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Motivation

Dimension reduction. Shells, skeletons, rod structures
−→ surfaces and segments structures;

Reduction of the number of parameters. Asymptotic
problems with two small parameters (microscopic
length scale of the medium and structure thickness)
−→ problems with only one parameter;

Porous media with rough geometry.
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Let µ(x) be a positive finite Borel measure on a standard
n-dimensional torus T

n ≡ R
n/Zn or in R

n. We identify µ with
the corresponding periodic measure in R

n. Without loss of
generality, we may assume that

∫

Tn

dµ(x) = 1.
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To clarify the idea of introducing Sobolev spaces with
measure, consider a simple example. Let µ be a positive
finite Borel measure in a smooth bounded domain G.
Consider the variational problem

inf
ϕ∈C∞

0 (G)

∫

G

(
a(x)∇ϕ(x) · ∇ϕ(x) + ϕ2(x) − 2f(x)ϕ(x)

)
dµ(x),

where a(x) ia a continuous positive definite matrix in G and

f(x) is a continuous function in G. Our goal is to introduce a

Sobolev space with measure µ in such a way that the mini-

mum is attained and a minimizer is found as a solution to the

corresponding Euler equation.
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Sobolev spa
es

Definition 1. We say that a function u ∈ L2(T
n, µ) belongs to the

space H1(Tn, µ) if there exists a vector-function z ∈ (L2(T
n, µ))n

and a sequence ϕk ∈ C∞(Tn) such that

ϕk −→ u in L2(T
n, µ) as k → ∞,

∇ϕk −→ z in (L2(T
n, µ))n as k → ∞.

The function z(x) is called the gradient or µ-gradient of u(x) and is
denoted by ∇µu.

Similarly, we can define the spaces H1(Rn, µ), H1
loc(R

n, µ)

and also the space H1(G,µ) for an arbitrary domain G ⊂ R
n

and a (locally) finite Borel measure µ on G.
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Example. Segment

Generally speaking, the gradient of a function of class
H1(Tn, µ) is not unique. In particular, the zero function may
have a nontrivial gradient. We illustrate this with
Example 1. In the square [−1/2, 1/2]2, we consider the segment
{−1/4 ≤ x1 ≤ 1/4, x2 = 0} and introduce

dµ = 2χ(x1) dx1 × δ(x2), (1)

where χ(t) is the characteristic function of the segment [−1
4 ,

1
4 ] and

δ(t) is the Dirac mass at zero.
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Example (
ont.)

Let ψ(x) ∈ C∞
0 coincide with a function of the form θ(x1)x2

in a small neighborhood of the segment. Then ψ = 0 in

L2(T
2, µ). Choosing ϕk(x) = ψ(x) for all k in the definition

of µ-gradient, we find z(x) = ∇µψ(x) = (0, θ(x1)). Thus, any

vector-valued function of the form (0, θ(x1)) with smooth θ(s)

serves as the µ-gradient of zero. In fact, this assertion is

valid for any θ(s) in L2.
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Gradients of zero, Example ofH1 spa
e
The gradients of zero form a closed subspace of
(L2(T

n, µ))n, denote it Γµ(0). The set of the gradients of any
H1(Tn, µ)-function is the sum of its arbitrary gradient and
Γµ(0).

Example 2 (Segment). Consider the space H1(Tn, µ) (or H1(Rn, µ))
for 1D Lebesgue measure µ on the segment
I = {x ∈ R

n : 0 ≤ x1 ≤ a, x2 = x3 = · · · = xn = 0}.

Proposition 1. The space H1(Tn, µ) consists of all Borel functions

u(x) such that u(s, 0, 0, . . . , 0) ∈ H1(0, a). Moreover,

∇µu(x) = (u′x1
(x1, 0), ψ2(x1), . . . , ψn(x1)), where

u′x1
≡

d

ds
u(s, 0, 0, . . . , 0)

∣∣∣
s=x1

, and ψ2, ψ3, . . . , ψn are arbitrary

functions in L2(0, a).
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Example. Ur
hin

Example 3 (”Urchin”). Consider the segments I1, I2, IN starting at the
origin and directed along vectors v1, v2, . . . , vN . Let µ1, µ2, . . . , µN

be the standard 1D Lebesgue measures on the segments I1, . . . , IN
respectively, and let λ1, . . . , λN be arbitrary positive numbers. We set

µ =

N∑

j=1

λjµj .

A function u(x) belongs H1(Tn, µ) if and only if u
∣∣
Ij
∈ H1(Ij),

and the values of the restricted functions at the origin coin-

cide for all segments (recall that an H1-function of a single

variable is continuous).
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Example. Reinfor
ed shell
Example 4 (Reinforced shells). Let Π0 = {x ∈ T

n : x1 = 0}. We set

dµ̃(x) = δ(x1) × dx′ + dx, x′ = (x2, . . . , xn).

A function u(x) ∈ H1(T2, µ̃) if and only if u ∈ H1(Tn) and the
trace u(x)

∣∣
Π0

∈ H1(Tn−1).

Remark 1. If the co-dimension of a plane Π ⊂ R
n is greater than one,

then the trace of a H1(Rn)-function on Π is not well-defined. Therefore,

if µ is the Lebesgue measure on Π and dµ̃ = dµ+ dx, then H1(Tn, µ̃)

is isomorphic to the direct sum of the spaces H1(Rn) and H1(Rn, µ).

We denote

H(Rn, µ) = {(u, z) : u ∈ H1(Rn, µ), z = ∇µu)}.
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Convergen
e in variable spa
es
Suppose that Radon measures µk weakly converges, as
k → ∞, to µ in R

n.

Definition 2. We say that gk ∈ L2(R
n, µk) weakly converges in

L2(R
n, µk) to g ∈ L2(R

n, µ) as k → ∞ if

- ‖gk‖L2(Rn,µ) ≤ C ;

- lim
k→∞

∫

Rn

gk(x)ϕ(x)dµk(x) =

∫

Rn

g(x)ϕ(x)dµ(x)

for all ϕ ∈ C∞
0 (Rn).
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Convergen
e in variable spa
es
Definition 3. A sequence {gk} converges strongly to
g(x) ∈ L2(R

n, µk) if it weakly converges and

lim
k→∞

∫

Rn

gk(x)hk(x)dµk(x) =

∫

Rn

g(x)h(x)dµ(x)

for any sequence {hk(x)} weakly converging to h(x) ∈ L2(R
n, µ) in

L2(R
n, µk).

Lemma 1. Let {gk} weakly converge to g(x) in L2(R
n, µk). Then

{gk} converges strongly if and only if

lim
k→∞

‖gk‖L2(Rn,µk) = ‖g‖L2(Rn,µ).
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Convergen
e in variable spa
es
Lemma 2. Let {µk} converge weakly to µ. Then any bounded
sequence {gk(x)}, ‖gk‖L2(Rn,µk) ≤ C converges weakly along a

subsequence in L2(Rn, µk) towards some function g(x) ∈ L2(R
n, µ).
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Potential and solenoidal fields
Definition 4. The space Lpot

2 (Rn, µ) is the closure of the linear set

{∇ϕ : ϕ ∈ C∞
0 (Rn)} in the (L2(R

n, µ))n-norm.

Definition 5. The space Lpot
2 (Rn, µ) of solenoidal vector-valued

functions is the orthogonal complement to the space Lpot
2 (Rn, µ) in

(L2(R
n, µ))n.
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Smoothing a periodi
 measure
Let K(x) ≥ 0 be a C∞

0 function such that
∫

Rn

K(x)dx = 1 and

K(−x) = K(x). For a Radon measure µ(x) in R
n or on T

n

we set

dµδ(x) = ρδ(x)dx, ρδ(x) = δ−n

∫

Rn

K
(x− y

δ

)
dµ(y).

The measures µδ locally weakly converge in R
n to µ.
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Smoothing

We also introduce

ϕδ(x) = δ−n

∫

Rn

K
(y
δ

)
ϕ(x− y)dy.

Then ∫

Rn

ϕδ(x)dµ(x) =

∫

Rn

ϕ(x)dµδ(x)
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Smoothing operator agreed with the measure
Lemma 3. For every v ∈ L2(R

n, µ) there is vδ ∈ L2(R
n, µ) such that

∫

Rn

vδ(x)ϕ(x)dµδ(x) =

∫

Rn

v(x)ϕδ(x)dµ(x)

for all ϕ ∈ C0(R
n). The family vδ(x) strongly converges to v(x) in

L2(R
n, µδ) as δ → 0.

. – p.17/51



Divergen
e operator
Definition 6. Let g ∈ L2(R

n, µ) and v ∈ (L2(R
n, µ))n. We say that

g(x) = divµv(x) if

∫

Rn

g(x)ϕ(x)dµ(x) = −

∫

Rn

v(x) · ∇ϕ(x)dµ(x)

for any ϕ ∈ C∞
0 (Rn).
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Ellipti
 equations

Let a(x) = {aij(x)} be a symmetric n× n-matrix,

Λ|ξ|2 ≤ aij(x)ξiξj ≤ Λ−1|ξ|2, Λ > 0, ξ ∈ R
n

µ-a.e. in R
n. Suppose that f ∈ L2(R

n, µ) and λ > 0.

Definition 7. We say that a pair (u,∇µu) with u ∈ H1(Rn, µ),
satisfies the equation

−divµ(a(x)∇µu(x)) + λu(x) = f(x) (2)

in L2(R
n, µ), if for any v ∈ H1(Rn, µ) and any of its gradient ∇µv it

holds:
∫

Rn

a(x)∇µu(x)·∇µv(x)dµ(x)+λ

∫

Rn

u(x)v(x)dµ(x) =

∫

Rn

f(x)v(x)dµ(x).
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Ellipti
 equations
A function u ∈ H1(Rn, µ) is called a solution if the last
identity holds for some of its gradients.

Lemma 4. The above equation has a unique solution (u,∇µu),

u ∈ H1(Rn, µ). Moreover, the choice of the µ-gradient of u is uniquely

determined by the condition a(x)∇µu(x) ∈ (Γµ(0))⊥.

In the special case a(x) = Id the integral identity reads
∫

Rn

∇µu(x)·∇µv(x)dµ(x)+λ

∫

Rn

u(x)v(x)dµ(x) =

∫

Rn

f(x)v(x)dµ(x).

The expression divµ∇µu is called the µ-Laplacian of u.
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Tangential gradient
A gradient ∇µu of a function u ∈ H1(Rn, µ) is tangential if

it is orthogonal to Γµ(0). Thus tangential gradient of u is

the orthogonal projection of an arbitrary µ-gradient of u on

(Γµ(0))⊥.
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Two-
onne
tedness (ergodi
ity) of measures
Definition 8. A periodic measure µ is said to be two-connected or

ergodic if any function u ∈ H1(Tn, µ) such that ∇µu = 0 is equal to a
constant µ-a.e.

Lemma 5. Let a measure µ be 2-connected. Then the set
{g(x) ∈ L2(T

n, µ) : g(x) = divµv(x)} is dense in{
u ∈ L2(T

n) :
∫

Tn

u(x)dµ(x) = 0)
}

.

Exercise 1. Let Q be an open connected subset of T
n, and let

dµ(x) = χQdx. Then µ is 2-connected.
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Self-adjoint operator
Let a matrix aij(x) be symmetric and uniformly elliptic µ-a.e.
Lemma 6. The set of solutions to the equation

−divµ(a(x)∇µu(x)) + u(x) = f, f ∈ L2(R
n, µ),

is dense in L2(R
n, µ). We denoted it by D.

For u ∈ D we set Au = f − u. Then the operator (A+ I)−1

maps a function f ∈ L2(R
n, µ) to the corresponding solution

of the equation. This operator is nonnegative, bounded and
symmetric. Therefore, A is self-adjoint. Its domain is
denoted by D(A). The equation can be written in the
operator form Au+ λu = f .
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Variational problem
The equation Au+ λu = f is an Euler equation of the
variational problem

inf
u∈H1(Rn,µ)

{∫

Rn

(
a(x)∇µu(x)·∇µu(x)+λu2(x)

)
dµ(x)−

∫

Rn

2f(x)u(x)dµ(x)

}

Proposition 2. Let f ∈ L2(R
n, µ). Then for each λ > 0 the above

variational problem has a unique minimum point u ∈ H1(Rn, µ). It
solves the equation Au+ λu = f .

. – p.24/51



Variational problem
Similarly, we can treat the variational problem for the
functional

inf

{∫

Rn

(
a(x)∇µu(x)·∇µu(x)+c(x)u2(x)

)
dµ(x)−

∫

Rn

2f(x)u(x)dµ(x)

}
,

where c(x) satisfies the estimate Λ ≤ c(x) ≤ Λ−1. The Euler
equation reads

−divµ(a(x)∇µu(x)) + c(x)u(x) = f(x).
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Boundary Value Problems
Let G be a bounded Lipschitz domain in R

n, and let µ(dx)
be a positive finite Borel measure on G.

Definition 9. We say that u ∈
◦

H1 (G,µ), and z ∈ (L2(G,µ))n is the
gradient of u if there is a sequence ϕk ∈ C∞

0 (G) such that

ϕk −→ u in L2(G,µ) as k → ∞,

∇ϕk −→ z in (L2(G,µ))n as k → ∞.

Dirichlet problem

−diva(x)∇µu(x) + c(x)u(x) = f(x) in L2(G,µ)

u|∂G = 0.
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Diri
hlet Problem
Definition 10. We say that u ∈

◦

H1(G,µ) is a solution to the Dirichlet

problem if for any v ∈
◦

H1 (G,µ)

∫

G

a(x)
(
∇µu(x)·∇µv(x)+c(x)u(x)v(x)

)
dµ(x) =

∫

G

f(x)v(x)dµ(x).

The existence and the uniqueness of a solution can be es-

tablished in the standard way.
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Dual definition of Sobolev spa
es
Definition 11. We say that u(x) ∈ H1(Rn, µ), and
z(x) ∈ (L2(R

n, µ))n is a µ-gradient of u(x) if

∫

Rn

u(x)g(x)dµ(x) = −

∫

Rn

z(x) · v(x)dµ(x),

for each g(x) and v(x) such that g(x) = divµv(x).

Proposition 3. The two definitions of H1(Rn, µ) are equivalent.
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Approximation by smoothing
For a measure µ in R

n consider the smoothed measure
µδ = Kδ ⋆ µ. Then µδ locally weakly converge to µ as δ → 0.

Lemma 7. Let g(x) = divµv(x). Then there are gδ ∈ L2(R
n, µδ) and

vδ ∈ (L2(R
n, µδ))n such that

divµδ

vδ = gδ

and

gδ → g strongly in L2(R
n, µδ) as δ → 0,

vδ → v strongly in (L2(R
n, µδ))n as δ → 0.
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Approximation by smoothing
Theorem 8. Let µδ = Kδ ⋆ µ, and let uδ ∈ H1(Rn, µδ). Suppose that

uδ ⇀ u weakly in L2(R
n, µδ) as δ → 0,

∇µδ

uδ ⇀ z weakly in (L2(R
n, µδ))n as δ → 0.

Then u ∈ H1(Rn, µ) and z = ∇µu.
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Approximation of solutions to ellipti
 equations
Consider the elliptic equation

−divµa(x)∇µu+ λu = f in L2(R
n, µ),

and the family of approximating equations of the form

−divµδ

aδ(x)∇
µδ

u+ λu = fδ in L2(R
n, µδ).

Theorem 9. Suppose that

Λ|ξ|2 ≤ a(x)ξ·ξ ≤ Λ−1|ξ|2, Λ|ξ|2 ≤ aδ(x)ξ·ξ ≤ Λ−1|ξ|2 ∀x, ξ ∈ R
n,

aδ(x) → a(x) strongly in L2(R
n, µδ), and fδ(x) → f(x) strongly in

L2(R
n, µδ). Then uδ(x) strongly converges to u(x) in L2(R

n, µδ) as
δ → 0.
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Non-degenerate periodi
 measures
Let µ be a periodic 2-connected measure in R

n. For every
ξ ∈ R

n consider the variational problem

Âξ · ξ = min
v∈L

pot

2 (Tn)

∫

Tn

(ξ + v(x)) · (ξ + v(x))dµ(x).

Then Aξ · ξ is a nonnegative quadratic form in R
n. The

matrix of this quadratic form, denoted by Â, is called
effective.

Definition 12. A periodic measure µ is non-degenerate if Â is positive
definite.

The kernel of Â is denoted by Kµ.
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Non-degenerate periodi
 measures
For a periodic matrix a(x) such that

Λ|ξ|2 ≤ a(x)ξ · ξ ≤ Λ−1|ξ|2 µ− a.e.

define

Âaξ · ξ = min
v∈L

pot

2 (Tn)

∫

Tn

a(x)(ξ + v(x)) · (ξ + v(x))dµ(x).

Proposition 4. The kernel of Âa coincides with the kernel of Â.

Âa is called the effective matrix of the operator

−divµ(a(x)∇µ·).
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Cell problem

The Euler equation of the above variational problem reads:

find vξ(x) ∈ Lpot
2 (Tn, µ) such that a(x)(ξ + vξ(x)) ∈ Lsol

2 (Tn, µ).

Denote by Πpot the orthogonal projection in (L2(T
n, µ))n on

the subspace Lpot
2 (Tn, µ). Then the Euler equation takes

the form:

find vξ(x) ∈ Lpot
2 (Tn, µ) such that Πpot

(
a(x)vξ(x)

)
= −Πpot

(
a(x)ξ

)
.

It is now clear that the operator mapping v ∈ Lpot
2 (Tn, µ) to

Πpot

(
a(x)vξ(x)

)
is coercive in Lpot

2 (Tn, µ).
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Effe
tive matrix

The effective matrix Âa can be written in the form

Âaξ =

∫

Tn

a(x)(vξ(x) + ξ))dµ(x), ξ ∈ R
n.

Denote by V (x) the matrix whose columns are formed by
vector-functions ve1

(x), . . . , ven
(x) ({ej} are the coordinate

vectors in R
n). Then

Âa =

∫

Tn

a(x)(Id+ V (x)))dµ(x).
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Properties of effe
tive matrix
Proposition 5. The kernel Kµ of Â (or Âa) coincides with the set of
constant potential vectors.

A vector η ∈ R
n belongs to (Kµ)⊥ if and only if there is

v ∈ Lsol
2 (Tn, µ) such that

∫

Tn

v(x)dµ(x) = η.
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Adapted 
ell problem
Consider the modified cell problem

Find v+
ξ (x) ∈ Lpot

2 (Tn, µ) such that a(x)(Πeffξ + v+
ξ (x)) ∈ Lsol

2 (Tn, µ),

Πeff is the orthogonal projection on (Kµ)⊥.

Corollary 10. The relation holds:

a(x)(ξ + vξ(x)) = a(x)(Πeffξ + v+).

The effective matrix Âa can be expressed by

Âaξ =

∫

Tn

a(x)(v+
ξ (x) + Πeffξ))dµ(x), ξ ∈ R

n.
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Two-s
ale 
onvergen
e in variable spa
es
Let µ be a periodic measure in R

n. For ε > 0 we set

µε(dx) = εnµ
(dx
ε

)
, i.e.,

µε(B) = εnµ(ε−1B)

for any Borel set B ⊂ R
n.

The measure µε weakly converge to the measure µ(2)dx,

2 = [0, 1)n, as ε → 0. In particular, if µ(2) = 1 then µε

converges to the standard Lebesgue measure.
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Two-s
ale 
onvergen
e
Let G be a Jordan domain in R

n.

Definition 13. We say that uε ∈ L2(G,µε) two-scale converge in
L2(G,µε) to u(x, y) ∈ L2(G× 2, dx× µ(y)), as ε→ 0, if

‖uε‖L2(G,µε) ≤ C, ε > 0,

and
∫

G

uε(x)φ(x)ψ(
x

ε
)dµε(x)−→

ε→0

∫

G

∫

2

u(x, y)ϕ(x)ψ(y)dxdµ(y)

for any ϕ ∈ C∞
0 (G) and ψ ∈ C∞

per(2).
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Mean value property
Lemma 11. Suppose that g(x, y) ∈ C(G;Cper(2)). Then

lim
ε→0

∫

G

g
(
x,
x

ε

)
dµε(x) =

∫

G×2

g(x, y)dxdµ(y).
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Properties of two-s
ale 
onvergen
e
Proposition 6 ( weak compactness of a bounded sequnce).
Suppose that

‖uε‖L2(G,µε) ≤ C.

Then, along a subsequence εk → 0, the functions uε two-scale
converge in L2(G,µε) to some function
u(x, y) ∈ L2(G× 2, dx× µ(y)).

Proposition 7 ( lower semi-continuity of the norm). Suppose that
uε(x) two-scale converge in L2(G,µε) to a function u(x, y). Then

lim inf
ε→0

∥∥uε
∥∥

L2(G,µε)
≥

∥∥u(x, y)
∥∥

L2(G×2,dx×µ(y))
.
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Strong two-s
ale 
onvergen
e
Definition 14. We say that uε(x) ∈ L2(G,µε) strongly two-scale
converge to u(x, y) ∈ L2(G× 2, dx× µ(y)) in L2(G,µε) if uε(x)
two-scale converge to u(x, y) and

∫

G

uε(x)vε(x) dµε(x) −→

∫

G×2

u(x, y)v(x, y)dxdµ(y) as ε→ 0.

for any vε(x) which two-scale converges in L2(G,µε) to v(x, y).

Equivalent definition reads
Definition 15. We say that uε(x) ∈ L2(G,µε) strongly two-scale
converge to u(x, y) ∈ L2(G× 2, dx× µ(y)) in L2(G,µε) if uε(x)
two-scale converge to u(x, y) in L2(G,µε) and

lim
ε→0

∫

G

|uε(x)|2dµε(x) =

∫

G×2

|u(x, y)|2dxdµ(y).
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Properties of two-s
ale 
onvergen
e
Proposition 8. Suppose that uε(x) ∈ H1(G,µε) and

∥∥uε
∥∥

L2(G,µε)
≤ C, lim

ε→0
ε
∥∥∇µuε(x)

∥∥
(L2(G,µε))n = 0.

Then, along a subsequence, uε two-scale converge in L2(G,µε) to

some function u0(x) which does not depend of y.
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Properties of two-s
ale 
onvergen
e
Kµ denotes the kernel of Â, and Πeff the operator of
orthogonal projection in R

n on (Kµ)⊥. We set ∇eff = Πeff∇

and Heff(G) = {u ∈ L2(G) : Πeff∇u ∈ (L2(G))n}.

Theorem 12. Suppose that

∥∥uε
∥∥

L2(G,µε)
≤ C,

∥∥∇µεuε
∥∥

(L2(G,µε))n ≤ C.

Then, along a subsequence,

uε(x)
2

−→ u0(x) two-scale in L2(G,µε) as ε→ 0,

∇µuε(x)
2

−→ ∇effu0(x)+u1(x, y) two-scale in (L2(G,µε)) as ε→ 0;

with u0 ∈ Heff(G) and u1 ∈ L2(G;Lpot
2 (2, µ)).
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Properties of two-s
ale 
onvergen
e
Theorem 13. If

∥∥uε
∥∥

L2(G,µε)
≤ C, ε

∥∥∇µεuε
∥∥

(L2(G,µε))n ≤ C,

then there is a subsequences εk → 0 and a function

u0(x, y) ∈ L2(G;H1
per(2, µ)) such that

uε(x)
2

−→ u0(x, y) two-scale in L2(G,µε),

ε∇µuε(x)
2

−→ ∇µ
yu

0(x, y) two-scale in (L2(G,µε)).
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Homogenization

Let µ be a periodic measure in R
n, and let µε = εnµ

(dx
ε

)
.

Consider an elliptic equation

−divµε

(
a
(x
ε

)
∇µεu

)
+ c

(x
ε

)
u = f ε(x), in L2(R

n, µε),

We assume that

Λ|ξ|2 ≤ a(y)ξ · ξ ≤ Λ−1|ξ|2, ξ ∈ R
n

µ-a.e. We also assume that 0 < c0 ≤ c(y) ≤ c1 µ-a.e. We set

ĉ =

∫

2

c(y)dµ(y).
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Homogenization

The equation

−div
(
Âa∇u

)
+ ĉu = f(x), x ∈ R

n,

is called homogenized. The solution to this equation is
denoted by u0(x). Under our assumptions, this equation
has a unique solution in L2(R

n).

Theorem 14. If f ε(x) converge strongly (weakly) in L2(R
n, µε) to a

function f(x) ∈ L2(R
n), then

uε(x) −→ u0(x) strongly (weakly) in L2(R
n, µε) as ε→ 0,

Moreover (flux convergence ),

a
(x
ε

)
∇µεuε ⇀ Âa∇

effu0(x) weakly in (L2(R
n, µε))

n as ε→ 0.
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Convergen
e of energy
Proposition 9. If f ε converges to f strongly in L2(Rn, µε), then the
energy converges:

lim
ε→0

∫

Rn

a
(x
ε

)
∇µεuε(x)·∇µεuε(x)dµε(x) =

∫

Rn

Âa∇
effu0 ·∇effu0dx.
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Homogenization of Diri
hlet problem
Let G be a Lipschitz bounded domain. Consider the
Dirichlet problem

−divµε

(
a
(x
ε

)
∇µεuε

)
+ c

(x
ε

)
uε = f ε(x) in L2(G,µε),

uε ∈
◦

H1 (G,µε).

and homogenized Dirichlet problem

−div (Â1∇
effu0) + ĉu0 = f in G,

u0 ∈ Heff
0 (G).

Both problems are well-posed, their solutions are denoted uε

and u0.
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Homogenization of Diri
hlet problem
Theorem 15. If f ε(x) strongly (weakly) converges in L2(G,µε) to
f(x) ∈ L2(G), then,

uε(x) −→ u0(x) strongly (weakly) in L2(G,µε) as ε→ 0,

Moreover, the flux convergence holds:

a
(x
ε

)
∇µεuε ⇀ Â1∇

effu0(x) weakly in (L2(G,µε))
n as ε→ 0

and, in the case of the strong convergence of f ε, the energy
convergence holds:

lim
ε→0

∫

G

a
(x
ε

)
∇µεuε(x)·∇µεuε(x)dµε(x) =

∫

G

Â1∇
effu0 ·∇effu0dx.
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Comments

The developed technique can be successfully used in the

study of homogenization problems for higher contrast singu-

lar and thin structures, for example, singular double porosity

problems, the homogenization of parabolic problems in vari-

able spaces, elasticity problems for thin frames, nonlinear

operators in variable spaces, and many other problems. It

has not only intrinsic interest for homogenization theory, but

also significance in relation to close topics such as the cen-

tral limit theorem, spectral problems, the commutativity of

diagram under the limit passage with respect to the period

size and the thickness of structure, and many other aspects.. – p.51/51
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