =
〈Wε(z), λ〉 is tight. Tightness of Pε follows from the following two conditions. First, a Kol-
mogorov moment condition [11] in the form

EPε {|〈W,λ〉(z)− 〈W,λ〉(z1)|γ |〈W,λ〉(z1)− 〈W,λ〉(s)|γ} ≤ Cλ(z − s)1+β, 0 ≤ s ≤ z ≤ L
(3.60)

should hold with γ > 0, β > 0 and Cλ independent of ε. Second, we should have

lim
R→∞

lim sup
ε→0

ProbPε

{
sup

0≤z≤L
|〈W,λ〉(z)| > R

}
= 0.

The second condition holds automatically in our case since the process W ε
λ(z) is uniformly

bounded for all z > 0 and ε > 0. In order to verify (3.60), note that we have

〈W (z), λ〉 = Gε
λε

(z)−
√
ε〈W,λε

1〉−ε〈W,λε
2〉+

∫ z

0
ds〈W, ∂λ

∂z
+k·∇xλ+Lλ〉(s)+

√
ε

∫ z

0
ds〈W, ζλ

ε 〉(s).
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The uniform bound (3.47) on ζλ
ε and the bounds on ‖λε

1,2(z)‖L2(R2d) in Lemma 3.5.1 imply
that it suffices to check (3.60) for

xε(z) = Gε
λε

(z) +
∫ z

0
ds〈W, ∂λ

∂z
+ k · ∇xλ+ Lλ〉(s).

We have

E
{
|xε(z)− xε(s)|2

∣∣∣Fs

}
≤ 2E

{∣∣∣∣∫ z

s
dτ〈W, ∂λ

∂z
+ k · ∇xλ+ Lλ〉(τ)

∣∣∣∣2
∣∣∣∣∣Fs

}
+2E

{∣∣Gε
λε

(z)−Gε
λε

(s)
∣∣2∣∣∣Fs

}
≤ C(z − s)2 + 2E

{
〈Gε

λε
〉(z)− 〈Gε

λε
〉(s)

∣∣Fs

}
.

Here 〈Gε
λε
〉 is the increasing process associated with Gε

λε
. We will now compute it explicitly.

First we obtain that

d

dh
EPε

W,V̂ ,t

{
〈W,λε〉2(z + h)

}∣∣∣∣
h=0

= 2〈W,λε〉〈W,
∂λ

∂z
+ k ·∇xλε +

1√
ε
K[V̂ ,

x

ε
]λε〉+

1
ε
Q
[
〈W,λε〉2

]
so that

〈W,λε〉2(z)−
∫ z

0

(
2〈W,λε〉(s)〈W,

∂λ

∂z
+ k · ∇xλε +

1√
ε
K[V̂ ,

x

ε
]λε〉(s) +

1
ε
Q
[
〈W,λε〉2

]
(s)
)
ds

is a martingale. Therefore we have

〈Gε
λε

(z)〉 =
∫ z

0
ds

[
1
ε
Q[〈W,λε〉2]− 2

ε
〈W,λε〉〈W,Qλε〉

]
(s)

=
∫ z

0
ds
(
Q
[
〈W,λε

1〉2
]
− 〈W,λε

1〉〈W,Qλε
1〉(s)

)
+
√
ε

∫ z

0
dsHε(s)

with

Hε = 2
√
ε (Q[〈W,λε

1〉〈W,λε
2〉]− 〈W,λε

1〉〈W,Qλε
2〉 − 〈W,λε

2〉〈W,Qλε
1〉)

+ ε
(
Q[〈W,λε

2〉2]− 2〈W,λε
2〉〈W,Qλε

2〉
)
.

The boundedness of λε
2 and that of Q on L∞(V) imply that |Hε(s)| ≤ C for all V ∈ V. This

yields
E
{
〈Gε

λε
〉(z)− 〈Gε

λε
〉(s)

∣∣Fs

}
≤ C(z − s)

whence
E
{
|xε(z)− xε(s)|2

∣∣∣Fs

}
≤ C(z − s).

In order to obtain (3.60) we note that

EPε {|xε(z)− xε(z1)|γ |xε(z1)− xε(s)|γ}
= EPε

{
EPε {|xε(z)− xε(z1)|γ | Fz1} |xε(z1)− xε(s)|γ

}
≤ EPε

{[
EPε

{
|xε(z)− xε(z1)|2

∣∣∣Fz1

}]γ/2
|xε(z1)− xε(s)|γ

}
≤ C(z − z1)γ/2EPε {|xε(z1)− xε(s)|γ} ≤ C(z − z1)γ/2EPε

{
EPε {|xε(z1)− xε(s)|γ |Fs}

}
≤ C(z − z1)γ/2EPε

{[
EPε

{
|xε(z1)− xε(s)|2

∣∣∣Fs

}]γ/2
}
≤ C(z − z1)γ/2(z1 − s)γ/2

≤ C(z − s)γ .

Choosing now γ > 1 we get (3.60) which finishes the proof of Lemma 3.5.4.
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3.5.4 Remarks

Statistical stability and a priori bounds. As we have already mentioned, the uniform
L2 bound for the Wigner transform is crucial in the derivation of Thm. 3.4.1. In the absence
of an a priori L2 bound, we are not able to characterize the limiting measure P . However we
can characterize its first moment. The derivation is done in [2]. Let us assume that Wε is
bounded in A′, the space of distributions dual to

‖f‖A =
∫

sup
x
|f̃(x, y)|dy,

as is the case for the Wigner transform of a pure state ψε uniformly bounded in L2(Rd). Then
we can show that EPε{Wε} converges weakly to W , solution of (3.27), with appropriate initial
conditions (the Wigner transform of the limit ψε(0, x)). The proof is very similar to that
obtained above, except that in the proof of convergence, as well as in the proof of tightness of
the sequence of measures Pε (now defined on a ball in C([0, L];A′)), we need to show that the
test functions λ1,2 are bounded in A′ rather than L2(R2d).

However the proof of convergence of the second martingale in section 3.5.2 does not extend
to the case of a uniform bound in A′. Technically, the obstacle resides in the fact that the
oscillatory integrals (3.59) are small in L2(R2d) but not in A′. Since A′ includes bounded
measures, any measure µ(dp) concentrating on the hyperplane orthogonal to x will render the
integral (3.59) an order O(1) quantity.

The above discussion does not provide proof that Pε does not converge to a deterministic
limit. However it strongly suggests that if Wε is allowed to become quite singular in A′, then on
these paths Pε may not become sufficiently self-averaging to converge to a deterministic limit.
Actually, in the simplified regime of the Itô-Schrödinger equation (a further simplification
compared to the paraxial wave equation), it is shown in [3] that the measure Pε does not
converge to a limiting deterministic measure when the initial Wigner measure is very singular
(converges to a delta function in both x and k). Instead, scintillation effects, which measure
the distance between the second moment of Wε and the square of its first moment, are shown to
persist for all finite times (for an appropriate scaling). This does not characterize the limiting
measure P either (this remains an open problem even in the Itô-Schrödinger framework), but
at least shows that P is not deterministic.

Paraxial and radiative transfer regimes. Note that in the limit where the potential
V (z, x) oscillates very slowly in the z variable, so that R(z, x) converges to a function that does
not depend on z (because V (z, x) becomes highly correlated in z), whence R̂(ω, p) converges
to a function of the form δ(ω)R̂(p), we obtain the limiting average transport equation

κ
∂W

∂z
+ k · ∇xW = κ2

∫
Rd

R̂(p− k)δ
(
|k|2

2
− |p|2

2

)(
W (x, p)−W (x, k)

)
dp

(2π)d
. (3.61)

This is the radiative transfer equation for the Schrödinger equation (3.13) when the potential
V (x) is independent of the variable z. We do not recover the full radiative transfer since we
started with the paraxial approximation. However we recover the correct radiative transfer
equation for the Schrödinger equation.

Note that the dispersion relation for wave equations ω = c0|k| is now replaced by its “parax-
ial” approximation ω = |k|2/2, where k now is the transverse component of the wavevector
only.
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Chapter 4

Applications to Time-Reversal
Experiments

This chapter is based on [4, 5] but the concept of one-step time reversal emerged during early
discussions with Knut Solna.

4.1 Time-reversal experiments

In time reversal experiments, acoustic waves are emitted from a localized source, recorded in
time by an array of receivers-transducers, time reversed, and re-transmitted into the medium,
so that the signals recorded first are re-emitted last and vice versa [20, 21, 28, 35, 42, 46]: a
schematic description of the time reversal procedure is depicted in Fig. 4.1.

Figure 4.1: The Time Reversal Procedure. Top: Propagation of signal and measurements in
time. Bottom: Time reversal of recorded signals and back-propagation into the medium.

Early experiments in time reversal acoustics are described in [20]; see also the more recent
papers [26, 27, 28] – this list is by no means exhaustive and the literature on the subject
is by now vast. The re-transmitted signal refocuses at the location of the original source
with a modified shape that depends on the array of receivers. The salient feature of these
time reversal experiments is that refocusing is much better when wave propagation occurs
in complicated environments than in homogeneous media. Time reversal techniques with
improved refocusing in heterogeneous medium have found important applications in medicine,
non-destructive testing, underwater acoustics, and wireless communications (see the above
references). It has been also applied to imaging in weakly random media [10, 14, 28] and led
to a recent concept of coherent interferometric imaging (CINT) of Borcea, Papanicolaou and
Tsogka [15, 16, 17].

A very qualitative explanation for the better refocusing observed in heterogeneous media
is based on multipathing. Since waves can scatter off a larger number of heterogeneities, more
paths coming from the source reach the recording array, thus more is known about the source
by the transducers than in a homogeneous medium. The heterogeneous medium plays the
role of a lens that widens the aperture through which the array of receivers sees the source.
Refocusing is also qualitatively justified by ray theory (geometrical optics). The phase shift
caused by multiple scattering is exactly compensated when the time reversed signal follows
the same path back to the source location. This phase cancellation happens only at the
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source location. The phase shift along paths leading to other points in space is essentially
random. The interference of multiple paths will thus be constructive at the source location
and destructive anywhere else. This explains why refocusing at the source location is improved
when the number of scatterers is large.

As convincing as they are, the above explanations remain qualitative and do not allow us
to quantify how the refocused signal is modified by the time reversal procedure. Quantitative
justifications require to analyze wave propagation more carefully. The first quantitative de-
scription of time reversal was obtained in [18] in the framework of one-dimensional random
media. That paper provides the first mathematical explanation of two of the most prominent
features of time reversal: heterogeneities improve refocusing and refocusing occurs for almost
every realization of the random medium. Various extensions and generalizations to the three-
dimensional layered case, including nonlinear effects, have been done in the work by Garnier,
Fouque, Nachbin, Papanicolaou and Solna, and are described in detail in the recent excellent
book [30]. The first multi-dimensional quantitative description of time reversal was obtained
in [13] for the parabolic approximation, i.e., for waves that propagate in a privileged direction
with no backscattering (see also [54] for further analysis of time reversal in this regime). That
paper shows that the random medium indeed plays the role of a lens. The back-propagated
signal behaves as if the initial array were replaced by another one with a much bigger effective
aperture. In a slightly different context, time reversal in ergodic cavities was analyzed in [8].
There, wave mixing is created by reflection at the boundary of a chaotic cavity, which plays a
similar role to the heterogeneities in a heterogeneous medium.

In this chapter we consider the theory of time-reversal experiments for general classical
waves propagating in weakly fluctuating random media. It is convenient to understand refo-
cusing in time reversal experiments in the following three-step general framework:

(i) A signal propagating from a localized source is recorded at a single time T > 0 by an
array of receivers.

(ii) The recorded signal is processed at the array location.

(iii) The processed signal is emitted from the array and propagates in the same medium
during the same amount of time T .

As we will see, this formulation allows us to reduce the mathematical problem of the description
of the refocused signal to the question of the passage from the wave equations to the kinetic
models. While the latter problem is also difficult, we may apply whatever is known in that
area to the time-reversal problems. Accordingly, the mathematical rigor of our statements on
time-reversal experiments below depends on the regime of consideration – for instance, they
are mostly formal in the radiative transfer regime but are rigorous in the random geometric
optics regime (see [6] for the precise statements). To keep the presentation uniform we will
concentrate here solely on the transport regime.

The first main result of this chapter is that the repropagated signal will refocus at the
location of the original source for a large class of waves and a large class of processings. The
experiments described above correspond to the specific processing of acoustic waves in which
pressure is kept unchanged and the sign of the velocity field is reversed.

The second main result is a quantitative description of the re-transmitted signal. We show
that the re-propagated signal uB(ξ) at a point ξ near the source location can be written in
the high frequency limit as the following convolution of the original source S

uB(ξ) = (F ∗ S)(ξ). (4.1)
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The kernel F depends on the location of the recording array and on the signal processing.
The quality of the refocusing depends on the spatial decay of F . It turns out that it can be
expressed in terms of the Wigner transform [53] of two wave fields. The decay properties of
F depend on the smoothness of the Wigner transform in the phase space and it is here that
the kinetic theories becomes useful. Here we consider the high frequency regime when the
wavelength of the initial signal is small compared to the distance of propagation. In addition we
assume that the wavelength is comparable to the correlation length of the medium. This is the
radiative transport regime. It has been extensively studied mathematically for the Schrödinger
equation [23, 56] and formally using perturbation expansions for the classical waves [7, 53].
In this regime the Wigner transform satisfies a radiative transport equation, which is used
to describe the evolution of the energy density of waves in random media [36, 53, 55, 56].
The transport equations possess a smoothing effect so that the Wigner distribution becomes
less singular in random media, which implies a stronger decay of the convolution kernel F
and a better refocusing. The diffusion approximation to the radiative transport equations
provides simple reconstruction formulas that can be used to quantify the refocusing quality
of the back-propagated signal. This construction applies to a large class of classical waves:
acoustic, electromagnetic, elastic, and others, and allows for a large class of signal processings
at the recording array.

4.2 Classical Time Reversal and One-Step Time Reversal

Propagation of acoustic waves is described by a system of equations for the pressure p(t, x)
and acoustic velocity v(t, x):

ρ(x)
∂v
∂t

+∇p = 0 (4.2)

κ(x)
∂p

∂t
+∇ · v = 0,

with suitable initial conditions and where ρ(x) and κ(x) are density and compressibility of
the underlying medium, respectively. These equations can be recast as the following linear
hyperbolic system

A(x)
∂u
∂t

+Dj ∂u
∂xj

= 0, x ∈ R3 (4.3)

with the vector u = (v, p) ∈ C4. The matrix A = Diag(ρ, ρ, ρ, κ) is positive definite. The
4 × 4 matrices Dj , j = 1, 2, 3, are symmetric and given by Dj

mn = δm4δnj + δn4δmj . We use
the Einstein convention of summation over repeated indices.

The time reversal experiments in [20] consist of two steps. First, the direct problem

A(x)
∂u
∂t

+Dj ∂u
∂xj

= 0, 0 ≤ t ≤ T (4.4)

u(0, x) = S(x)

with a localized source S centered at a point x0 is solved. The signal is recorded during the
period of time 0 ≤ t ≤ T by an array of receivers located at Ω ⊂ R3. Second, the signal is time
reversed and re-emitted into the medium. Time reversal is described by multiplying u = (v, p)
by the matrix Γ = Diag(−1,−1,−1, 1). The back-propagated signal solves

∂u
∂t

+A−1(x)Dj ∂u
∂xj

=
1
T

R(2T − t, x), T ≤ t ≤ 2T (4.5)

u(T, x) = 0
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with the source term
R(t, x) = Γu(t, x)χ(x). (4.6)

The function χ(x) is either the characteristic function of the set where the recording array is
located, or some other function that allows for possibly space-dependent amplification of the
re-transmitted signal.

The back-propagated signal is then given by u(2T, x). We can decompose it as

u(2T, x) =
1
T

∫ T

0
ds w(s, x; s), (4.7)

where the vector-valued function w(t, x; s) solves the initial value problem

A(x)
∂w(t, x; s)

∂t
+Dj ∂w(t, x; s)

∂xj
= 0, 0 ≤ t ≤ s

w(0, x; s) = R(s, x).

We deduce from (4.7) that it is sufficient to analyze the refocusing properties of w(s, x; s) for
0 ≤ s ≤ T to obtain those of u(2T, x). For a fixed value of s, we call the construction of
w(s, x; s) one-step time reversal.

We define one-step time reversal more generally as follows. The direct problem (4.4) is
solved until time t = T to yield u(T−, x). At time T , the signal is recorded and processed.
The processing is modeled by an amplification function χ(x), a blurring kernel f(x), and a
(possibly spatially varying) time reversal matrix Γ. After processing, we have

u(T+, x) = Γ(f ∗ (χu))(T−, x)χ(x). (4.8)

The processed signal then propagates for the same amount of time T :

A(x)
∂u
∂t

+Dj ∂u
∂xj

= 0, T ≤ t ≤ 2T (4.9)

u(T+, x) = Γ(f ∗ (χu))(T−, x)χ(x).

The main question is whether u(2T, x) refocuses at the location of the original source S(x) and
how the original signal has been modified by the time reversal procedure. Notice that in the
case of full (Ω = R3) and exact (f(x) = δ(x)) measurements with Γ = Diag(−1,−1,−1, 1), the
time-reversibility of first-order hyperbolic systems implies that u(2T, x) = ΓS(x), which corre-
sponds to exact refocusing. When only partial measurements are available we shall see in the
following sections that u(2T, x) is closer to ΓS(x) when propagation occurs in a heterogeneous
medium than in a homogeneous medium.

The pressure field p(t, x) satisfies the following scalar wave equation

∂2p

∂t2
− 1
κ(x)

∇ ·
(

1
ρ(x)

∇p
)

= 0. (4.10)

A schematic description of the one-step procedure for the wave equation is presented in Fig. 4.2.
A numerical experiment for the one-step time reversal procedure is shown in Fig. 4.3. In the

Figure 4.2: The One-Step Time Reversal Procedure. Here, pt denotes
∂p

∂t
.

numerical simulations, there is no blurring, f(x) = δ(x), and the array of receivers is the
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Figure 4.3: Numerical experiment using the one-step time reversal procedure. Top Left: initial
condition p(0, x), a peaked Gaussian of maximal amplitude equal to 1. Top Right: forward
solution p(T−, x), of maximal amplitude 0.04. Bottom Right: recorded solution p(T+, x), of
maximal amplitude 0.015 on the domain Ω = (−1/6, 1/6)2. Bottom Left: back-propagated
solution p(2T, x), of maximal amplitude 0.07.

domain Ω = (−1/6, 1/6)2 (χ(x) is the characteristic function of Ω). Note that the truncated
signal does not retain any information about the ballistic part of the original wave (the part
that propagates without scattering with the underlying medium). In a homogeneous medium,
the truncated signal would then be nearly identically zero (not quite zero since the numerics
are done in two dimensions) and no refocusing would be observed. The interesting aspect of
time reversal is that a coherent signal emerges at time 2T out of a signal at time T+ that
seems to have no useful information.

4.3 Theory of Time Reversal in Random Media

Our objective is now to present a theory that explains in a quantitative manner the refocusing
properties described in the preceding sections. We consider here the one-step time reversal for
acoustic wave. Generalizations to other types of waves and more general processings in (4.9)
are given in Section 4.4.

4.3.1 Refocused Signal

We recall that the one-step time reversal procedure consists of letting an initial pulse S(x)
propagate according to (4.4) until time T ,

u(T−, x) =
∫

R3

G(T, x; z)S(z)dz,

where G(T, x; z) is the Green’s matrix solution of

A(x)
∂G(t, x; y)

∂t
+Dj ∂G(t, x; y)

∂xj
= 0, 0 ≤ t ≤ T (4.11)

G(0, x; y) = Iδ(x− y).

At time T , the “intelligent” array reverses the signal. For acoustic pulses, this means keeping
pressure unchanged and reversing the sign of the velocity field. The array of receivers is located
in Ω ⊂ R3. The amplification function χ(x) is an arbitrary bounded function supported in
Ω, such as its characteristic function (χ(x) = 1 for x ∈ Ω and χ(x) = 0 otherwise) when all
transducers have the same amplification factor. We also allow for some blurring of the recorded
data modeled by a convolution with a function f(x). The case f(x) = δ(x) corresponds to
exact measurements. Finally, the signal is time reversed, that is, the direction of the acoustic
velocity is reversed. Here, the operator Γ in (4.8) is simply multiplication by the matrix

Γ = Diag(−1,−1,−1, 1). (4.12)

The signal at time T+ after time reversal takes then the form

u(T+, x) =
∫

R6

ΓG(T, y′; z)χ(x)χ(y′)f(x− y′)S(z)dzdy′. (4.13)
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The last step (4.9) consists of letting the time reversed field propagate through the random
medium until time 2T . To compare this signal with the initial pulse S, we need to reverse the
acoustic velocity once again, and define

uB(x) = Γu(2T, x) =
∫

R9

ΓG(T, x; y)ΓG(T, y′; z)χ(y)χ(y′)f(y − y′)S(z)dydy′dz. (4.14)

The time reversibility of first-order hyperbolic systems implies that uB(x) = S(x) when
Ω = Rd, χ ≡ 1, and f(x) = δ(x), that is, when full and non-distorted measurements are
available. It remains to understand which features of S are retained by uB(x) when only
partial measurement is available.

4.3.2 Localized Source and Scaling

We consider an asymptotic solution of the time reversal problem (4.4), (4.9) when the support
λ of the initial pulse S(x) is much smaller than the distance L of propagation between the
source and the recording array: ε = λ/L� 1. We also take the size a of the array comparable
to L: a/L = O(1). We assume that the time T between the emission of the original signal and
recording is of order L/c0, where c0 is a typical speed of propagation of the acoustic wave. We
consequently consider the initial pulse to be of the form

u(0, x) = S(
x− x0

ε
)

in non-dimensionalized variables x′ = x/L and t′ = t/(L/c0). We drop primes to simplify
notation. Here x0 is the location of the source. The transducers obviously have to be capable
of capturing signals of frequency ε−1 and blurring should happen on the scale of the source, so
we replace f(x) by ε−df(ε−1x). Finally, we are interested in the refocusing properties of uB(x)
in the vicinity of x0. We therefore introduce the scaling x = x0 + εξ. With these changes of
variables, expression (4.14) is recast as

uB(ξ;x0) = Γu(2T, x0 + εξ) (4.15)

=
∫

R9

ΓG(T, x0 + εξ; y)ΓG(T, y′;x0 + εz)χ(y, y′)S(z)dydy′dz,

where

χ(y, y′) = χ(y)χ(y′)f(
y − y′

ε
). (4.16)

In the sequel we will also allow the medium to vary on a scale comparable to the source scale ε.
Thus the Green’s function G and the matrix A depend on ε. We do not make this dependence
explicit to simplify notation. We are interested in the limit of uB(ξ;x0) as ε→ 0.

4.3.3 Adjoint Green’s Function

The analysis of the re-propagated signal relies on the study of the two point correlation at
nearby points of the Green’s matrix in (4.15). There are two undesirable features in (4.15).
First, the two nearby points x0+εξ and x0+εz are terminal and initial points in their respective
Green’s matrices. Second, one would like the matrix Γ between the two Green’s matrices to be
outside of their product. However, Γ and G do not commute. For these reasons, we introduce
the adjoint Green’s matrix, solution of

∂G∗(t, x; y)
∂t

A(x) +
∂G∗(t, x; y)

∂xj
Dj = 0

G∗(0, x; y) = A−1(x)δ(x− y).
(4.17)
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We now prove that
G∗(t, x; y) = ΓG(t, y;x)A−1(x)Γ. (4.18)

Note that for all initial data S(x), the solution u(t, x) of (4.4) satisfies

u(t, x) =
∫

Rd

G(t− s, x; y)u(s, y)dy

for all 0 ≤ s ≤ t ≤ T since the coefficients in (4.4) are time-independent. Differentiating the
above with respect to s and using (4.4) yields

0 =
∫

Rd

(
− ∂G(t− s, x; y)

∂t
u(s, y)−G(t− s, x; y)A−1(y)Dj ∂u(s, y)

∂yj

)
dy

Upon integrating by parts and letting s = 0, we get

0 =
∫

Rd

(
− ∂G(t, x; y)

∂t
+

∂

∂yj

[
G(t, x; y)A−1(y)Dj

] )
S(y)dy.

Since the above relation holds for all test functions S(y), we deduce that

∂G(t, x; y)
∂t

− ∂

∂yj

[
G(t, x; y)A−1(y)Dj

]
= 0. (4.19)

Interchanging x and y in the above equation and multiplying it on the left and the right by
Γ, we obtain that

∂

∂t

[
ΓG(t, y;x)A−1(x)

]
A(x)Γ− ∂

∂xj

[
ΓG(t, y;x)A−1(x)

]
DjΓ = 0. (4.20)

We remark that
ΓDj = −DjΓ and ΓA(x) = A(x)Γ, (4.21)

so that
∂

∂t

[
ΓG(t, y;x)A−1(x)Γ

]
A(x) +

∂

∂xj

[
ΓG(t, y;x)A−1(x)Γ

]
Dj = 0

with ΓG(0, y;x)A−1(x)Γ = A−1(x)δ(x − y). Thus (4.18) follows from the uniqueness of the
solution to the above hyperbolic system with given initial conditions. We can now recast (4.15)
as

uB(ξ;x0) =
∫

R9

ΓG(T, x0 + εξ; y)G∗(T, x0 + εz; y′)Γ

×χ(y)χ(y′)f(
y − y′

ε
)A(x0 + εz)S(z)dydy′dz.

(4.22)

One may further simplify (4.22) with the help of the auxiliary matrix-valued functions
Q(t, x; q) and Q∗(t, x, q) defined by

Q(T, x; q) =
∫

Rd

G(T, x; y)χ(y)eiq·y/εdy,

Q∗(T, x; q) =
∫

R3

G∗(T, x; y)χ(y)e−iq·y/εdy.
(4.23)

They solve the hyperbolic systems of equations (4.4) and (4.17) with initial conditions given
by Q(0, x; q) = χ(x)eiq·x/εI and Q∗(0, x; q) = A−1(x)χ(x)e−iq·x/ε, respectively. Thus (4.22)
becomes

uB(ξ;x0)=
∫

R6

ΓQ(T, x0 + εξ; q)Q∗(T, x0 + εz; q)ΓA(x0 + εz)S(z)f̂(q)
dqdz

(2π)3
, (4.24)

where f̂(q) =
∫

Rd e
−iq·xf(x)dx is the Fourier transform of f(x).
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4.3.4 Wigner Transform

The back-propagated signal in (4.24) now has the suitable form to be analyzed in the Wigner
transform formalism [31, 53]. We define

Wε(t, x, k) =
∫

Rd

f̂(q)Uε(t, x, k; q)dq, (4.25)

where
Uε(t, x, k; q) =

∫
Rd

eik·yQ(t, x− εy

2
; q)Q∗(t, x+

εy

2
; q)

dy

(2π)3
. (4.26)

Taking the inverse Fourier transform we verify that

Q(t, x; q)Q∗(t, y; q) =
∫

R3

e−ik·(y−x)/εUε(t,
x+ y

2
, k; q)dk,

hence

uB(ξ;x0) =
∫

R6

eik·(ξ−z)ΓWε(T, x0 + ε
z + ξ

2
, k)ΓA(x0 + εz)S(z)

dzdk

(2π)3
. (4.27)

We have thus reduced the analysis of u(ξ;x0) as ε→ 0 to that of the asymptotic properties
of the Wigner transform Wε. The Wigner transform has been used extensively in the study of
wave propagation in random media, especially in the derivation of radiative transport equations
modeling the propagation of high frequency waves. We refer to [31, 49, 53]. Note that in the
usual definition of the Wigner transform, one has the adjoint matrix Q∗ in place of Q∗ in
(4.26). This difference is not essential since Q∗ and Q∗ satisfy the same evolution equation,
though with different initial data.

The main reason for using the Wigner transform in (4.27) is that Wε has a weak limit W
as ε → 0. Its existence follows from simple a priori bounds for Wε(t, x, k). Let us introduce
the space A of matrix-valued functions φ(x, k) bounded in the norm ‖ · ‖A defined by

‖φ‖A =
∫

R3

sup
x
‖φ̃(x, y)‖dy, where φ̃(x, y) =

∫
R3

e−ik·yφ(x, k)dk.

We denote by A′ its dual space, which is a space of distributions large enough to contain
matrix-valued bounded measures, for instance. We then have the following result:

Lemma 4.3.1 Let χ(x) ∈ L2(R3) and f̂(q) ∈ L1(R3). Then there is a constant C > 0
independent of ε > 0 and t ∈ [0,∞) such that for all t ∈ [0,∞), we have ‖Wε(t, x, k)‖A′ < C.

The proof of this lemma is essentially contained in [31, 49], see also [4]. One may actually
get L2-bounds for Wε in our setting because of the regularizing effect of f̂ in (4.25) but this
is not essential for the purposes of this chapter as we are working on a formal level. However,
this setting is one example when the mixture of states arises naturally. This is also crucial for
trhe rigorous justification of the analog of the results of this chapter in the geometic optics
regime in [6].

We therefore obtain the existence of a subsequence εk → 0 such that Wεk
converges weakly

to a distribution W ∈ A′. Moreover, an easy calculation shows that at time t = 0, we have

W (0, x0, k) = |χ(x0)|2A−1
0 (x0)f̂(k). (4.28)

Here, A0 = A when A is independent of ε, and A0 = lim
ε→0

Aε if we assume that the family

of matrices Aε(x) is uniformly bounded and continuous with the limit A0 in C(Rd). These
assumptions on Aε are sufficient to deal with the radiative transport regime we will consider
in section 4.3.7. Under the same assumptions on Aε, we have the following result.
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Proposition 4.3.2 The back-propagated signal uB(ξ;x0) given by (4.27) converges weakly in
S ′(R3 × R3) as ε→ 0 to the limit

uB(ξ;x0) =
∫

R6

eik·(ξ−z)ΓW (T, x0, k)ΓA0(x0)S(z)
dzdk

(2π)3
. (4.29)

The proof of this proposition is based on taking the duality product of uB(ξ;x0) with a vector-
valued test function φ(ξ;x0) in S(R3 × R3). After a change of variables we obtain 〈uB,φ〉 =
〈Wε, Zε〉. Here the duality product for matrices is given by the trace 〈A,B〉 =

∑
i,k〈Aik, Bik〉,

and

Zε(x0, k) =
∫

R6

eik·(z−ξ)Γφ(ξ, x0 − ε
z + ξ

2
)S∗(z)Aε(x0 + ε

z − ξ

2
)Γ
dzdξ

(2π)3
. (4.30)

Defining Z as the limit of Zε as ε → 0 by replacing formally ε by 0 in the above expression,
(4.29) follows from showing that ‖Zε − Z‖A → 0 as ε → 0. This is straightforward and we
omit the details.

The above proposition tells us how to reconstruct the back-propagated solution in the
high frequency limit from the limit Wigner matrix W . Notice that we have made almost no
assumptions on the medium described by the matrix Aε(x). At this level, the medium can be
either homogeneous or heterogeneous, and the particular scale of oscillations is not important
as long as Aε(x) strongly converge to A0. Without any further assumptions, we can also obtain
some information about the matrix W . Let us define the dispersion matrix for the system
(4.4) as [53]

L(x, k) = A−1
0 (x)kjD

j . (4.31)

It is given explicitly by

L(x, k) =


0 0 0 k1/ρ(x)

0 0 0 k2/ρ(x)

0 0 0 k3/ρ(x)

k1/κ(x) k2/κ(x) k3/κ(x) 0

 .

The matrix L has a double eigenvalue ω0 = 0 and two simple eigenvalues ω±(x, k) = ±c(x)|k|,
where c(x) = 1/

√
ρ(x)κ(x) is the speed of sound. The eigenvalues ω± are associated with

eigenvectors b±(x, k) and the eigenvalue ω0 = 0 is associated with the eigenvectors bj(x, k),
j = 1, 2. They are given by

b±(x, k) =

 ± k̂√
2ρ(x)
1√

2κ(x)

 , bj(x, k) =

 zj(k)√
ρ(x)

0

 , (4.32)

where k̂ = k/|k| and z1(k) and z2(k) are chosen so that the triple (k̂, z1(k), z2(k)) forms an
orthonormal basis. The eigenvectors are normalized so that

(A0(x)bj(x, k) · bk(x, k)) = δjk, (4.33)

for all j, k ∈ J = {+,−, 1, 2}. The space of 4 × 4 matrices is clearly spanned by the basis
bj ⊗ bk. We then have the following result:
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Proposition 4.3.3 There exist scalar distributions a± and amn
0 , m,n = 1, 2 so that the limit

Wigner distribution matrix can be decomposed as

W (t, x, k) =
2∑

j,m=1

ajm
0 (t, x, k)bj(x, k)⊗ bm(x, k) (4.34)

+ a+(t, x, k)b+(x, k)⊗ b+(x, k) + a−(t, x, k)b−(x, k)⊗ b−(x, k).

The main result of this proposition is that the cross terms bj ⊗ bk with ωj 6= ωk do not
contribute to the limit W . The proof of this proposition can be found in [31] and a formal
derivation in [53].

The initial conditions for the amplitudes aj are calculated using the identity

A−1
0 (x) =

∑
j∈J

bj(x, k)⊗ bj(x, k).

Then (4.28) implies that a12
0 (0, x, k) = a21

0 (0, x, k) = 0 and

ajj
0 (0, x, k) = a±(0, x, k) = |χ(x)|2f(k), j = 1, 2. (4.35)

4.3.5 Mode Decomposition and Refocusing

We can use the above result to recast (4.29) as

uB(ξ;x0) = (F (T, ·;x0) ∗ S)(ξ), (4.36)

where

F (T, ξ;x0) =
2∑

m,n=1

∫
R3

eik·ξamn
0 (T, x0; k)Γbm(x0, k)⊗ bn(x0, k)A0(x0)Γ

dk

(2π)3

+
∫

R3

eik·ξa+(T, x0; k)Γb+(x0, k)⊗ b+(x0, k)A0(x0)Γ
dk

(2π)3
(4.37)

+
∫

R3

eik·ξa−(T, x0; k)Γb−(x0, k)⊗ b−(x0, k)A0(x0)Γ
dk

(2π)3
.

This expression can be used to assess the quality of the refocusing. When F (T, ξ;x0) has
a narrow support in ξ, refocusing is good. When its support in ξ grows larger, its quality
degrades. The spatial decay of the kernel F (t, ξ;x0) in ξ is directly related to the smoothness
in k of its Fourier transform in ξ:

F̂ (T, k;x0) =
2∑

m,n=1

amn
0 (T, x0; k)Γbm(x0, k)⊗ bn(x0, k)A0(x0)Γ

dk

(2π)3

+Γ [a+(T, x0; k)b+(x0, k)⊗ b+(x0, k)+ a−(T, x0; k)b−(x0, k)⊗ b−(x0, k)]A0(x0)Γ.

Namely, for F to decay in ξ, one needs F̂ (k) to be smooth in k. However, the eigenvectors bj
are singular at k = 0 as can be seen from the explicit expressions (4.32). Therefore, a priori
F̂ is not smooth at k = 0. This means that in order to obtain good refocusing one needs the
original signal to have no low frequencies: Ŝ(k) = 0 near k = 0. Low frequencies in the initial
data will not refocus well.

We can further simplify (4.36)-(4.37) is we assume that the initial condition is irrotational.
Taking Fourier transform of both sides in (4.36), we obtain that

ûB(k;x0) =
∑

j,n∈J

aj(T, x0, k)Ŝn(k)(A0(x0)Γbn(x0, k) · bj(x0, k))Γbj(x0, k) (4.38)

94



where we have defined
Ŝ(k) =

∑
n∈J

Ŝn(k)bn(x0, k). (4.39)

Irrotationality of the initial condition means that Ŝ1 and Ŝ2 identically vanish, or equivalently
that

S(x) =

∇φ(x)

p(x)

 (4.40)

for some pressure p(x) and potential φ(x). Remarking that Γb± = −b∓ and by irrotationality
that (A0(x0)Ŝ(k) · b1,2(k)) = 0, we use (4.33) to recast (4.38) as

ûB(k;x0) = a−(T, x0, k)Ŝ+(k)b+(x0, k) + a+(T, x0, k)Ŝ−(k)b−(x0, k). (4.41)

Decomposing the initial condition S(x) as

S(x) = S+(x) + S−(x), such that Ŝ±(k) = Ŝ±(k)b±(x0, k),

the back-propagated signal takes the form

uB(ξ;x0) = (â−(T, x0, ·) ∗ S+(·))(ξ) + (â+(T, x0, ·) ∗ S−(·))(ξ) (4.42)

where â± is the Fourier of a± in k. This form is much more tractable than (4.36)-(4.37). It
is also almost as general. Indeed, rotational modes do not propagate in the high frequency
regime. Therefore, they are exactly back-propagated when χ(x0) = 1 and f(x) = δ(x), and
not back-propagated at all when χ(x0) = 0. All the refocusing properties are thus captured
by the amplitudes a±(T, x0, k). Their evolution equation characterizes how waves propagate
in the medium and their initial conditions characterize the recording array.

4.3.6 Homogeneous Media

In homogeneous media with c(x) = c0 the amplitudes a±(T, x, k) satisfy the free transport
equation [31, 53]

∂a±
∂t

± c0k̂ · ∇xa± = 0 (4.43)

with initial data a±(0, x, k) = |χ(x)|2f(k) as in (4.35). They are therefore given by

a±(t, x0, k) = |χ(x0 ∓ c0k̂t)|2f̂(k). (4.44)

These amplitudes become more and more singular in k as time grows since their gradient in
k grows linearly with time. The corresponding kernel F = FH decays therefore more slowly
in ξ as time grows. This implies that the quality of the refocusing degrades with time. For
sufficiently large times, all the energy has left the domain Ω (assumed to be bounded), and the
coefficients a±(t, x0, k) vanish. Therefore the back-propagated signal uB(ξ;x0) also vanishes,
which means that there is no refocusing at all. The same conclusions could also be drawn by
analyzing (4.14) directly in a homogeneous medium. This is the situation in the numerical
experiment presented in Fig. 4.3: in a homogeneous medium, the back-propagated signal
would vanish.
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4.3.7 Heterogeneous Media and Radiative Transport Regime

The results of the preceding sections show how the back-propagated signal uB(ξ;x0) is related
to the propagating modes a±(T, x0, k) of the Wigner matrix W (T, x0, k). The form assumed by
the modes a±(T, x0, k), and in particular their smoothness in k, will depend on the hypotheses
we make on the underlying medium; i.e., on the density ρ(x) and compressibility κ(x) that
appear in the matrix A(x). We have seen that partial measurements in homogeneous media
yield poor refocusing properties. We now show that refocusing is much better in random
media.

We consider here the radiative transport regime, also known as weak coupling limit. There,
the fluctuations in the physical parameters are weak and vary on a scale comparable to the
scale of the initial condition. Density and compressibility assume the form

ρ(x) = ρ0 +
√
ερ1(

x

ε
) and κ(x) = κ0 +

√
εκ1(

x

ε
). (4.45)

The functions ρ1 and κ1 are assumed to be mean-zero spatially homogeneous processes. The
average (with respect to realizations of the medium) of the propagating amplitudes a±, denoted
by ā±, satisfy in the high frequency limit ε→ 0 a radiative transfer equation (RTE), which is
a linear Boltzmann equation of the form

∂ā±
∂t

± c0k̂ · ∇xā± =
∫

R3

σ(k, p)(ā±(t, x, p)− ā±(t, x, k))δ(c0(|k| − |p|))dp

ā±(0, x, k) = |χ(x)|2f̂(k).
(4.46)

The scattering coefficient σ(k, p) depends on the power spectra of ρ1 and κ1. We refer to [53] for
the details of the derivation and explicit form of σ(k, p). The above result remains formal for
the wave equation and requires averaging over the realizations of the random medium although
this is not necessary in the physical and numerical time reversal experiments. A rigorous
derivation of the linear Boltzmann equation (which also requires averaging over realizations)
has only been obtained for the Schrödinger equation; see [23, 56]. Nevertheless, the above
result formally characterizes the filter F (T, ξ;x0) introduced in (4.37) and (4.42).

The transport equation (4.46) has a smoothing effect best seen in its integral formulation.
Let us define the total scattering coefficient Σ(k) =

∫
R3 σ(k, p)δ(c0(|k| − |p|))dp. Then the

transport equation (4.46) may be rewritten as

ā±(t, x, k) = ā±(0, x∓ c0k̂t, k)e−Σ(k)t (4.47)

+
|k|2

c0

∫ t

0
ds

∫
S2

σ(k, |k|p̂)ā±(s, x∓ c0(t− s)k̂, |k|p̂)e−Σ(k)(t−s)dΩ(p̂).

Here p̂ = p/|p| is the unit vector in direction of p and dΩ(p̂) is the surface element on the
sphere S2. The first term in (4.47) is the ballistic part that undergoes no scattering. It has
no smoothing effect, and, moreover, if a(0, x, k) is not smooth in x, as may be the case for
(4.35), the discontinuities in x translate into discontinuities in k at later times as in (4.44) in
a homogeneous medium. However, in contrast to the homogeneous medium case, the ballistic
term decays exponentially in time, and does not affect the refocused signal for sufficiently long
times t � 1/Σ. The second term in (4.47) exhibits a smoothing effect. Namely the operator
Lg defined by

Lg(t, x, k) =
|k|2

c0

∫ t

0
ds

∫
S2

σ(k, |k|p̂)g(s, x∓ c0(t− s)k̂, |k|p̂)e−Σ(k)(t−s)dΩ(p̂)
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is regularizing, in the sense that the function g̃ = Lg has at least 1/2-more derivatives than g
(in some Sobolev scale). The precise formulation of this smoothing property is given by the
averaging lemmas [34, 51] and will not be dwelt upon here. Iterating (4.47) n times we obtain

ā±(t, x, k) = a0
±(t, x, k) + a1

±(t, x, k) + · · ·+ an
±(t, x, k) + Ln+1ā±(t, x, k). (4.48)

The terms a0
±, . . . , a

n
± are given by

a0
±(t, x, k) = ā±(0, x∓ c0k̂t, k)e−Σ(k)t, aj

±(t, x, k) = Laj−1
± (t, x, k).

They describe, respectively, the contributions from waves that do not scatter, scatter once,
twice, . . . . It is straightforward to verify that all these terms decay exponentially in time and
are negligible for times t � 1/Σ. The last term in (4.48) has at least n/2 more derivatives
than the initial data a0, or the solution (4.44) of the homogeneous transport equation. This
leads to a faster decay in ξ of the Fourier transforms â±(T, x0, ξ) of a±(T, x0, k) in k. This
gives a qualitative explanation as to why refocusing is better in heterogeneous media than
in homogeneous media. A more quantitative answer requires to solve the transport equation
(4.46).

4.3.8 Diffusion Regime

It is known for times t much longer than the scattering mean free time τsc = 1/Σ and distances
of propagation L very large compared to lsc = c0τsc that solutions to the radiative transport
equation (4.46) can be approximated by solutions to a diffusion equation, provided that c(x) =
c0 is independent of x [19, 48]. More precisely, we let δ = lsc/L� 1 be a small parameter and
rescale time and space variables as t→ t/δ2 and x→ x/δ. In this limit, the wave direction is
completely randomized so that

ā+(t, x, k) ≈ ā−(t, x, k) ≈ a(t, x, |k|),

where a solves
∂a(t, x, |k|)

∂t
−D(|k|)∆xa(t, x, |k|) = 0,

a(0, x, |k|) = |χ(x)|2 1
4π|k|2

∫
R3

f̂(q)δ(|q| − |k|)dq.
(4.49)

The diffusion coefficient D(|k|) may be expressed explicitly in terms of the scattering coefficient
σ(k, p) and hence related to the power spectra of ρ1 and κ1. We refer to [53] for the details.
For instance, let us assume for simplicity that the density is not fluctuating, ρ1 ≡ 0, and that
the compressibility fluctuations are delta-correlated, so that E{κ̂1(p)κ̂1(q)} = κ2

0R̂0δ(p + q).
Then we have

σ(k, p) =
πc20|k|2R̂0

2
, Σ(|k|) = 2π2c0|k|4R̂0 (4.50)

and

D(|k|) =
c20

3Σ(|k|)
=

c0

6π2|k|4R̂0

(4.51)

Let us assume that there are no initial rotational modes, so that the source S(x) is decom-
posed as in (4.40). Using (4.41), we obtain that

ûB(k;x0) = a(T, x0, |k|)Ŝ(k). (4.52)
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When f(x) is isotropic so that f̂(k) = f̂(|k|), and the diffusion coefficient is given by (4.51),
the solution of (4.49) takes the form

a(T, x0, |k|) = f̂(|k|)
(3π|k|4R̂0

2c0T

)3/2
∫

R3

exp
(
− 3π2|k|4R̂0|x0 − y|2

2c0T

)
|χ(y)|2dy. (4.53)

When f(x) = δ(x), and Ω = R3, so that χ(x) ≡ 1, we retrieve a(T, x0, k) ≡ 1, hence the
refocusing is perfect. When only partial measurement is available, the above formula indicates
how the frequencies of the initial pulse are filtered by the one-step time reversal process. Notice
that both the low and high frequencies are damped. The reason is that low frequencies scatter
little from the underlying medium so that it takes a long time for them to be randomized.
High frequencies strongly scatter with the underlying medium and consequently propagate
little so that the signal that reaches the recording array Ω is small unless recorders are also
located at the source point: x0 ∈ Ω. In the latter case they are very well measured and back-
propagated although this situation is not the most interesting physically. Expression (4.53)
may be generalized to other power spectra of medium fluctuations in a straightforward manner
using the formula for the diffusion coefficient in [53].

4.3.9 Numerical Results

The numerical results in Fig. 4.3 show that some signal refocuses at the location of the initial
source after the time reversal procedure. Based on the above theory however, we do not expect
the refocused signal to have exactly the same shape as the original one. Since the location
of the initial source belongs to the recording array (χ(x0) = 1) in our simulations, we expect
from our theory that high frequencies will refocus well but that low frequencies will not. This

Figure 4.4: Zoom of the initial source and the refocused signal for the numerical experiment
of Fig. 4.3.

is confirmed by the numerical results in Fig. 4.4, where a zoom in the vicinity of x0 = 0 of the
initial source and refocused signal are represented. Notice that the numerical simulations are
presented here only to help in the understanding of the refocusing theory and do not aim at
reproducing the theory in a quantitative manner. The random fluctuations are quite strong
in our numerical simulations and it is unlikely that the diffusive regime will be valid. The
refocused signal on the right figure looks however like a high-pass filter of the signal in the left
figure, as expected from theory.

4.4 Refocusing of Classical Waves

The theory presented in section 4.3 provides a quantitative explanation for the results observed
in time reversal physical and numerical experiments. However, the time reversal procedure
is by no means necessary to obtain refocusing. Time reversal is associated with the specific
choice (4.12) for the matrix Γ in the preceding section, which reverses the direction of the
acoustic velocity and keeps pressure unchanged. Other choices for Γ are however possible.
When nothing is done at time T , i.e., when we choose Γ = I, no refocusing occurs as one
might expect. It turns out that Γ = I is more or less the only choice of a matrix that prevents
some sort of refocusing. Section 4.4.1 presents the theory of refocusing for acoustic waves,
which is corroborated by numerical results presented in Section 4.4.2. Sections 4.4.3 and 4.4.4
generalize the theory to other linear hyperbolic systems.
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4.4.1 General Refocusing of Acoustic Waves

In one-step time reversal, the action of the “intelligent” array is captured by the choice of the
signal processing matrix Γ in (4.13). Time reversal is characterized by Γ given in (4.12). A
passive array is characterized by Γ = I. This section analyzes the role of other choices for Γ,
which we let depend on the receiver location so that each receiver may perform its own kind
of signal processing.

The signal after time reversal is still given by (4.13), where Γ(y′) is now arbitrary. At time
2T , after back-propagation, we are free to multiply the signal by an arbitrary invertible matrix
to analyze the signal. It is convenient to multiply the back-propagated signal by the matrix
Γ0 = Diag(−1,−1,−1, 1) as in classical time reversal. The reconstruction formula (4.15) in
the localized source limit is then replaced by

uB(ξ;x0) =
∫

R9

Γ0G(T, x0 + εξ; y)Γ(y′)G(T, y′;x0 + εz)χ(y, y′)S(z)dydy′dz (4.54)

with χ(y, y′) defined by (4.16). To generalize the results of section 4.3, we need to define an
appropriate adjoint Green’s matrix G∗. As before, this will allow us to remove the matrix
Γ between the two Green’s matrices in (4.54) and to interchange the order of points in the
second Green’s matrix. We define the new adjoint Green’s function G∗(t, x; y) as the solution
to

∂G∗(t, x; y)
∂t

A(x) +
∂G∗(t, x; y)

∂xj
Dj = 0

G∗(0, x; y) = Γ(x)Γ0A
−1(x)δ(x− y).

(4.55)

Following the steps of section 4.3.3, we show that

G∗(t, x, y) = Γ(y)G(t, y;x)A−1(x)Γ0. (4.56)

The only modification compared to the corresponding derivation of (4.18) is to multiply (4.19)
on the left by Γ(x) and on the right by Γ0 so that Γ(y) appears on the left in (4.20). The
re-transmitted signal may now be recast as

uB(ξ;x0) =
∫

R9

Γ0G(T, x0 + εξ; y)G∗(T, x0 + εz; y′)Γ−1
0 A(x0 + εz)χ(y, y′)S(z)dydy′dz. (4.57)

Therefore the only modification in the expression for the re-transmitted signal compared to
the time reversed signal (4.22) is in the initial data for (4.55), which is the only place where
the matrix Γ(x) appears.

The analysis in Sections 4.3.3-4.3.7 requires only minor changes, which we now outline. The
back-propagated signal may still be expressed in term of the Wigner distribution (compare to
(4.27))

uB(ξ;x0) =
∫

R6

eik·(ξ−z)Γ0Wε(T, x0 + ε
z + ξ

2
, k)Γ0A(x0 + εz)S(z)

dzdk

(2π)3
. (4.58)

The Wigner distribution is defined as before by (4.25) and (4.26). The function Q is defined as
before as the solution of (4.4) with initial data Q(0, x; q) = χ(x)eiq·x/εI, while Q∗ solves (4.17)
with the initial data Q∗(0, x; q) = Γ(x)Γ0A

−1(x)χ(x)e−iq·x/ε. The initial Wigner distribution
is now given by

W (0, x, k) = |χ(x)|2Γ(x)Γ0A
−1(x)f̂(k). (4.59)
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Lemma 4.3.1 and Proposition 4.3.2 also hold, and we obtain the analog of (4.29)

u(ξ;x0) =
∫

R6

eik·(ξ−z)Γ0W (T, x0, k)Γ0A0(x0)S(z)dzdk. (4.60)

The limit Wigner distribution W (T, x0, k) admits the mode decomposition (4.34) as before. If
we assume that the source S(x) has the form (4.40) so that no rotational modes are present
initially, we recover the refocusing formula (4.41):

ûB(k;x0) = a−(T, x0, k)Ŝ+(k)b+(x0, k) + a+(T, x0, k)Ŝ−(k)b−(x0, k). (4.61)

The initial conditions for the amplitudes a± are replaced by

a±(0, x, k) = Tr
[
A0(x)W (0, x, k)A0(x)b±(x0, k)b∗±(x0, k)

]
(4.62)

= |χ(x)|2f̂(k)(A0(x)Γ(x)b∓(x, k) · b±(x, k)).

Observe that when Γ(x) = Γ0, we get back the results of Section 4.3.7. When the signal is not
changed at the array, so that Γ = I, the coefficients a±(0, x, k) ≡ 0 by orthogonality (4.33) of
the eigenvectors bj . We thus obtain that no refocusing occurs when the “intelligent” array is
replaced by a passive array, as expected physically.

Another interesting example is when only pressure p is measured, so that the matrix
Γ = Diag(0, 0, 0, 1). Then the initial data is

a±(0, x, k) =
1
2
|χ(x)|2f̂(k),

which differs by a factor 1/2 from the full time reversal case (4.35). Therefore the re-
transmitted signal uB also differs only by a factor 1/2 from the latter case, and the quality
of refocusing as well as the shape of the re-propagated signal are exactly the same. The same
observation applies to the measurement and reversal of the acoustic velocity only, which cor-
responds to the matrix Γ = Diag(−1,−1,−1, 0). The factor 1/2 comes from the fact that only
the potential energy or the kinetic energy is measured in the first and second cases, respec-
tively. For high frequency acoustic waves, the potential and kinetic energies are equal, hence
the factor 1/2. We can also verify that when only the first component of the velocity field is
measured so that Γ = Diag(−1, 0, 0, 0), the initial data is

a±(0, x, k) = |χ(x)|2f̂(k)
k2

1

2|k|2
. (4.63)

As in the time reversal setting of Section 4.3, the quality of the refocusing is related to
the smoothness of the amplitudes a± in k. In a homogeneous medium they satisfy the free
transport equation (4.43), and are given by

a±(t, x, k)= |χ(x− c0k̂t)|2f̂(k)(A0(x− c0k̂t)Γ(x− c0k̂t)b∓(x− c0k̂t, k) · b±(x− c0k̂t, k)).

Once again, we observe that in a uniform medium a± become less regular in k as time grows,
thus refocusing is poor.

The considerations of Section 4.3.7 show that in the radiative transport regime the ampli-
tudes a± become smoother in k also with initial data given by (4.62). This leads to a better
refocusing as explained in Section 4.3.5. Let us assume that the diffusion regime of Section
4.3.8 is valid and that the kernel f is isotropic f̂(k) = f̂(|k|). This requires in particular that
A0(x) be independent of x. We obtain that a±(T, x0, k) = ã(T, x0, |k|), thus the refocusing
formula (4.61) reduces to

ûB(k;x0) = ã(T, x0, |k|)Ŝ(k). (4.64)
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The difference with the case treated in Section 4.3.8 is that ã(T, x, |k|) solves the diffusion
equation (4.49) with new initial conditions given by

ã(0, x, |k|) =
|χ(x)|2

4π|k|2

∫
R3

f̂(|q|)(A0Γ(x)b−(q) · b+(q))δ(|q| − |k|)dq (4.65)

=
|χ(x)|2

4π|k|2

∫
R3

f̂(|q|)(A0Γ(x)b+(q) · b−(q))δ(|q| − |k|)dq.

When only the first component of the velocity field is measured, as in (4.63), the initial
data for ã is

ã(0, x, |k|) =
1
6
|χ(x)|2f̂(|k|).

Therefore even time reversing only one component of the acoustic velocity field produces a
re-propagated signal that is equal to the full re-propagated field up to a constant factor.

More generally, we deduce from (4.65) that a detector at x will contribute some refocusing
for waves with wavenumber |k| provided that∫

S2

f̂(|k|q̂)(A0Γ(x)b∓(q̂) · b±(q̂))dΩ(q̂) 6= 0.

When f(x) = f(|x|) is radial, this property becomes independent of the wavenumber |k| and
reduces to

∫
S2(A0Γ(x)b∓(q̂) · b±(q̂))dΩ(q̂) 6= 0.

4.4.2 Numerical Results

Let us come back to the numerical results presented in Fig. 4.3 and 4.4. We now consider
two different processings at the recording array. The first array is passive, corresponding to
Γ = I, and the second array only measures pressure so that Γ = Diag(0, 0, 0, 1). The zoom
in the vicinity of x0 = 0 of the “refocused” signals is given in Fig. 4.5. The left figure shows

Figure 4.5: Zoom of the refocused signals for the numerical experiment of Fig. 4.3 with
processing Γ = I (left), with a maximal amplitude of roughly 4 10−3 and Γ = Diag(0, 0, 0, 1)
(right), with a maximal amplitude of roughly 0.035.

no refocusing, in accordance with physical intuition and theory. The right figure shows that
refocusing indeed occurs when only pressure in recorded (and its time derivative is set to 0 in
the solution of the wave equation presented in the appendix). Notice also that the refocused
signal is roughly one half the one obtained in Fig. 4.4 as predicted by theory.

4.4.3 Refocusing of Other Classical Waves

The preceding sections deal with the refocusing of acoustic waves. The theory can however be
extended to more complicated linear hyperbolic systems of the form (4.4) with A(x) a positive
definite matrix, Dj symmetric matrices, and u ∈ Cm. These include electromagnetic and
elastic waves. Their explicit representation in the form (4.4) and expressions for the matrices
A(x) and Dj in these cases may be found in [53]. For instance, the Maxwell equations

∂E

∂t
=

1
ε(x)

curl H

∂H

∂t
= − 1

µ(x)
curl E
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may be written in the form (4.4) with u = (E,H) ∈ C6 and the matrix

A(x) = Diag(ε(x), ε(x), ε(x), µ(x), µ(x), µ(x)).

Here ε(x) is the dielectric constant (not to be confused with the small parameter ε), and µ(x)
is the magnetic permeability. The 6 × 6 dispersion matrix L(x, k) for the Maxwell equations
is given by

L(x, k) = −



0 0 0 0 −k3/ε(x) k2/ε(x)

0 0 0 k3/ε(x) 0 −k1/ε(x)

0 0 0 −k2/ε(x) k1/ε(x) 0

0 k3/µ(x) −k2/µ(x) 0 0 0

−k3/µ(x) 0 k1/µ(x) 0 0 0

k2/µ(x) −k1/µ(x) 0 0 0 0


.

Generalization of our results for acoustic waves to such general systems is quite straight-
forward so we concentrate only on the modifications that need be made. The time reversal
procedure is exactly the same as before: a signal propagates from a localized source, is recorded,
processed as in (4.13) with a general matrix Γ(y′), and re-emitted into the medium. The re-
transmitted signal is given by (4.54). Furthermore, the equation for the adjoint Green’s matrix
(4.55), the definition of the Wigner transform in Section 4.3.4, and the expression (4.60) for
the re-propagated signal still hold.

The analysis of the re-propagated signal is reduced to the study of the Wigner distribution,
which is now modified. The mode decomposition must be generalized. We recall that

L(x, k) = A−1
0 (x)kjD

j

is the m × m dispersion matrix associated with the hyperbolic system (4.4). Since L(x, k)
is symmetric with respect to the inner product 〈u,v〉A0 = (A0u · v), its eigenvalues are real
and its eigenvectors form a basis. We assume the existence of a time reversal matrix Γ0 such
that (4.21) holds with Γ = Γ0 and such that Γ2

0 = I. For example, for electromagnetic waves
Γ0 = Diag(1, 1, 1,−1,−1,−1). Then the spectrum of L is symmetric about zero and the
eigenvalues ±ωα have the same multiplicity. We assume in addition that L is isotropic so that
its eigenvalues have the form ωα

±(x, k) = ±cα(x)|k|, where cα(x) is the speed of mode α. We
denote by rα their respective multiplicities, assumed to be independent of x and k for k 6= 0.
The matrix L has a basis of eigenvectors bα,j

± (x, k) such that

L(x, k)bα,j
± (x, k) = ±ωα(x, k)bα,j

± (x, k), j = 1, . . . , rα,

and bα,j
± form an orthonormal set with respect to the inner product 〈, 〉A0 . The different ωα

correspond to different types of waves (modes). Various indices 1 ≤ j ≤ rα refer to different
polarizations of a given mode. The eigenvectors bα,j

+ and bα,j
− are related by

Γ0b
α,j
+ (x, k) = bα,j

− (x, k), Γ0b
α,j
− (x, k) = bα,j

+ (x, k). (4.66)

Proposition 4.3.3 is then generalized as follows [31, 53]:

Proposition 4.4.1 There exist scalar functions aα,jm
± (t, x, k) such that

W (t, x, k) =
∑

±,α,j,m

aα,jm
± (t, x, k)bα,j

± (x, k)⊗ bα,m
± (x, k). (4.67)

Here the sum runs over all possible values of ±, α, and 1 ≤ j,m ≤ rα.
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The main content of this proposition is again that the cross terms bα,j
± (x, k)⊗ bβ,m

∓ (x, k)
do not contribute, as well as the terms bα,j

± (x, k)⊗ bα′,m
± (x, k) when α 6= α′. This is because

modes propagating with different speeds do not interfere constructively in the high frequency
limit.

We may now insert expression (4.67) into (4.60) and obtain the following generalization of
(4.61)

ûB(k;x0) =
∑
α,j,m

[
aα,mj
− (T, x0, k)Ŝα,j

+ (x0, k)bα,m
+ (x0, k) (4.68)

+ aα,mj
+ (T, x0, k)Ŝα,j

− (x0, k)bα,m
− (x0, k)

]
,

where Ŝα,j
± (k) = (A(x0)Ŝ(k) · bα,j

± (x0, k)). This formula tells us that only the modes that are
present in the initial source (Ŝα,j

± (k) 6= 0) will be present in the back-propagated signal but
possibly with a different polarization, that is, j 6= m.

The initial conditions for the modes aα,jm
± are given by

aα,jm
± (0, x, k) = |χ(x)|2f̂(k)(A(x)Γ(x)bα,m

∓ (x, k) · bα,j
± (x, k)), (4.69)

which generalizes (4.62). When Γ(x) ≡ I, we again obtain that aα,jm
± (0, x, k) ≡ 0, i.e., there

is no refocusing as physically expected. When Γ(x) ≡ Γ0, we have for all α that

aα,jm
± (0, x, k) = |χ(x)|2f̂(k)δjm.

In a uniform medium the amplitudes aα,jm
± satisfy an uncoupled system of free transport

equations (4.43):
∂aα,jm

±
∂t

± cαk̂ · ∇xa
α,jm
± = 0, (4.70)

which have no smoothing effect, and hence refocusing in a homogeneous medium is still poor.
When f(x) = δ(x) and Ω = R3, so that χ(x) ≡ 1, we still have that aα,jm

± (T, x0, k) = δjm and
refocusing is again perfect, that is, uB(ξ;x0) = S(ξ), as may be seen from (4.68).

4.4.4 The diffusive regime

The radiative transport regime holds when the matrices A(x) have the form

A(x) = A0(x) +
√
εA1

(x
ε

)
,

as in (4.45). Then the rα × rα coherence matrices wα
± with entries wα

±,jm = aα,jm
± satisfy

a system of matrix-valued radiative transport equations (see [53] for the details) similar to
(4.46). The matrix transport equations simplify considerably in the diffusive regime, such as
the one considered in Section 4.3.8 when waves propagate over large distances and long times.
We assume for simplicity that A0 = A0(x) and Γ = Γ(x) are independent of x. Polarization
is lost in this regime, that is, aα,jm(t, x, k) = 0 for j 6= m and wave energy is equidistributed
over all directions. This implies that

aα,jj
+ (t, x, k) = aα,jj

− (t, x, k) = aα(t, x, |k|)

so that aα,jj is independent of j = 1, . . . , rα and of the direction k̂ = k/|k|. Furthermore,
because of multiple scattering, a universal equipartition regime takes place so that

aα(t, x0, |k|) = φ(t, x0, cα|k|), (4.71)
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where φ(t, x, ω) solves a diffusion equation in x like (4.49) (see [53]). The diffusion coefficient
D(ω) may be expressed explicitly in terms of the power spectra of the medium fluctuations
[53]. Using (4.69) and (4.71), we obtain when f is isotropic the following initial data for the
function φ

φ(0, x, ω) =
1

4π
|χ(x)|2

∫
S2

2
|α|

∑
j,ωα>0

f̂
( ω
cα

)
(A0Γbα,j

− (k̂),bα,j
+ (k̂))dΩ(k̂), (4.72)

where |α| is the number of non-vanishing eigenvalues of L(x, k), and dΩ(k̂) is the Lebesgue
measure on the unit sphere S2.

Let us assume that non-propagating modes are absent in the initial source S(x), that is,
Ŝj

0(k) = 0 with the subscript zero referring to modes corresponding to ω0 = 0. Then (4.68)
becomes

û(k;x0) =
∑
α,j

φ(T, x0, cα|k|)
[
Ŝα,j

+ (k)bα,j
+ (x0, k) + Ŝα,j

− (k)bα,j
− (x0, k)

]
. (4.73)

This is an explicit expression for the re-propagated signal in the diffusive regime, where φ
solves the diffusion equation (4.49) with initial conditions (4.72).

4.5 Conclusions

This chapter presents a theory that quantitatively describes the refocusing phenomena in time
reversal acoustics as well as for more general processings of acoustic and other classical waves.
We show that the back-propagated signal may be expressed as the convolution (4.1) of the
original source S with a filter F . The quality of the refocusing is therefore determined by the
spatial decay of the kernel F . For acoustic waves, the explicit expression (4.37) relates F to the
Wigner distribution of certain solutions of the wave equation. The decay of F is related to the
smoothness in the phase space of the amplitudes aj(t, x, k) defined in Proposition 4.3.3. The
latter satisfy free transport equations in homogeneous media, which sharpens the gradients of
aj and leads to poor refocusing. In contrast, the amplitudes aj satisfy the radiative transport
equation (4.46) in heterogeneous media, which has a smoothing effect. This leads to a rapid
spatial decay of the filter F and a better refocusing. For longer times, aj satisfies a diffusion
equation. This allows for an explicit expression (4.52)-(4.53) of the time reversed signal. The
same theory holds for more general waves and more general processing procedures at the
recording array, which allows us to describe the refocusing of electromagnetic waves when
only one component of the electric field is measured, for instance.
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[5] G.Bal and L. Ryzhik, Time reversal and refocusing in random media, SIAM Jour. Appl.
Math., 63, 2003, 1475–1498.

[6] G. Bal, T. Komorowski and L. Ryzhik, Self-averaging of the Wigner transform in random
media, Comm. Math. Phys., 2003, 242, 81–135.

[7] G. Bal, Kinetics of scalar wave fields in random media, to appear in Wave Motion, 2005.

[8] C. Bardos and M. Fink.

[9] C. Bardos and M. Fink, Mathematical foundations of the time reversal mirror, Asymptotic
Analysis, 29, 2002, 157–182.

[10] J. Berryman, L. Borcea, G. Papanicolaou, and C. Tsogka. Imaging and time reversal in
random media, J. Acoust. Soc. Am. , 112, 2002, 1509–1522.

[11] P. Billingsley, Convergence of Probability Measures, Wiley, 1999.

[12] G. Blankenship and G. Papanicolaou, Stability and control of stochastic systems with
wide-band noise disturbances, SIAM Jour. Appl. Math., 34, 1978, 437-476.

[13] P. Blomgren, G. Papanicolaou, and H. Zhao. Super-Resolution in Time-Reversal Acous-
tics. to appear in J. Acoust. Soc. Am., 2001.

[14] L. Borcea, G. Papanicolaou, C. Tsogka and J. Berryman, Imaging and time reversal in
random media, Inverse Problems, 18, 2002, 1247–1279.

[15] L. Borcea, G. Papanicolaou and C. Tsogka, Theory and applications of time reversal and
interferometric imaging, Inverse Problems, 19, 2003, S139–S164.

[16] L. Borcea, G. Papanicolaou and C. Tsogka, Interferometric array imaging in clutter,
Inverse Problems, 21, 2005, 1419–1460.

105



[17] L. Borcea, G. Papanicolaou and C. Tsogka, Coherent interferometry in finely layered
random media, SIAM J. on Multiscale Model. Simul, in press, 2006.

[18] J. F. Clouet and J. P. Fouque. A time-reversal method for an acoustical pulse propagating
in randomly layered media. Wave Motion, 25:361–368, 1997.

[19] R. Dautray and J.-L. Lions. Mathematical Analysis and Numerical Methods for Science
and Technology. Vol.6. Springer Verlag, Berlin, 1993.

[20] A. Derode, P. Roux and M. Fink, Robust Acoustic Time-Reversal With High-Order
Multiple-Scattering, Phys. Rev. Lett., 75, 1995, 4206–4209.

[21] D. R. Dowling, and D.R. Jackson, Narrow-Band performance of phase-conjugate arrays
in dynamic random media, J. Acoust. Soc. Am., 91, 1992, 3257–3277.
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