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p Summary

Physical context

numerical simulation of Inertial Confinement Fusion targets
hydrodynamical instabilities in imploding capsules

Physical modeling

kinetic equations for photons and supra-thermal particles
binary mixtures

Mathematical tools

asymptotic analysis (homogenization theory)

renewal theory (random process on the line)

Numerical computation of effective coefficients
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p Inertial Confinement Fusion

Lawson’s criterium must be fulfilled to achieve nuclear fusion:

density × Confinment time ≥ C(Temperature).(1)

There are three ways to satisfy this constraint:

i/ Long confinement time⇒ Magnetic Confinement fusion

ii/ High density⇒ Inertial Confinement fusion (ICF)

iii/ High density and long time ⇒ Gravitational Confinement fusion

In ICF, explosion of the pusher (usually plastic) compress the fuel (isotope of
hydrogen) and creates a plasma which eventually ignites
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p Inertial Confinement Fusion

There are numerous ways to implode the pusher:

Laser energy irradiating the capsule

Heavy ions beams

X-ray

Several laboratories are currently working on the design of such fusion
experiments with different energy driver and different capsule design[Lin98].
One challenge is to extrapolate knowledge from today’s experiments to specify a
target which can perform ignition: use of numerical simulation.
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p Hydrodynamic Instabilities

One of the major limiting process for ICF is the stability of implosion :
hydrodynamic motion is not stable when ∇P · ∇ρ < 0 (i.e. when a "light"
material pushes a "heavy" material).
It means that a given default of wavelength λ at the pusher/fuel interface will
grow

1. linear stage: default grows as exp(γ(λ)t)

2. non linear stage:

saturation of growth

coupling between wavelength

3. turbulent stage with fuel/pusher mixing

The importance of each phase depends on the rugosity of the interface and the
design of the capsule (convergence ratio, implosion law, ...).
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p Hydrodynamic Instabilities

These instabilities alter the efficiency of implosion

Large instabilities can lead to pusher break-up ⇒ no fusion reaction

Moderate instabilities can significatively reduce the number of reactions

Density map during implosion and nuclear burn

The problem we want to address is the modeling of particle transport in this kind
of simulation.
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p Physical modeling in ICF hydrocode

Hydrocodes are the basic tool for studying the implosion phase[DW93]. They
include all necessary physical packages with simplifications due to simulation
constraints:
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p Physical modeling in ICF hydrocode

Concerning particle transport, they distinguish

thermal particles at equilibrium (maxwellian) distribution ⇒ Fluid equations
thermal ions → ionic temperature Ti

thermal (free) electrons → electronic temperature Te

non thermal particles ⇒ kinetic equations

non-thermal ions coming from nuclear reactions

photons coming from laser7→X-ray conversion
bound electrons in coronal plasma
hot-electrons generated by laser-plasma instabilities
neutrons
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p Modeling for photons

Radiative transfer equations are to be solved.

during compression phase for X-ray driven implosion

during combustion: radiative losses determine the beginning of nuclear
reactions

Photons are described by radiative intensity I(x,
−→
Ω , ν, t) solution of8><>: 1

c
∂tI +

−→
Ω · ∇I + σν(T )I = σνc

Bν(T )

4π
transport of radiation

∂tE(T ) +

Z

dνd
−→
Ωσν(T )(c

Bν(T )

4π
− I) = 0 energy balance equation

Bν is the Planck distribution ( equilibrium distribution function for photons) and
σν is the opacity.
The relevant quantity for the transport of radiative energy is the Rosseland mean
free path [LPB83].

λ =

Z
∂T Bν

σν(T )
dνZ

∂T Bνdν
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We would like to define an effective mean free path in the mixing zone.
First step is to simplify the problem:

we consider a linear problem with one single equation

neglect the dependency of σν(T ) with respect to ν and T (grey
assumption).

We are reduced to an integro-differential equation

1

c
∂tφ +

−→
Ω · ∇φ + σ(x)(φ −

Z
φ

d
−→
Ω

4π
) = 0

where σ(x) = σf in fuel and σ(x) = σp in pusher.
Results concerning the effective mean free path will then be extended without
justification to the non-linear and non-grey case.
There are also some effects of the averaging procedure on the equilibrium
temperature [Cl97]: we will not consider them here.
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p Modeling for non-thermal ions

We consider Deuterium targets. Relevant nuclear reactions are

Primary reactions secondary reactions(

D + D → T + H

D + D → He3 + n

n

D + T → He4 + H

One question is to know if T will stop in the fuel (and can react with D) or in the
pusher.
Particles created by nuclear reactions are not at equilibrium and satisfy
Fokker-Planck equation for their distribution function f :

∂tf + v · ∇f + ∂v(af + D∂vf) + q(E + v × B) = S.

Effects of electromagnetic fields are usually neglected and trajectory of particles
are approximated by straight lines (angular deflection becomes dominant near
thermalization):

∂tf + v · ∇f + ∂v(af) = S.

It describes the slowing down of particles until they go back to the background of
thermal particles.
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p Binary mixtures

The basic method for solving these problems is direct numerical simulation of
hydrodynamic and particle transport. The drawbacks are:

Excessive computational cost (necessity of fine mesh)

complexity of numerical methods (kinetic equations with mixed cells and
interface tracking)

Alternative approach is the following

use a semi-statistical model for instability growth in the non-linear and
pre-turbulent stage[RS04].

us a subgrid model for particle transport.
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p Binary mixtures

Exact structure of the mixing layer is not known: a random medium assumption
is natural. We introduce random variables χf (x, ω) and χp(x, ω) = 1− χf (x, ω)

such that
χf (x, ω) = 1, if x is in fuel and 0 otherwise

To obtain a subgrid model, it is necessary to suppose that statistical properties
of χ vary slowly with respect to radius, i.e. χ is an homogeneous random field.
Available knowledge on χ is

volume fraction cf =

Z

χf (x, ω)P (dω)

characteristic length scale: this notion is not well defined.
correlation length

d(
−→
Ω) =

Z ∞

0

�Z
(χf (x, ω) − cf )(χf (x +

−→
Ωh, ω) − cf )P (dω)

�

dh

mean chord length lf (
−→
Ω)( 6= lp(

−→
Ω))

If medium is isotropic d(
−→
Ω) and lf (

−→
Ω) do not depend on −→

Ω .
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p Binary mixtures

If ergodicity is assumed, we can replace statistical means by spatial averages.

cf = lim
V →R3

1

|V |

Z

V
χf (x, ω)dx

d = lim
V →R3

1

|V |

Z ∞

0

�Z

V
(χf (x, ω) − cf )(χf (x +

−→
Ωh, ω) − cf )dx

�
dh

Higher moments can be considered for characterizing the distribution but it is
difficult to obtain them from hydrodynamical statistical models: a good model for
d is already a challenge.
An important relation is:

cf =
lf

lf + lp
, cp =

lp

lf + lp
.

As I am interested in computation of effective coefficients, I will give some
examples that can be used for simulations.
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p Examples of binary mixtures

The simplest example is the stratified medium

If (Li
p)i are independent random variables with identical distribution of mean

ELp(idem for (Li
f )i with mean ELf ) then the random field χ(x, ω) is ergodic but

not isotropic

cf =
ELf

ELf + ELp
, cp =

ELp

ELf + ELp
, lf (

−→
Ω) =

ELf

cos(
−→
Ωx)

.

This model is the basic model for applying renewal techniques (see below). If
random variables have exponential distribution, random medium is markovian
and we can compute the correlation length

d(
−→
Ω x) =

(cpcf )2

cos(
−→
Ωx)

�

ELf + ELp

�
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p Example of binary mixture

Construction of multidimensional medium with markovian statistics is not
obvious. One possibility is to combine two markovian renewal processes

Mean chord length is lf =
ELElf

cos
−→
Ωx

Elf Elp

Elf + Elp
+ sin

−→
ΩxELElf

.

Medium is markovian and ergodic but not isotropic.
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p Examples of binary mixtures

One algorithm for constructing isotropic binary mixture with markovian statistics
is described in [Swi65]:

1. For given radius R, choose randomly n =
πR

λ
couples (θi, ρi) in

(0, π) × (−R, R).

2. The n lines x cos(θi) + y sin(θi) = ρi define polygonal cells with mean
chord length λ.

3. Fill each cell with material p or f according to the volume fraction

4. The resulting mean chord length is lf =
λ

cp
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p Examples of binary mixtures

Frequent modeling use inclusion of spheres (or disk in 2D).

Center of spheres obeys Poisson statistic

radius are random variables with given PDF F (r) of mean Er (constant
radius is a particular case).

For overlapping spheres[TL93], chord length PDF for the background medium is
exponential.
For non overlapping spheres[OMLM05] chord length PDF for the background
medium is approximately exponential and chord length PDF for spheres is

d(r) =
r

4〈r〉
Z ∞

r/2

F (s)p
s2 − (r/2)2
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p mathematical tools: homogenization

Homogenization theory is a popular tool for computing effective coefficients: it
relies on separation of scales

ε =
d

δ
=

correlation length
size of the mixing zone

≪ 1.

First, it has been applied to elliptic problems in periodic medium [BLP78].

Extension to more general medium has been extensively studied
[Koz80][Tar79][All92]. Application to random medium requires strong
assumptions on the random field: existence of measure preserving
transformation τx such that χ(x, ω) = χ̃(τxω). It can be difficult to prove
this property for a given random medium (for example non overlapping
spheres).

Extension to kinetic equations has been made in
[BLP79][Sen80] [Gol91][Cl98][DG00].

Computation of effective coefficients for elliptic equations in random
medium is based on periodization of a finite sample of the
medium[BP04][BDW04].
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p mathematical tools: renewal theory

Renewal theory is a well known probabilistic tool[Fel66] aimed at studying
random events on a line. Basic tools are

The renewal measure U defined by U =

P∞
0 F ∗n where F is the PDF for

chord length of the medium (p + f ).

The renewal theorem which states that

lim
x→∞

U((x, x + dy)) =
dyZ

zF (z)dz

The renewal equation obtained by conditional expectation on the length of
the first chord. This equation can be explicitly solved only for markovian
statistics.
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p Comparison of the methods

Homogenization theory

rigorous derivation of the limit: deterministic behavior of the limiting
PDE.
Need for numerical simulations to compute effective coefficients

Renewal theory
Need to approximate the random geometry

Neglect scattering

Analytic computation of effective coefficients

We will compare these two approaches on the transport of photons and
suprathermal particles in binary (random) mixtures.
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p Application to slowing down

We consider the following PDE in random media:

∂tf + v · ∇f + k(x)∂v(a(v)f) = 0, k(x) = kf χf (x, ω) + kpχp(x, ω)

f(x, v, t = 0) = 1
x∈ fuelδ(v − v0)

This is really a 1D problem: renewal theory can be rigorously applied if we
assume that along each line, chords of pusher and fuel are independent random
variables with same distribution.
Particular interpretation of this PDE is simple:

Characteristic curves are8><>: dX(t)

dt
= V (t)

dV (t)

dt
= −k(X(t))a(V (t))

=⇒

8<: dH(V (t)) = −k(X(t))dX(t),

H(V ) =

Z V

0

v

a(v)
dv

Particle is created at x = 0 in the fuel with "energy" H0 = H(v0).

When crossing a chord of length Li(i = f, p), "energy" decreases by kiLi

Particle stops when energy is 0.

Question is: what is the probability P that particle stops in fuel (and may react
again) or in pusher. – p. 22



Let Xe be the end of the trajectory defined by

H0 = kf (X1
f − 0)| {z }

L1

f

+kp (X1
p − X1

f )| {z }
L1

p

+kf (X2
f − X1

p)| {z }
L2

f

+ . . . + ki(X
e − Xn

i )

Distribution of L1
f is slightly differenta from other lengths because x = 0 is not

necessary the beginning of a chord.
Homogenization scaling requires that mean chord lengths lf and lp are small in
front of slowing distances in homogenous materials H0/kf and H0/kp.

Let ε =
kpll

H0
. We introduce the scaling X → X/ε and H0 → H0/ε.

In this scaling, chord lengths are of order 1 and initial energy of particle goes to
infinity.

a
except for markovian distribution
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P = P

0�Xe ∈

[

n≥1

(Xn
p , Xn+1

f )

1A

=

G

n≥1

P

0�n−1X

j=1

(kf Lj
f + kpLj

p) < H0 <

n−1X
j=1

(kfLj
f + kpLj

p) + kf Ln+1
f

1A

We introduce the renewal measure

U(x, dx) =

G
n≥1

P

0�n−1X
j=1

(kf Lj
f + kpLj

p) ∈ (x, x + dx)

1A

⇒ P =

Z ∞

0
U(x, dx)P (x < H0 < x + kf Ln+1

f )

Let F (u) = P (kf Ln+1
f > u)1u>0, P =

Z ∞

−H0

U(x + H0, dx)F (−x).

Using renewal theorem

lim
H0→∞

P =

Z ∞

−∞

F (x)dx

kf lf + kplp
=

kf cf

kf cf + kpcp – p. 24



Same result can be proved using homogenization theory [Gol04]
(kε(x) ⇀ kf cf + kpcp).
Interest of renewal method is that it provides a result without assumption on the
characteristic length scale[LZ93]. Denote

Pf (H) = P (particle starting from fuel with energy H will stop in fuel)

Pp(H) = P (particle starting from pusher with energy H will stop in fuel)

We establish renewal equation:

Pf (H) =

Z ∞

0
Pf (H/Lf = l)P (Lf = l)dl

=

Z H/kf

0
Pf (H/Lf = l)P (Lf = l)dl +

Z ∞

H/kf

Pf (H/Lf = l)P (Lf = l)dl

=

Z H

0
Pp(H − h)P (kf Lf = h)dh + P (kf Lf > H)
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Similarly

Pp(H) =

Z ∞

0
Pp(H/Lp = l)P (Lp = l)dl

=

Z H/kp

0
Pp(H/Lp = l)P (Lp = l)dl +

Z ∞

H/kp

Pp(H/Lp = l)P (Lf = l)dl

=

Z H

0
Pf (H − h)P (kpLp = h)dh

Knowing distribution functions for Lp and Lf we can solve this two coupled
convolution equations.
Simplest case is markovian distribution
P (Lf = l) = exp(−l/lf )/lf , P (Lp = l) = exp(−l/lp)/lp.
Equations are solved by taking Laplace8><>: P̂f (s) =

Z ∞

0
e−hsPf (h)dh

P̂p(s) =

Z ∞

0
e−hsPp(h)dh
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8>>><>>>: P̂f (s) =
P̂p(s)

kf lf (s + 1/(kf lf ))
+

1

s + 1/(kf lf )

P̂p(s) =
P̂f (s)

kplp(s + 1/(kplp))

Solving the system and taking inverse Laplace transform gives

Pf (H) =
kf lf + kplp exp

�
−H(1/(kf lf ) + 1/(kplp))

�
kf lf + kplp

All calculations based on renewal equation use the same technique:

Take conditional expectation with respect to the length of the first chord.

Obtain a system of coupled convolution equations

Solve by taking Laplace transform
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p Extension to 3D geometries

Previous formula in only valid for markovian random medium: how does it
behave on arbitrary random medium?
We study slowing down in a random medium given by spherical inclusions of
pusher in the fuel ( given radius r and with overlapping).
The approach used is:

Find asymptotic values for P (H) when rkp/H ≪ 1 and rkp/H ≫ 1.

Propose a generic formula depending on weight function exp(−rkp/H)

and having the correct limiting behavior.

Fit the formula on numerical simulations

For rkp/H ≪ 1, homogenization applies,

P (H) ∼ kf cf

kf cf + kpcp
.
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For rkp/H ≫ 1, slowing power of spheres is large.
Probability of stopping in a sphere ∼ probability that distance d(X0,S) between
the starting point X0 and the spheres S is less than H/kf .

P (H) ∼ 1 − P(d(X0,S) ≤ H

kf
/X0 ∈ Sc) = 1 −

P(d(X0,S) ≤ H
kf

)

cf

P(d(X0,S) ≤ H
kf

) is just the probability that at least one center lies in a cylinder

C of radius r and length H
kf

Number of centers in a volume V = πr2 H
kf

is a random variable N

P(N = n) = e
−

3cp|V |

4πr3 1
n!

(
3cp|V |

4πr3 )n. Hence

P(H) ∼ 1 − 1 − e
−

3Hcp
4kf r

cf
∼ 1 − 3Hcp

4rcf kf
∼ exp(− 3Hcp

4rcf kf
)

Finally, we propose the formula (with A to be fitted)

P = exp(− 3Hcp

4rcf kf
)(1 − exp(−Arkp/H)) +

kf cf

kf cf + kpcp
exp(−Arkp/H). – p. 29



p Extension to 3D geometries

Numerical simulations are detailed in [CPS04]: A ∼ 1 gives correct results.
We now compare results from renewal theory (on a non-markovian geometry),
numerical simulations and fitted analytical formula in planar geometry.
We set lp = π/2r, lf = lpcf /cp
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kpr = 0.1, kp = 9kf kpr = 1, kp = kf

The two formulas share the same asymptotical behavior and do not differ so
much in intermediate cases (compared to numerical results).
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p Application to linear transport

The transport process is solution of

∂tφ +
−→
Ω · ∇φ + (σpχp(τxω) + σfχf (τxω))(φ −

Z
φ

d
−→
Ω

4π
) = 0.

Rescaling for homogenization theory:

small scale hypothesis ε = d
δ
≪ 1.

High contrast ratio between fuel and pusher opacity q =
σf

σp
≪ 1.

We obtain

∂tφ
ε,q +

−→
Ω · ∇φε,q + (

σp

q
χp(τx/εω) + σfχf (τx/εω))(φε,q −

Z

φε,q d
−→
Ω

4π
) = 0.

and we let ε, q → 0.
The result depends on the optical depth of heterogeneities.
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p Application to linear transport

There are three cases

ε ≪ q. First apply homogenization theory[DG00]

φq ⇀ φq , ∂tφ
q +

−→
Ω · ∇φq + σ̃(φq −

Z
φq d

−→
Ω

4π
) = 0.

with effective opacity σ̃ =
σp

q
cp + σf cf . It is then possible to apply

diffusion approximation after proper time rescaling:

φq(t/q) → Φ, ∂Φ =
1

3cpσp
∆Φ.

q ≪ 1.
First apply diffusion approximation in the pusher without time
rescaling[RS91].
φε,q ∼ χp(τx/εφq

p + χf (τx/εω))φf where (φf , φq
p) are solution of a

coupled system of PDE8><>: ∂tφf +
−→
Ω · ∇φf + σf (φf −

Z

φf
d
−→
Ω

4π
) = 0 in fuel

∂tφ
q
p =

q

3σp
∆φq

p in pusher

with appropriate boundary conditions.
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Finding effective behavior of this system when ε → 0 is an open problem
(related studies are billiard problems with finite horizon hypothesis ).

ε ∼ q. Diffusion approximation and homogenization operate at the same
scale: classical techniques apply[BLP78][Cl98].

The rescaled equation writes as

∂tφ
ε +

−→
Ω · ∇φε + (

σp

ε
χp(τx/εω) + σfχf (τx/εω))(φε −

Z
φε d

−→
Ω

4π
) = 0.

We rescale time and insert formal asymptotic expansion

φε = φ0(x, t) + εφ1(x,
−→
Ω , τx/εω, t) + ε2φ2(x,

−→
Ω , τx/εω, t) + . . .

Under suitable technical assumption on the random field[Cl98], one can prove

that φε → Φ(x, t) (deterministic function) solution of ∂tΦ =
1

3σ̃
∆Φ where σ̃ is

obtained by solving a cell problem.
We note also D̃ = 1

3σ̃
the effective diffusion coefficient.
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p The cell problem

In periodic medium (χ(y) T−periodic), find −→g (y,
−→
Ω) solution of

−→
Ω .∇−→g + σpχ(y)(−→g −

Z

−→g d
−→
Ω

4π
) =

−→
Ω , 3σ̃ =

 
1

|T |

Z
T

dy

Z
−→g i ·

−→
Ω i

d
−→
Ω

4π

!−1

Extension to random case uses the infinitesimal generator defined on random
functions

Df(ω) = ∇xf(τxω)|x=0.

Poisson equation for −→g (ω,
−→
Ω) becomes

−→
Ω .D−→g +σpχ(ω)(−→g −

Z
−→g d

−→
Ω

4π
) =

−→
Ω , D̃ = 3σ̃ =

 Z
P (dω)

Z

−→g i ·
−→
Ω i

d
−→
Ω

4π

!−1

Effectively solving this problem requires to reduce it to a periodic problem([BP04]
for a proof for elliptic equations, not proven for kinetic equations?):

Generate a sample of random medium of size L

Solve Poisson equation with periodic boundary conditions

Let L → ∞
Consequence: Solving the cell problem is as difficult as solving the original one. – p. 34



p Alternative expression for D: Kubo’s formula

Consider the markov process (X(t),
−→
Ω(t)):

dX(t)

dt
=

−→
Ω(t)

−→
Ω(t) jump process with intensity σ(X(t))

Then

−→g i(x,
−→
Ω) =

Z ∞

0
E(

−→
Ω i(t)/X(0) = x,

−→
Ω(0) =

−→
Ω)dt

D̃ =
1

3

Z ∞

0
E(

−→
Ω(0) · −→Ω(t))dt

For computational purpose, we notice that

EXi(t)
2 =

Z t

0

Z t

0
EE(

−→
Ω i(s)

−→
Ω i(u))dsdu = 2

Z t

0

Z s

0
EE(

−→
Ω i(s)

−→
Ω i(u))dsdu

= 2t

Z t

0
E(

−→
Ω(0)i

−→
Ω i(s))ds − 2

Z t

0
sE(

−→
Ω i(0)

−→
Ω i(s))ds

Hence D = lim
t→∞

EXi(t)
2

2t
.

⇒ Need to simulate Random walk in random media.
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p Solution of the cell problem

It is enough to consider periodic case: note σ(y) the periodized sample of the
random opacity and T its period.
There is an analytic solution in stratified medium (1D case): cell problem is

µ∂yg + σ(y)(g −

Z 1

−1
g

dµ

2
) = µ, 3σ̃ =

�
1

|T |

Z
T

dy
Z 1

−1
µg

dµ

2

�−1

integrate with respect to µ: ∂y

Z 1

−1
µgdµ = 0 ⇒

Z 1

−1
µgdµ does not

depend on y.

Multiply by µ: µ2∂yg + σ(y)(µg − µ
Z 1

−1
g

dµ

2
) = µ2

Integrate with respect to µ:
Z 1

−1
µ2∂ygdµ + σ(y)

Z 1

−1
µgdµ =

2

3

Integrate with respect to y: σ̃ =
1

|T |

Z
T

σ(y)dy = 〈σ〉

Hence in 1D geometry, effective opacity is always an arithmetic mean 〈σ〉.
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p Extension to 3D geometries (isotropic case)

For arbitrary geometry, cell problem cannot be solved analytically but bounds
can be exhibited[Cl98].

D̃ = D0 − fpσpE

∞X

n=0

F (κ0)F (κn)

(

(κn)n≥0 Ergodic markov chain
F centered random variable

2E

∞X

n=0

F (κ0)F (κn) = EF (κ0)2 + lim
N→∞

E

 
1√
N

NX
n=0

F (κn)

!2

≥ 0,

Hence σ̃ ≥ σvdh =
1

3D0
.

D0 =

Z
d
−→
Ω

4π

Z
P (dω)
Z ∞

0
dte

−

Z t

0
σ(

−→
Ω s, ω)ds

.

Integration takes place only along straight lines (no scattering): knowing chord
length distributions of fuel and pusher, it can be computed using renewal
techniques (see [Vdh88]).
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p Renewal effective opacity

Replace scattering by absorption:

∂tφ +
−→
Ω · ∇φ + σ(x)φ = 0.

Solve along characteristics: s = x +
−→
Ω t

∂sφ + σ(s)φ = 0 ⇒ φ(s) = e
−

Z s

0
σ(y)dy

Effective opacity is defined by e−σ̃s = Ee
−

Z s

0
σ(y)dy

.

σ̃ =

�Z ∞

0
e−σ̃sds

�−1

=

0B�Z ∞

0
Ee

−

Z s

0
σ(y)dy

ds

1CA−1
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Define gf (x) = E(e
−

Z x

0
σ(y)dy

/0 ∈ f), gp(x) = E(e
−

Z x

0
σ(y)dy

/0 ∈ p).
Effective diffusion is

D0 = cf

Z ∞

0
gf (x)dx+cp

Z ∞

0
gp(x)dx = cf ĝf (0)+cpĝp(0) (Laplace transform)

Renewal equations are (for markovian statistics)8>>><>>>: gf (x) =

Z x

0
gp(x − y)e−σf y e−y/lf

lf
dy +

e−(σf +1/lf )x

lf (σf + 1/lf )

gp(x) =

Z x

0
gf (x − y)e−σpy e−y/lp

lp
dy +

e−(σp+1/lp)x

lp(σp + 1/lp)

Taking Laplace transform and solving gives

1

3D0
= σvdh =

〈σ〉 + cf lpσpσf

1 + cf lp(σf + σp − 〈σ〉) .
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p Extension to 3D geometries

We consider imbedding of pusher spheres in the fuel and use the same
approach as for slowing down problem. We neglect opacity in fuel σf = 0.

Find asymptotic values for σ̃ when σpr ≪ 1 and σpr ≫ 1 (optical depth of
one single sphere).

Propose a generic formula depending on weight function exp(−c2f σpr)

and having the correct limiting behavior.

Fit the formula on numerical simulations

For σpr ≪ 1, σ̃ ∼ 〈σ〉 = cpσp

For σpr ≫ 1 and σf = 0:
Effective diffusion coefficient writes as

D = cp

Z ∞

0
E(

−→
Ω(0)

−→
Ω(t)/0 ∈ p)dt + cf

Z ∞

0
E(

−→
Ω(0)

−→
Ω(t)/0 ∈ f)dt

If starting point 0 is in p, collision immediatly takes place:

lim
σpr→∞

E(
−→
Ω(0)

−→
Ω(t)/0 ∈ p)dt = 0.

– p. 40



If starting point 0 is in f , X(t) follows a straight line until it hits a sphere and then

E(
−→
Ω(0)

−→
Ω(t) = 0, t ≥ T .

D ∼ cf lf

3
lf mean chord length between two spheres

From ergodicity

lf = lp
cf

cp
=

3cf

4cpr

Hence σ̃ ∼ 4cp

3c2f r
(Rigorous proof ?).

We look for a fitting formula:

σ̃ = cpσp(1 − 4α

3
)e−αc2f σpr +

4cp

3

1 − e−αc2f σpr

c2f r

α being fitted on numerical simulations.
For σf = 0, renewal theory gives (with same mean chord length)

σ̃ =
cpσp

1 + 3
4
c2f σpr – p. 41



p Numerical computation of σ̃

We use the probabilistic representation of the PDE and perform simulations of
EX(t)2/2t for random inclusions of spheres with different optical depth of
spheres
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’10mfp’

Effective opacity as a function of volume fraction cp
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p Comparison between the two formulas

We compare the two formulations: main difference appear for optical depth of
spheres of order 1.

Why does renewal effective opacity (transport on a line without scattering)
compare well with homogenization effective opacity (with scattering in 3D
geometry)?? – p. 43



p Concluding remarks

Particle transport through binary mixtures must be simplified if used in
hydrocode simulations.

Homogenization theory gives the theoretical framework for proving that
effective behavior exists but is of limited interest for computing explicitly
effective coefficients

Although not always applicable, renewal theory gives simplified coefficients
which compare well with numerical simulations in 3D geometries

Renewal computations can easely be extended to more complex mixtures
(more than two phases).

Knowledge of the details of the random medium (i.e. chord length
distribution functions) is not necessary

One of the main issue that we did not address is how to obtain the characteristic
length scale of the mixture from a statistical hydrodynamical model ( two-point
turbulence models).
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