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Experimental set-up for a time-reversal experiment through a

multiple-scattering medium:

(a) first step, the source sends a pulse through the sample, the transmitted

wave is recorded by the TRM.

(b) second step, the multiply scattered signals have been time-reverted,

they are retransmitted by the TRM, and S records the reconstructed

pressure field.



Experimental observations

The source emits a short

1 µs pulse.

The TRM records a long

scattered signal.

Recompression at the source

location after propagation

of the time-reversed wave.



Scattering of an acoustic pulse in random media

Acoustic equations for pressure p and speed u:
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IC: left-going pulse incoming from the right homogeneous half-space.

m(z) = η(z) + ν(z), n(z) = η(z) − ν(z)

Local velocity: c(z) =
p

κ(z)/ρ(z).

Local impedance: I(z) = ρ(z)c(z).



Integral representation of the reflected signal

Send a left-going pulse f( t
ε
):
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Rε
ω(z) is the reflection coefficient for a random slab [−L, z]:
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with the initial condition at z = −L: Rε
ω(z = −L) = 0.

Energy conservation |Rε
ω|2 + |T ε

ω|2 = 1 → uniform boundedness of Rε
ω.



Numerical simulation

−160 −120 −80 −40 0 40 80 120 160

−20

0

20

40

60

80

100

120

140

160

Reflected Signal Transmitted Signal

Incoming Pulse

Random Medium

z

t



Time reversal in reflection (TR)

-

−L 0 z

�

-

(p, u)ε
ref (t)

�

(p, u)ε
inc(t)

ρ(z) = 1 + ν(
z

ε2
)

1

κ
(z) = 1 + η(

z

ε2
)

Denote pε
inc(t) = f( t

ε
).

Record pε
ref (t) up to time t1.

Cut a piece pε
ref,cut(t) = pε

ref (t)G1(t), with supp(G1) ⊂ [0, t1].

Time reverse and send back pε
inc(T R)(t) = pε

ref,cut(t1 − t).
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Expression of the refocused pulse

The incoming signal f( t
ε
)

pinc(t, z = 0) =

Z

e
iωt

ε f̂(ω)dω

propagates into the medium and generates the reflected signal:

pε
ref (t, z = 0) =

Z

e
iωt

ε f̂(ω)Rε
ω(0)dω

Record up to time t1 and cut a piece of the recorded signal (i.e.

G1(t) = 1[0,t1](t))

pε
ref,cut(t) = pε

ref (t, z = 0)G1(t)

Time-reverse and send back into the medium:
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=
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The signal is real-valued:
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The new signal propagates into the same medium and generates a new

reflected signal observed at time t2 + εt:

pε
ref(T R)(t2 + εt, z = 0) =
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ε
+iωtdω

Subsituting the expression of p̂ε
inc(T R) into this equation:
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Change of variables ω′ = ω − εh:

pε
ref(T R)(t2 + εt, z = 0) =

Z Z

eiωte
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ε f̂(ω − εh)Ĝ1(h)

×Rε
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The autocorrelation function Rε
ω′(0)Rε

ω(0) plays a primary role.

Refocusing at t2 = t1.



We have obtained:
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This results only holds true in average (averaging over all possible

realizations of the medium) !



Frequency correlation of R
ε
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pε
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Var
`

pε
ref(T R)(t1 + εt)

´ ε→0−→ 0 =⇒ Convergence in L2 and in probability of

pε
ref(T R)(t1 + εt).

Decorrelation in frequency of Rε
ω =⇒ Self-averaging in time of pε

ref(T R).



Convergence of the refocused pulse

The refocused signal
`

pε
ref(T R)(t1 + εt, z = 0)

´

t∈(−∞,∞)
converges in

probability as ε → 0 to

Pref(T R)(t) = (f(− ·) ∗ KT R(·)) (t)

K̂T R(ω) =

Z

G1(τ)V1(0, ω, τ)dτ

where V1(0, ω, τ) is the deterministic density given by the system of

transport equations.

In particular, if L → ∞:

V1(0, ω, τ) =
4αnω2

(4 + αnω2τ)2

→֒ The refocused pulse has deterministic center and shape.

→֒ There is statistical stability.



Numerical simulation
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Comparisons simulations - theory
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Application to imagery

Goal: extract the information about the large-scale properties of the

medium (ρ0, κ0)

ρ(z) = ρ0(z)
“

1 + ν(
z

ε2
)
”

1

κ(z)
=

1

κ0(z)

“

1 + η(
z

ε2

”

This information is contained in V1(0, ω, τ). The problem is to find a

statistically stable estimator of V1.

Method:

1) Compare the input pulse f(t) and the refocused pulse KTR ∗ f(−t).

→֒ Extract (K̂TR(ω))ω.

K̂TR(ω) =

Z

G1(τ)V1(0, ω, τ)dτ

2) Use different truncation functions G1 to get (V1(0, ω, τ))
ω,τ

.

→֒ large-scale variations of the medium.

Statistically stable method, no local average is needed.



Application to communications

How to send a message f(t) from E to R in a highly scattering medium ?

1) R emits a short, broadband pulse pulse f0(t).

2) E receives and records a noisy signal G(t).

3) E emits [f ∗ G(−·)](t).
4) R receives [KTR ∗ f0(−·) ∗ f ](t).

→֒ R can extract f .

(OK in ocean acoustics, difficult in electromagnetics).



Time reversal in changing media
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Denote pε
inc(t) = f( t

ε
).

Record pε
ref (t) up to time t1.

Cut a piece pε
ref,cut(t) = pε

ref (t)G1(t), with supp(G1) ⊂ [0, t1].

Time reverse and send it back pε
inc(T R)(t) = pε
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Changing media

The density and compressibility fluctuations (νi, ηi) and (νii, ηii) are

identically distributed.

Integrated correlation functions:

αn =

Z ∞

0

E[n(0)n(t)]dt, αm =

Z ∞

0

E[m(0)m(t)]dt

Degree of correlation δ ∈ [−1, 1]:
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R ∞
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R ∞
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R ∞
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R ∞
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δ = 1 ↔ complete correlation. δ = 0 ↔ complete decorrelation.

Refocused pulse:
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Asymptotics of the refocused pulse

Expectation of the autocorrelation function Rε,i
ω Rε,ii

ω :
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where v1 is given by a system of transport equations for (vp)p∈N:
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∂z
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=

1

2
δnαnω2p2 (vp+1 + vp−1 − 2vp)

−(1 − δn)αnω2p2vp − 2αm(1 − δm)ω2p2vp

vp(z = −L, ω, τ) = δ0(τ)10(p)

⇒ Convergence of the expectation of the refocused pulse:

E[pε
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ε→0−→
Z Z

eiωtf̂(ω)G1(τ)v1(0, ω, τ)dτdω

But:

E[pε
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Equivalently vp(z, ω, τ, z) = E[Vp(z, ω, τ)] where (Vp)p∈N is solution of

dVp + 2p
∂Vp

∂τ
dz = 2ipω

p

(1 − δm)αmVp ◦ dWz + (LωV )pdz

Vp(z = −L, ω, τ) = δ0(τ)10(p)

Wz is a standard Brownian motion.

Thus

E[pε
ref(T R)(t1 + εt)]

ε→0−→
Z Z

eiωtf̂(ω)G(τ)E [V1(0, ω, τ)] dτdω

• Convergence of the finite-dimensional distributions:

E
ˆ

pε
ref(T R)(t1 + εs1)

p1 . . . pε
ref(T R)(t1 + εsk)pk

˜ ε→0−→

E
h

Q
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“

R R

V1(0, ω, τ)f̂(ω)eiωsj G1(τ)dωdτ
”pj

i

• Tightness of (pε
ref(T R)(t1 + εt))t∈(−∞,∞) in the space of continuous

functions.

• Conclusion: pε
ref(T R)(t1 + εt) converges in distribution to

R R

V1(0, ω, τ)f̂(ω)eiωtG1(τ)dωdτ



Probabilistic representation of the transport equations

Consider our familiar jump (Markov) process (Nz)z≥−L with state space N

and generator

Lφ(N) =
1

2
αnω2N2 (φ(N + 1) + φ(N − 1) − 2φ(N))

Therefore (Feynman-Kac) :

Z τ1
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2i
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Z 0
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N−L−sdWs

«

×10(N0)1[τ0,τ1]

„Z 0

−L

2Nsds

«

˛

˛

˛
N−L = 1

–

where E is the expectation w.r.t the distribution of (Nz)z≥−L



Convergence of the refocused pulse

The refocused signal
`

pε
ref(T R)(t1 + εt, z = 0)

´

t∈(−∞,∞)
converges in

distribution as ε → 0 to

Pref(T R)(t) = (f(− ·) ∗ KT R(·)) (t)

K̂T R(ω) =

Z

G1(τ)V1(0, ω, τ)dτ

where V1(0, ω, τ) is the random density given by the system of transport

equations driven by the Brownian motion Wz .

→֒ The refocused pulse has random center and shape.

→֒ There is no statistical stability.
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Changing medium
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Refocused pulses

Comparison of the refocused pulses from the numerical experiments and the

expected refocused pulse shape obtained by the asymptotic theory.

Only the density is random κi = κii ≡ κ0 = 1 ⇒ αm = αn.



Mean refocused shape

E[Pref(T R)(t)] = (f(− ·) ∗ E[KT R](·)) (t)

E[K̂T R](ω) =

Z

G1(τ)E[V1(0, ω, τ)]dτ

For large slab L → ∞:

E[V1(0, ω, τ)] =
α0ω
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«–2

where

α0 = αn + 2(1 − δm)αm δ0 =
δnαn

αn + 2(1 − δm)αm

If G1(t) = 1[0,t1](t),

E[K̂T R](ω) = δ0

tanh

„√
1−δ2

0α0ω2t1

4

«

p

1 − δ2
0 + tanh

„√
1−δ2

0α0ω2t1

4

«



Conclusion

Statistical stability of the refocused pulse depends on the statistical

properties of the reflection coefficient R.

Asymptotic framework ε → 0:

- Frequency decorrelation of R.

- Moments of R satisfy a system of transport equations.

- Representation in terms of a canonical jump Markov process on the

nonnegative integers.

Refocusing is robust. Observation of a refocused pulse as soon as the

correlation degree is positive.

No statistical stability if the medium is changing (except in special cases).


