Ultrasound experiment by M. Fink

cf. A. Tourin, M. Fink, and A. Derode, Multiple scattering of sound, Waves
Random Media 10 (2000), R31-R60.
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Time-reversed signals

MRT

(a) (b)
Experimental set-up for a time-reversal experiment through a
multiple-scattering medium:
(a) first step, the source sends a pulse through the sample, the transmitted
wave is recorded by the TRM.
(b) second step, the multiply scattered signals have been time-reverted,
they are retransmitted by the TRM, and S records the reconstructed

pressure field.



Signal transmitted in water and received on transductor 64

W
=
2
(@) =
=
<
20 40 60 80 100 120 140 160
Time (us)
Signal transmitted through the multiple scattering samplc
and received on transducer 64
()
o
® =
=
£
<
20 40 60 80 100 120 140 160
Time (us)
Signal received on the source
4
=
2
(©) =, -
=
<

20 40 60 8O 100 120 140 160

Time (us)

Experimental observations

The source emits a short

1 us pulse.

The TRM records a long
scattered signal.

Recompression at the source

location after propagation
of the time-reversed wave.



Scattering of an acoustic pulse in random media

Acoustic equations for pressure p and speed u:
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IC: left-going pulse incoming from the right homogeneous half-space.

m(z) =n(z) +v(z), n(z) =n(z) - v(z)

Local velocity: ¢(z) = v/k(2)/p

Local impedance: I( ) = p(2)c ( )



Integral representation of the reflected signal

Send a left-going pulse f():

e t twt A
pinc(tiz =0) = £() = [ flw)d
Reflected signal:
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R;,(2) is the reflection coefficient for a random slab [—L, z]:

dR; W,z W,z _2iwz 9 W,z Ziwsz
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with the initial condition at z = —L: R, (z = —L) = 0.

Energy conservation |RS|? + |T5]? = 1 — uniform boundedness of RS,.



Numerical simulation
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Time reversal in reflection (TR)

(P u)7ne(t)

p(z) = L+ v(5)
/\f\/\/\/\/ 1 SZ < /\
(p7u)7€“ef(t)
—L 0 "2 V

Denote pfe(t) = £(4).

Record p;..((t) up to time t;.

Cut a piece Py cus(t) = Dres(t)G1(t), with supp(G1) C [0, t1].
Time reverse and send back p;,.rr)(t) = Pref,cut(tt — 1)
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Expression of the refocused pulse

The incoming signal f(£)

pinc(t, Z = 0) — /ei(:t f(w)dw

propagates into the medium and generates the reflected signal:

P (t,z = 0) = / e F(w) RS (0)duw

Record up to time t; and cut a piece of the recorded signal (i.e.

G1(t) = 1j0,4)(t))
pief,cut (t> — pf’ef (ta & = 0>G1(t>

Time-reverse and send back into the medium:
pz(?nc(TR) (ta z = 0) — p’r‘ef tl - t)Gl (tl o t)

tw(t t) ~ /
// T pres(w)Gh (w )Jdw'dw

The signal is real-valued:

iw(t—t1) = W — w/
pznc(TR) (t Z = O // € pref( )G ( - )dw'dw



The new signal propagates into the same medium and generates a new

reflected signal observed at time {2 + £t:

wtq
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Subsituting the expression of p;, .7 gy into this equation:

’Lw(tg t]_) w — w

pief(TR)(t2‘|‘5taZ:0 = // f( )Gl(
R (0)RE,(0)dw'dw.

)

Change of variables w’' = w — eh:

- W(tQ t1) = =
Pesirm (t2 + ct, 2 = 0) / / =2 F (w0 — eh)Ca (h)

(0) R;

w—eh

(0)dh dw.

The autocorrelation function R?,(0)R;,(0) plays a primary role.

Refocusing at to = t;.



We have obtained:

w—|—% w— Eh

E|R°  n(0)R® _, (0)} =2 [ Va0, w,T)e" T dr
In the time domain:
€ €—>0 Tw ’\
E [pfr’ef(TR) (tl + €t)} // t )

X U Vi(0,w,m)e” "dr | dh dw

— // wt p (7)V1(0, w, 7)drdw

= /Mf( )K7R(w)dw
=  (f(=)* Krr)(t)

where

Krg(w /G1 Wi (0, w, 7)dr

This results only holds true in average (averaging over all possible

realizations of the medium) !



Frequency correlation of R

Let us consider the forth-order moment at 4 different frequencies of R,
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Preserr)(t1 +et) = / / 6i”t9(w,h)RZ+¢Rj_¢dwdh
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Var (pie rrr)(t1 + 675)) "5 0 = Convergence in L? and in probability of
Pref(rr)(t1 +€t).

Decorrelation in frequency of R, = Self-averaging in time of p;(rp)-



Convergence of the refocused pulse

The refocused signal (pf, rrr)(ti +ét, 2 = 0)) converges in

te(—o0,00)
probability as € — 0 to

Preprr)(t) = (f(—= ) * Krr(")) (1)

Krr(w) = / G1(T)V1(0,w, 7)dT

where V1 (0,w, 7) is the deterministic density given by the system of

transport equations.

In particular, if L — oc:

4anw2

V1(07w77-) — (4 _|_ Oénw27-)2

— The refocused pulse has deterministic center and shape.

— There is statistical stability.
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Comparisons
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Application to imagery

Goal: extract the information about the large-scale properties of the

medium (po, ko)

This information is contained in V1 (0,w, 7). The problem is to find a

statistically stable estimator of Vj.

Method:
1) Compare the input pulse f(¢) and the refocused pulse Ktr * f(—1).
< Extract (KTr(w))e.

Ron(w) = / G1(F)Vi (0, w, 7)dr

2) Use different truncation functions G1 to get (Vi(0,w, 7)),

T

— large-scale variations of the medium.

Statistically stable method, no local average is needed.



Application to communications

How to send a message f(t) from E to R in a highly scattering medium ¢
1) R emits a short, broadband pulse pulse fo(%).

2) E receives and records a noisy signal G(t).

3) E emits [f « G(—-)](¢).

4) R receives [KTr * fo(—) * f](t).

— R can extract f.

(OK in ocean acoustics, difficult in electromagnetics).



Time reversal in changing media

Medium ’l, (p7 u)fnc(t)
: VAN
VYNNG g <
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Denote puc(t) = (L),

Record p;..¢(t) up to time ¢;.

Cut a piece Py cut(t) = Dres(t)G1(t), with supp(G1) C [0, t1].
Time reverse and send it back p;,.crr)(t) = Pref,cut(t1 — 1).
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Changing media

The density and compressibility fluctuations (v;,n;) and (v44, i) are
identically distributed.

Integrated correlation functions:
o = / En(O)n()|dt,  om = / E[m(0)m(¢)]dt
0 0

Degree of correlation 0 € [—1, 1]:

I Elm;(0)ma(t)]dt 5 _ I E[ni(0)ni(t)]dt
[ E[m@() ()]dt " [ Eni(0)na(t))dt

0 = 1 < complete correlation. 0 = 0 < complete decorrelation.

Om =

Refocused pulse:

Poesirm (b + ety 2 = 0) = / / e f(w — eh)Ciay (h)
X

RS™(0)RE" _, (0)dh dw

where the reflection coefficient RS;* satisfies the Ricatti equation:

dR;)" W z
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Asymptotics of the refocused pulse

Expectation of the autocorrelation function RS RS

E|R**., (0)R*" (O)] ﬂ/vl(O,w,T)e_ithT

o o

where v; is given by a system of transport equations for (vp)pen:

0V, Ov 1
a —1_ 2p a: — §5nanw2p2 (’Up_|_]_ —1_ Up_l T 2Up)

—(1 = 8, nw’p vy — 20m (1 — 6 )w’p vy
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= Convergence of the expectation of the refocused pulse:

Elprerrr)(ti + €t) 8;(2// Wt (7)v1(0,w, 7)dTdw

But:

Blpfescrm s+ et - | [ [ F@)Ga(on (0,0, m)drd



Equivalently v, (z,w, T, 2) = E[V,(2,w, 7)] where (V})pen is solution of

%Vp dz = 2ipwr/(1 — Sm)amVp o dW, + (L, V)pdz

VP(Z — _vaﬂ-) — 50( ) O(p>

dVy + 2p

W, is a standard Brownian motion.

Thus

]E[pref(TR) tl + 5t ] ﬂ) // th G(T [Vl (O w 7')] deCL)

e Convergence of the finite-dimensional distributions:

e—0

E [presrmy(ti +es0)™ o pleprm (t + k)P ] —

E [H1§j§k (f f Vi (O,w,T)?(w)einj Gl(T)dwd7->Pj}

e Tightness of (py.;rr)(t1 +€t))te(—co,00) N the space of continuous

functions.

e Conclusion:  p,;rr)(t1 + &t) converges in distribution to

[ JVA(0,0,7) f(w)e™ G (7)dwdr



Probabilistic representation of the transport equations

Consider our familiar jump (Markov) process (N;).>_1 with state space N

and generator

LO(N) = Jome* N (S(N +1) + $(N — 1) — 26(N)

Therefore (Feynman-Kac) :
/ Vi(O,w,7)dr = E {exp <2i\/am(1 — 5m)w/ N_L_des)
_ —L

0
0
Xlo(No)]_[TO,Tl] (/ 2N3d8> ) N_L = 1]

—L

where E is the expectation w.r.t the distribution of (IV.),>_r,



Convergence of the refocused pulse

The refocused signal (pf, rrr)(ts +et, 2 = 0)) converges in

te(—o0,00)
distribution as € — 0 to

Preprr)(t) = (f(—= ) * Krr(")) (1)

Ron(w) = / G (7)VA (0, w, 7)dr

where Vi (0,w, 7) is the random density given by the system of transport

equations driven by the Brownian motion W..
— The refocused pulse has random center and shape.

— There is no statistical stability.
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Refocused pulses

Comparison of the refocused pulses from the numerical experiments and the

expected refocused pulse shape obtained by the asymptotic theory.
Only the density is random k; = ki; = ko = 1 = am = an.



Mean refocused shape

E|Presrr)(t)] = (f(= ) * E[KTr](")) (1)
]E[KTR]((U) = /G1 (T)]E[Vl (O,w, T)]dT

For large slab L — oc:

2
E[Vi(0,w, 7)) = 2020

4

where

'V —02apw?3T
{1—1— 1 tanh( L7000

ao = an + 2(1 — dm)am, do =

If G1(t) = 1y0,4,1(2),

4

tanh ( \/ 1—58a0w2t1 )

E[KTR](W) = 50

—20400
\/1—58—|—tanh(vl 5040 "t
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Conclusion

Statistical stability of the refocused pulse depends on the statistical

properties of the reflection coefficient R.

Asymptotic framework € — O:

- Frequency decorrelation of R.

- Moments of R satisfy a system of transport equations.

- Representation in terms of a canonical jump Markov process on the

nonnegative integers.

Refocusing is robust. Observation of a refocused pulse as soon as the

correlation degree is positive.

No statistical stability if the medium is changing (except in special cases).



