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Homogenization of random singular
structures and random measures

V. V. Zhikov, A. L. Pyatnitskii

Abstract. The paper deals with the homogenization of random statistically
homogeneous singular structures and variational problems involving integra-
tion with respect to ergodic stationary random measures.

Introduction

In this paper we consider problems of homogenization of differential operators
and variational problems in variable spaces L2 involving integration with respect
to rapidly oscillating stationary random measures. The homogenization of random
singular structures such as networks and frames is an important special case.

We obtain our results by developing previous studies in the following two direc-
tions: homogenization of equations with statistically homogeneous random coeffi-
cients and of periodic singular structures and measures.

Periodic measures and periodic singular structures were studied in [3], [4],
[10], [12]. For an arbitrary periodic Radon measure µ = µ(dx) on Rn, the Sobolev
spaces H1(Tn, µ(dx)), where Tn is the torus of periodicity, and H1(Rn, µ(dx)), were
defined by closing the set of smooth functions in a suitable norm. It was found that
the gradients of functions are not defined unambiguously. It was proved that there
is a so-called tangential subspace T(x) ⊂ Rn. The set of gradients was described in
terms of this subspace, and the tangential gradient was defined. Several results were
obtained concerning the existence and uniqueness of solutions in L2(Rn, µ(dx)) of
elliptic equations of the form

−div a(x)∇u+ u = f(x)

and of certain more general elliptic and evolution equations and systems.
Considering the family of measures µε(dx) = εnµ(dx

ε ) with a small positive
parameter ε, the problem of homogenization involves the important property of
2-connectedness of µ. Recall (see, for example, [2]) that the measure µ(dx)
is 2-connected if every periodic function that belongs to the Sobolev space
H1(Tn, dµ) and has zero µ-gradient is equal to a constant µ-a. e. A measure is
2-connected if and only if the corresponding Markov process on the periodicity
torus is ergodic. In what follows we replace the term “2-connected” by the term
“connected” or “ergodic”. Under the assumption that the periodic measure is
connected, certain results on homogenization were obtained, singular structures
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and the corresponding thin structures were studied, along with the problem of
whether the diagram of passage to the limit (as the thickness of the structure and
the size of the mesh of periodicity tend to zero) is commutative, and the technique
of two-scale convergence was adapted (see [5], [9]).

We recall some classical results on the homogenization of differential operators
with random coefficients (see [7], [25]).

Let a(x, ω) = {aij(x, ω)}, i, j = 1, 2, . . . , n, be an ergodic statistically homoge-
neous random function, and let

Λ|ξ|2 6 a(x, ω)ξ · ξ 6 Λ−1|ξ|2, Λ > 0, ξ ∈ Rn.

The following assertion holds for the family of equations

−div a
(
x

ε
, ω

)
∇uε + λuε = f(x), f ∈ L2(Rn), λ > 0.

Assertion. As ε→ 0, the solution uε converges almost surely (a. s.) in L2(Rn) to
a solution of the elliptic equation

−div â∇u0 + λu0 = f(x)

with constant non-random coefficients. The matrix â depends only on a(x, ω) and
not on f or λ.

The homogenization theorem also holds for random perforated domains (see [6]).
Let G = G(ω) be a random set in Rn and assume that the characteristic function
of G(ω) is an ergodic statistically homogeneous random field. Assume that G(ω) is
open and connected and let Gε(ω) = εG(ω) be the homothetic contraction of G(ω).
Then the following relation holds for the solution of the Neumann problem

−div a
(
x

ε
, ω

)
∇uε + λuε = f(x) in Gε(ω), f ∈ C∞0 (Rn),

∂uε

∂νε
≡ a

(
x

ε
, ω

)
∇uε · n = 0 on ∂Gε(ω),

where n is the normal to ∂Gε(ω):

lim
ε→0

∫
Gε

|uε(x, ω)− u0(x)|2 dx = 0

a. s., where u0 is the solution of the homogenized equation

−div â∇u0 + λu0 = θf, x ∈ Rn,

and θ is the density of the random set G = G(ω).
The homogenization technique for equations with random coefficients enables us

to study the asymptotic behaviour of stochastic processes (walks) in random media
(in particular, the problem of the validity of the central limit theorem (CLT)).
For every realization of the medium we consider the diffusion process ξt with the
corresponding parabolic equation

∂v

∂t
= div a(x, ω)∇v.
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The following theorem holds. For almost all realizations of the medium and
any initial condition ξ0 = x ∈ Rn, the variables ξt−x√

t
converge distributionwise as

t → ∞ to the centred normal variable with correlation matrix â, where â is the
averaged matrix of the corresponding elliptic operator.

For walks in a random set, the Neumann boundary condition corresponds to
the reflection of ξt in ∂G(ω). For such walks the so-called central limit theorem in
mean was proved in [6]. For certain classes of random sets a more exact (individual)
CLT was proved in [14] (see also the end of § 9 below).

Our purpose is to generalize these results to singular random structures. Let µω

be an ergodic stationary random measure on Rn, that is, a family of Radon measures
such that for every bounded Borel set B the function µω(B + x) is an ergodic
statistically homogeneous random field. We assign to µω the equation

−div a(x, ω)∇u+ λu = f, f ∈ L2(Rn, µω),

understood in the sense of the integral identity∫
Rn

a(x, ω)∇u∇ϕdµω(x) +
∫

Rn

uϕdµω(x) =
∫

Rn

fϕ dµω(x) ∀ϕ ∈ C∞0 (Rn),

where the gradient ∇u is unambiguously defined by the condition that the flux a∇u
is tangential. For piecewise-smooth structures the tangential subspace can be
defined in the standard way. For arbitrary measures it was defined and studied
in [2], [10]. In § 10 we define and study the tangential subspace and tangential
gradient with respect to a certain measure on the probability space connected with
the random measure µω.

For ε > 0 we put µε
ω(dx) = εnµω(dx

ε ). We shall study the asymptotic behaviour
of the solution of the equation

−div a
(
x

ε
, ω

)
∇uε + λuε = fε in L2(Rn, µε

ω)

as ε → 0. The homogenization theorem for this equation holds if the random
measure µω is connected. Let us consider this condition in more detail. The mea-
sures µω are, in a sense, realizations of a certain measure in Ω, the so-called Palm
measure (see [13] and § 1 below). Several results, including Birkhoff’s ergodic the-
orem, were obtained for it in the theory of random measures. In analogy with the
periodic case, the Palm measure is assumed to be connected, which is equivalent
to the assumption that the corresponding Markov process is ergodic. The con-
nectedness of the Palm measure is defined in terms of the corresponding Sobolev
spaces.

If the measure is connected, then the homogenization theorem (see Theorem 6.1)
holds for almost all ω: if fε converges to f in L2(Rn, µε

ω) as ε→ 0, then uε converges
in L2(Rn, µε

ω) to the solution of the equation

div â∇u+ λu = f

with a constant non-negative matrix â. For sufficiently regular f this convergence
is equivalent to the relation

lim
ε→0

∫
Rn

|uε(x)− u(x)|2 dµε
ω(x) = 0.
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Given a random measure, we can consider the corresponding random walk in
a random medium and the corresponding parabolic equation. For these parabolic
equations we also obtain homogenization theorems, which can be used in the study
of the properties of random walks in stationary random media. Some models of
these walks are actively studied by specialists in probability theory (see, for exam-
ple, [26], [27]). From the point of view of probabilistic interpretation, an important
result of this paper is the proof of the CLT in mean (see Theorem 9.4).

With the exception of some conditional results (see § 9), we do not consider the
individual CLT in this paper. This will be dealt with in a separate paper.

Typical examples of singular random structures are percolation models in Rn

and Voronoi diagrams of stationary point processes in Rn. For these structures,
see § 7 and Example 1.8. In particular, for the percolation model, we solve Kesten’s
well-known problem on the existence of effective conductance (see § 7).

We have already mentioned the important role played in the asymptotic analysis
of random measures by the Palm measure and the corresponding Sobolev spaces
and spaces of divergence-free and potential vector functions. We prefer to prove
homogenization theorems using the method of two-scale convergence. We introduce
and develop a version of this convergence for random measures, which can also be
used in other applications.

§ 1. Random measures and their properties

1.1. General definitions. Let (Ω,F ,P) be the standard probability space with
dynamical system Tx, that is, a group of measurable maps Tx : Ω −→ Ω such that

(i) Tx+y = Tx · Ty, x, y ∈ Rn, T0 = Id,
(ii) P(T−1

x (A)) = P(A) for all x ∈ Rn, A ∈ F ,
(iii) Tx(ω) is a measurable map from (Rn × Ω,B × F) to (Ω,F), where B is the

Borel σ-algebra.
In what follows we assume that Ω is a compact metric space, F is the Borel

σ-algebra on Ω and Tx is a map from Rn × Ω to Ω continuous in this metric.
We also assume that Tx is ergodic, that is, the P-measure of every invariant set

in F is either 0 or 1.
In many cases only a discrete group of transformations Tz, z ∈ Zn, of the proba-

bility space is given. Let us recall the standard procedure of passing from a discrete
group to a dynamical system Tx, x ∈ Rn.

Let Tn = Rn/Zn be a torus with the Lebesgue measure dy, and let

Ω̃ = Ω× Tn, ω̃ = {ω, y}, µ̃ = µ× dy,

T̂ (x)ω̃ = {T[x+y]ω, x+ y − [x+ y]},

where [x + y] is the integer part of x + y. It is well known that the dynamical
system T̂ x is ergodic if and only if the group Tz is ergodic.

Example 1.1 (the periodic case). Let Ω = � be the unit cube, � = {ω ∈ Rn,
0 6 ωj 6 1, j = 1, . . . , n}. There is a dynamical system T (x)ω = ω + x (mod 1)
on Ω with respect to which the Lebesgue measure is invariant and ergodic. The
realization of f(ω) ∈ L2(�) has the form f(x+ ω).
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Example 1.2 (the quasi-periodic case). Let Ω = � be the unit cube in Rm and
let µ be the Lebesgue measure on this cube. For x ∈ Rn we put T (x)ω = ω + λx
(mod 1), where λ = (λij) is an n × m matrix. It is obvious that µ is invariant
under T (x). This dynamical system is ergodic if λijkj 6= 0 for all integer vectors
k 6= 0. Hence, L2(Ω) = L2(�) is the space of periodic functions of m variables, and
the realizations have the form f(ω+λx). These realizations are called quasi-periodic
functions if f(ω) is continuous on �.

Recall that the random field f(x, ω), x ∈ Rn, ω ∈ Ω, is said to be stationary if
there is a measurable function f̃ = f̃(ω) on Ω such that f(x, ω) = f̃(T (x)ω).

A Radon measure on Rn is defined to be a non-negative Borel measure that takes
finite values on compact sets. We denote by Txµ, where x ∈ Rn, the shift of µ, that
is, Txµ(B) = µ(B + x) for all Borel sets B ⊂ Rn.

A family µω, ω ∈ Ω, of Radon measures on Rn is said to be stationary if

Txµω = µTxω, x ∈ Rn

for all ω ∈ Ω. Since∫
Rn

ϕ(y) dµTxω(y) =
∫

Rn

ϕ(y − x)µω(y) ∀ϕ ∈ C∞0 (Rn),

we arrive at the following definition.

Definition 1.1. A family of Radon measures µω on Rn, ω ∈ Ω, is called a
stationary random measure if for every ϕ ∈ C∞0 (Rn) the random function

Fϕ(x, ω) =
∫

Rn

ϕ(y − x) dµω(y) (1.1)

is stationary and measurable, that is,∫
Rn

ϕ(y − x) dµω(y) = Fϕ(Txω), (1.2)

where Fϕ(ω) =
∫

Rn ϕ(y) dµω(y).

We impose the following technical condition for the sake of simplicity:

Fϕ ∈ L∞(Ω,P) ∀ϕ ∈ C∞0 . (1.3)

This conditions actually means that

µω(A) 6 C(A) <∞ a. s. in the sense of P (P-a. s.) (1.4)

for all bounded Borel sets A ⊂ Rn.
Let � = [0, 1)n. The quantity

m = E(µ(�)) =
∫

Ω

∫
�
dµω(x) dP(ω)

is called the intensity of the random measure. Here and below E stands for the
mathematical expectation with respect to P. The condition (1.4) implies that m is
finite. We also assume that the intensity of µ is positive, whence

0 < m <∞. (1.5)

Here are some examples of stationary random measures.



24 V. V. Zhikov and A. L. Pyatnitskii

Example 1.3 (the periodic case: continuation of Example 1.1). Consider a periodic
Radon measure on Rn, µ( · + z) = µ( · ) for all z ∈ Zn. The corresponding random
measure

µω = µ( · + ω), ω ∈ [0, 1)n = Tn,

is stationary, as can be verified directly.

Example 1.4. Let ρ ∈ L1(Ω,P) and dµω(y) = ρ(Tyω) dy. It is obvious that µω

is stationary since∫
Rn

ϕ(y − x) dµω(y) =
∫

Rn

ϕ(y − x)ρ(Tyω) dy

=
∫

Rn

ϕ(y)ρ(Tx+yω) dy =
∫

Rn

ϕ(y) dµTxω(y).

In many cases, a random measure is a priori invariant only under a discrete group
of transformations Tz, z ∈ Zn. A measure invariant under a dynamical system T̂ x,
x ∈ Rn, can be constructed in the usual way: for ω̂ = {ω, y} we put

µω̂ = µω + y.

It is easy to verify that µω̂ is invariant under the transformations T̂ x.

Example 1.5 (a random perforated structure, in particular, a dispersed ball struc-
ture). Random perforated media can also be described in terms of random measures.
Let U be a measurable subset of Ω such that P(U) > 0 and P(Ω \ U) > 0. Let us
recall that a stationary random set in Rn is defined to be a realization of the event
Ω \ U , that is, a subset of Rn of the form

Q(ω) = {x ∈ Rn : Txω ∈ Ω \ U}.

In many cases the complement of a random set is a union of separate inclusions or
grains (say, balls). Such random sets are called perforated media. The corresponding
random measure is defined by the formula

dµω(x) = ρ(Txω) dx, ρ(ω) = 1{Ω\U}.

The definition of this measure implies that it is stationary. It is clear that the
homogenization theorem does not hold for random sets that have a. s. two or more
unbounded connected components. Examples of “good” media are given by dis-
persed ball structures in R3, which are defined as random media such that almost
all realizations of U are unions of disjoint open balls in R3 with the radii of these
balls belonging to [r1, r2], 0 < r1 < r2 <∞.

Example 1.6. Consider the integer lattice Zn and let Γ be the set of all edges
(links) joining neighbouring points. We denote the edges by γj and use the natural
numbering j ∈ Zn. We shall now construct a probability space with a dynamical
system. We equip Ω =

{
{ηj}j∈Zn

}
with the system of seminorms ‖η1 − η2‖j =

|η1
j−η2

j |, j ∈ Zn. The Borel σ-algebra B in Ω coincides with the cylindric σ-algebra.
Let P0 be a probabilty measure on the real line whose support is contained in a
finite segment of the positive half-line. Let P be the measure on Ω defined as the
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direct product of the measures P0 on every component ηj . Consider the dynamical
system Tz, z ∈ Zn, on Ω given by

(Tz(η))j = ηj+z.

We consider the random variables ξj : ξj(η) = ηj on Ω. By definition, the ξj are
independent identically distributed positive random variables, ξj ∈ L∞. Denoting
by lj(dx) the standard Lebesgue measure on γj , we consider the random measure

µη(dx) =
∑
j∈Zn

ξj(η)lj(dx).

This measure is stationary only with respect to the integer shifts

µω(A+ j) = µTjω(A)

for all Borel sets A ⊂ Rn and all j ∈ Zn. An equivalent model with continuous
time can be constructed by the same method.

In a similar way we can construct random measures on more complicated periodic
lattices and measures whose density is non-constant along the segments.

Example 1.7. If in the construction of Example 1.6 we define P0 to be the sum

(1− p)δ(s) + pδ(s− 1), 0 < p < 1,

then we obtain the well-known percolation model. For the sake of simplicity, we
restrict ourselves to the two-dimensional case. It is a well-known fact of percolation
theory (see [16], [18]) that there is a critical value pc = 0.5 such that for p > pc with
probability 1 there is precisely one infinite cluster consisting of edges to which the
value 1 is assigned, whereas for p < pc with probability 1 there is no infinite cluster.
We shall consider only the supercritical case when p > pc and retain the value 1
only at the edges that belong to the infinite cluster. Using the constructions of the
preceding example, we obtain a random measure on the infinite cluster.

Example 1.8 (the Voronoi diagram). Let us define a point process in Rn. Let
S be a map from Ω to the set of at most countable locally finite subsets of Rn.

Definition 1.2. We say that S is a point process in Rn if the following conditions
hold:

(i) for every bounded Borel set A ⊂ Rn the cardinality (number of points)
of A ∩ S(ω), which is denoted by #(A ∩ S(ω)), is a measurable random variable
whose values are finite a. s. ,

(ii) for every bounded Borel set A the random function

ξA(x, ω) def= #((A+ x) ∩ S), x ∈ Rn,

is a statistically homogeneous measurable random function, that is,

ξA(x, ω) = #(A ∩ S(Txω)), A ∈ B(Rn), x ∈ Rn.
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In particular, for every set of Borel sets A1, . . . , Ak and every x ∈ Rn we have

L
(
#(A1 ∩ S), . . . ,#(Ak ∩ S)

)
= L

(
#((A1 + x) ∩ S), . . . ,#((Ak + x) ∩ S)

)
,

where L stands for the distribution of a random variable.
The quantity m = E(#([0, 1]n ∩ S)) is called the intensity of the point process.

We shall consider processes of finite positive intensity.
An important example of a point process in Rn is the so-called Poisson process,

which is characterized by the following two properties:
(i) for some λ > 0 and every bounded Borel set A ⊂ Rn the random variable

#(A ∩ S) has the Poisson distribution with parameter λ|A|,
(ii) for every set of disjoint Borel sets A1, . . . , Ak the random variables

#(A1 ∩ S), . . . ,#(Ak ∩ S) are independent.
A proof of the existence of such processes can be found, for example, in [13].
The definition of the Voronoi diagram of a point process can be made as follows.

For an arbitrary point process in Rn we number the points of S(ω) and denote
them by ζ1(ω), . . . , ζk(ω), . . . . It is well known (see [13]) that this numbering can
be assumed to be measurable, so that the ζk are random vectors in Rn. The Voronoi
diagram is defined to be the set of convex sets defined for every ζi(ω) by the equality

Mi(ω) =
{
x ∈ Rn : dist(x, ζi) < dist

(
x,

⋃
j 6=i

ζj

)}
.

In our assumptions the Mi are a. s. convex polyhedra (see [13]).
We denote the (n− 1)-dimensional faces of Mi by Γij , where j is chosen in such

a way that Γij is contained in the hyperplane equidistant from ζi and ζj . We put

dµω(x) =
∞∑

i,j=1

1Γij(ω)(x)lij(dx),

where 1Γij
is the characteristic function of the set Γij and lij(dx) is the standard

Lebesgue measure on the corresponding hypersurface. It is easy to verify that
dµω(x) is a stationary random measure of finite intensity.

Example 1.9 (the “box” structure). Consider the (n−1)-dimensional faces of the
unit cube

[
− 1

2 ,
1
2

]n and all their integer shifts. Let Sij be the face that separates
the cubes with centres i and j in Zn, |i−j| = 1. By constructing a probability space,
a dynamical system and a family of independent identically distributed positive
random variables ξij in the same way as in Example 1.6, we can consider on every Sij

the surface Lebesgue measure with density ξij . The sum of these measures over
i, j ∈ Zn is a stationary random measure.

Example 1.10 (the composite structure). Consider the following line segments on
the two-dimensional coordinate plane:

I1 = {x ∈ R2 : x2 = 0, 0 6 x1 6 1}, I2 = {x ∈ R2 : x1 = 0, 0 6 x2 6 1}.

Let Ii
1 = I1 + i and I2

j = I2 + j, i, j ∈ Z2, be their integer shifts. We put Qk =[
− 1

4 ,
1
4

]2 +k, k ∈ Z2. Let ηi
1, η

j
2 and ηk

3 be three families of independent identically
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distributed non-negative random variables. We put

dµ(x) =
∑

k

ηk
31Qk(x) dx+

∑
i

ηi
11Ii

1
(x) dx1 +

∑
j

ηj
21Ij

2
(x) dx2.

This random measure is a sum of absolutely continuous and singular measures. It
is stationary with respect to integer shifts.

1.2. Some results of Palm theory. For the convenience of the reader, we state
several results of the theory of stationary random measures.

First we consider an example. Let ρ be a non-negative random variable with
ρ ∈ L1(Ω, dP). Consider the measures dµω(x) = ρ(Txω) dx on Rn and the measure
dµ(ω) = ρ(ω) dP(ω) on Ω. Since the densities ρ(Txω) are realizations of ρ(ω) on
the trajectories Txω, it is natural to call µω a realization of µ. The measure on Ω
and its realizations on the trajectories Txω are related by Campbell’s formula,∫

Ω

∫
Rn

f(x, Txω) dµω(x) dP(ω) =
∫

Ω

∫
Rn

f(x, ω) dµ(ω) dx. (1.6)

Indeed,∫
Ω

∫
Rn

f(x, Txω)ρ(Txω) dx dP(ω) =
∫

Rn

( ∫
Ω

f(x, Txω)ρ(Txω) dP(ω)
)
dx

=
∫

Rn

∫
Ω

f(x, ω)ρ(ω) dP(ω) dx =
∫

Rn

∫
Ω

f(x, ω) dµ(ω) dx.

Here we have used Fubini’s theorem and the fact that dP(ω) is invariant under the
maps Tx. The formula (1.6) holds for all f ∈ L1(Rn × Ω, dx× dµ).

It turns out that for an arbitrary stationary random measure dµω(x) there is a
measure µ on Ω related to the dµω(x) by formula (1.6).

Definition 1.3. The Palm measure of the random measure µω is the measure µ
on (Ω,F) defined by the formula

µ(A) =
∫

Ω

∫
Rn

1I�(x)1IA(Txω) dµω(x) dP(ω), (1.7)

where 1I is the characteristic function of a set and � = [0, 1)n.

Lemma 1.1 [13]. µ is a finite Borel measure on Ω. The equality (1.6) holds for
all functions f = f(x, ω) integrable with respect to dx × µ and all non-negative
measurable functions f = f(x, ω).

There is another way to construct µ that involves the approximation of mea-
sures µω by smoothed absolutely continuous measures defined using a smoothing
operator. For every δ > 0 we consider the operator Kδ whose action on every Radon
measure dµ(x) on Rn is defined by the formula

dµδ(x) = (Kδ dµ)(x) = ρ̃δ(x) dx, ρ̃δ(x) = δ−n

∫
Rn

K

(
x− y

δ

)
dµ(y), (1.8)
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where K is a positive C∞0 -function,
∫

Rn K(x) dx = 1 and K(−x) = K(x). It is
easy to verify that Kδµ is a Radon measure and µδ converges locally weakly to µ
as δ ↓ 0, that is, for every continuous function ϕ with compact support in Rn we
have

lim
δ→0

∫
Rn

ϕ(x) dµδ(x) =
∫

Rn

ϕ(x) dµ(x).

Putting

dµδ
ω(x) = Kδ dµω(x) = ρ̃δ

ω(x) dx, ρ̃δ
ω(x) = δ−n

∫
Rn

K

(
x− y

δ

)
dµω(y), (1.9)

we obtain a family of absolutely continuous measures µδ
ω that converge a. s. locally

weakly to µω as δ ↓ 0.
By (1.2), the function ρ̃δ

ω(x) can be represented as follows:

ρ̃δ
ω(x) = ρδ(Txω), ρδ(ω) = δ−n

∫
Rn

K

(
y

δ

)
dµω(y).

Hence, the µδ
ω can be represented as dµδ

ω(x) = ρδ(Txω) dx, and these measures are
realizations of the measure µδ def= ρδ(ω) dP(ω) in Ω.

We claim that the family of measures µδ(dω) converges weakly to µ in Ω. First
we observe that the family of measures µδ(dω) is weakly compact in Ω, since Ω
is a compact metric space and

∫
Ω

µδ(dω) = m, which can be proved as follows.
Let t→∞. Then∫

Ω

µδ(dω) =
∫

Ω

ρδ(ω) dP(ω) = t−nE

∫
t�
ρδ(Txω) dx

= t−nE

∫
t�

∫
Rn

δ−nK

(
x− y

δ

)
dµω(y) dx

= t−nE

∫
Rn

dµω(y)
∫

t�
δ−nK

(
x− y

δ

)
dx −→ m.

Since the left-hand side of this formula does not depend on t, it is equal to m. Let
us verify that every limit measure µ̃ = limδ→0 µδ coincides with µ. To do this,
we consider the function K = K(x) occurring in (1.9) and an arbitrary continuous
function f = f(ω) on Ω. We have∫

Ω

f(ω) dµ̃(ω) = lim
δ↓0

∫
Ω

f(ω)µδ(dω) = lim
δ↓0

∫
Rn

K(x)E{f(ω)ρδ(ω)} dx

= lim
δ↓0

∫
Rn

K(x)E{f(Txω)ρδ(Txω)} dx = lim
δ↓0

E

∫
Rn

K(x)f(Txω) dµδ
ω(x)

= E

∫
Rn

K(x)f(Txω) dµω(x) =
∫

Rn

∫
Ω

K(x)f(ω) dµ(ω) dx =
∫

Ω

f(ω) dµ(ω).

Here we have used Campbell’s formula, (1.4) and Lebesgue’s theorem. Since f is
an arbitrary function, we have proved the desired coincidence of measures.

We define the smoothing operator for functions ϕ ∈ C(Ω) by the formula

ϕδ(ω) = K̃δϕ(ω) = δ−n

∫
Rn

K

(
y

δ

)
ϕ(Tyω) dy. (1.10)
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Let us note that ϕδ ∈ C(Ω) since the group Tx is continuous. By Campbell’s
formula, we have∫

Ω

ϕδ(ω) dµ(ω) =
1
δn

∫
Ω

∫
Rn

K

(
x

δ

)
ϕ(Txω) dx dµ(ω)

=
1
δn

∫
Ω

∫
Rn

K

(
x

δ

)
ϕ(T−xω) dx dµ(ω)

=
1
δn

∫
Ω

∫
Rn

K

(
x

δ

)
ϕ(ω) dµω(x) dP(ω) =

∫
Ω

ϕ(ω)µδ(dω). (1.11)

Theorem 1.1 (the ergodic theorem [13]). Let the dynamical system Tx be ergodic
and assume that the stationary random measure µ has finite intensity m > 0. Then

lim
t→∞

1
tn|A|

∫
tA

g(Txω) dµω(x) =
∫

Ω

g(ω)dµ(ω) a. s. with respect to P (1.12)

for all bounded Borel sets A, |A| > 0, and all g(ω) ∈ L1(Ω,µ).

In the case when µ = P, Theorem 1.1 coincides with the well-known theorem of
Birkhoff.

The ergodic theorem stated above implies that the measures

µε = εn dµω(ε−1x)

converge weakly to a determinate measure mdx a. s. in the sense of P as ε→ 0.
We have already mentioned that condition (1.5) implies that the Palm measure

is a finite Borel measure on the compact metric space Ω. Not all these measures are
Palm measures for stationary measures.

Example 1.11. Let Ω be a two-dimensional torus, let T (x) be a one-dimensional
dynamical system of shifts along an irrational cable, let I be a line segment on
the torus and let µ be a one-dimensional Lebesgue measure concentrated on this
segment. Then it can be shown that

(i) if I is parallel to the cable, then µ is not a Palm measure,
(ii) if I is orthogonal to the cable, then µ is a Palm measure.

§ 2. Sobolev spaces with measure

Let us recall the definition of the Sobolev space H1(Rn, µω).

Definition 2.1. We say that z = z(x), z ∈ (L2(Rn, µω))n, is a gradient of u(x)
in L2(Rn, µω) if there is a sequence uk ∈ C∞0 (Rn) such that

uk → u in L2(Rn, µω), ∇uk → z in (L2(Rn, µω))n

as k → ∞. The space H(Rn, µω) is defined to be the set of pairs (u, z), z = ∇u,
equipped with the natural norm(

‖u‖2
L2(Rn,µω) + ‖z‖2

L2(Rn,µω)

)1/2
.

This set is a closed subspace of (L2(Rn, µω))n+1.
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Sometimes it is only the first component of the pair (u,∇u) that is called an
element of the Sobolev space. Let us note that a function can have more than one
gradient. The gradient is defined to within the set of gradients of the zero function,
which will be denoted by Γµω

(0). This set is a closed subset of (L2(Rn, µω))n.
The spaces H1

loc(Rn, µω), as well as the spaces H1(G,µω) and H1
0 (G,µω) for any

Lipschitz domain G, can be defined likewise.
For a detailed description of Sobolev spaces, see [2]–[5] and [8]–[10].
Our next purpose is to describe some spaces of functions on Ω associated with

the measure µ.

Lemma 2.1. Let v ∈ L2(Ω,µ). Then P-almost all realizations v(Txω) belong
to L2

loc(Rn, µω). Moreover,

E

∫
A

v2(Txω) dµω(x) = |A| ‖v‖2
L2(Ω,µ) (2.1)

for all A ∈ B(Rn).

Proof. This follows immediately from Campbell’s formula and Fubini’s theorem.

A converse assertion also holds and can be stated as follows: if almost all real-
izations of the measurable function v = v(ω) belong to L2

loc(Rn, µω) and

E

∫
�
v2(Txω) dµω(x) <∞,

then v ∈ L2(Ω, µ) and (2.1) holds.
Let us construct the space H1(Ω,µ). Consider the set of continuous functions

on Ω such that the limits

(∂iu)(ω) = lim
δ→0

u(Tδei
ω)− u(ω)
δ

exist for all ω and i = 1, 2, . . . , n and are continuous on Ω. This set is dense
in L2(Ω,µ), as can be verified by using the fact that C(Ω) is dense in L2(Ω) and
considering for an arbitrary ϕ ∈ C(Ω) the family of functions

ϕδ(ω) = δ−n

∫
Rn

K

(
y

δ

)
ϕ(Tyω) dy, (2.2)

where K is a positive C∞0 -function whose integral is equal to 1. The desired prop-
erties of ϕδ follow from the continuity of Tx. We denote this set of functions
by C1(Ω).

Definition 2.2. We say that u ∈ L2(Ω,µ) belongs to H1(Ω,µ) and z ∈
(L2(Ω,µ))n is a gradient of this function if there is a sequence uk ∈ C1(Ω) such
that uk → u in L2(Ω,µ) and ∂iuk → zi in L2(Ω,µ), i = 1, 2, . . . , n, as k →∞.

We denote the space of pairs (u, z) by H(Ω,µ) and the set of their first compo-
nents by H1(Ω,µ).

The gradient of u ∈ H1(Ω,µ) will be denoted by z = ∂u.
As in the case of periodic singular measures (see [4]), u ∈ H1(Ω,µ) can have

more than one gradient. It is defined to within a gradient of zero. The set of
gradients of zero will be denoted by Γµ(0).
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Lemma 2.2. Let u be a function belonging to H1(Ω,µ) and let z be a gradient
of this function. Then P-almost all realizations u(Txω) belong to H1

loc(Rn, µω),
and z(Txω) is a gradient of u(Txω) regarded as a function of x.

Proof. Consider an approximating sequence of functions uk ∈ C1(Ω). Their real-
izations uk(Txω) belong to C1

b(Rn) and

∂

∂xi
uk(Txω) = (∂iuk)(Txω).

Here we use standard notation: C1
b(Rn) stands for the set of functions continuously

differentiable in Rn equipped with the norm

‖u‖C1
b(Rn) = sup

x∈Rn

(|u(x)|+ |∇u(x)|).

By Campbell’s formula (1.6), we have

E

∫
A

(uk(Txω)− u(Txω))2 dµω(x) = |A|
∫

Ω

(uk(ω)− u(ω))2 dµ(ω) → 0

as k →∞. By choosing a subsequence we obtain the relation

uk(Txω) → u(Txω) in L2
loc(Rn, µω)

P-a. s. as k →∞. We likewise obtain that

∂

∂xi
uk(Txω) → z(Txω) in (L2

loc(Rn, µω))n

P-a. s. as k →∞, which completes the proof of the lemma.

The space L2
pot(Ω,µ) of potential vectors is defined to be the closure of the set

{∂u, u ∈ C1(Ω)} in (L2(Ω,µ))n. The space L2
sol(Ω,µ) of divergence-free vectors

is defined to be the orthogonal complement of L2
pot(Ω,µ) in (L2(Ω,µ))n, that is,

L2
sol(Ω,µ) = (L2

pot(Ω,µ))⊥.

Lemma 2.3. Let v ∈ L2
pot(Ω,µ). Then P-a. s. the realizations v(Txω) belong to

the spaces L2
pot,loc(Rn, µω) defined as the closures in (L2

loc(Rn, µω))n of the gradients
of smooth functions on Rn.

The proof of this lemma is as simple as that of Lemma 2.2. The main point is
that L2

pot(Ω, µ) is the closure of the set of smooth vectors ∂u, u ∈ C1(Ω), for which
this property of realizations is obvious. On the other hand, the space L2

sol(Ω, µ) is
defined in another way and, generally speaking, the set of smooth vectors is not
dense in it. This is the reason why the proof of the following theorem is not quite
trivial.

Theorem 2.1. P-almost all realizations of an arbitrary vector-valued function w ∈
L2

sol(Ω,µ) are divergence-free in the sense of the measure µω , that is,

w(Txω) ∈ L2
loc(Rn, dµω),

∫
Rn

w(Txω) · ∇ϕ(x) dµω(x) = 0 ∀ϕ ∈ C∞0 (Rn).

(2.3)
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Before we prove Theorem 2.1, let us describe an auxiliary construction. We shall
deal with the smoothed measures µδ and the smoothing operator ϕδ, ϕ ∈ C(Ω),
defined by formula (1.10).

Lemma 2.4. For any b ∈ L2(Ω, dµ) there is a bδ ∈ L2(Ω, dµδ) such that∫
Ω

bδϕdµ
δ =

∫
Ω

bϕδ dµ ∀ϕ ∈ C(Ω). (2.4)

Proof. Regarding the right-hand side of (2.4) as a functional Φ(ϕ), ϕ ∈ C(Ω), we
obtain the obvious estimate

|Φ(ϕ)|2 6 c

∫
Ω

(ϕδ)2 dµ, c =
∫

Ω

b2 dµ.

By Jensen’s integral inequality, we have (ϕδ)2 6 (ϕ2)δ, whence

|Φ(ϕ)|2 6 c

∫
Ω

(ϕ2)δ dµ = c

∫
Ω

ϕ2 dµδ

by property (1.11) of µδ. Therefore, bδ exists by Riesz’ theorem, and∫
Ω

|bδ|2 dµδ 6
∫

Ω

|b|2 dµ. (2.5)

Since ϕδ → ϕ uniformly on Ω, we have bδ ⇀ b in L2(Ω, dµδ). The estimate (2.5)
implies that this convergence is strong: bδ → b in L2(Ω, dµδ).

We now take a v ∈ L2
sol(Ω,µ) and observe that the corresponding vector vδ is

divergence-free with respect to µδ. Indeed, for ∂ϕ, ϕ ∈ C1(Ω), (2.4) implies that∫
Ω

vδ · ∂ϕ dµδ =
∫

Ω

v · (∂ϕ)δ dµ =
∫

Ω

v · ∂ϕδ dµ = 0.

Using the fact that the measure µδ is absolutely continuous with respect to P,
that is, µδ = ρδP, ρδ ∈ L1(Ω, dP), we obtain that the vector

pδ ≡ vδρ
δ

is divergence-free:
∫
Ω
pδ ·∂ϕ dP(ω) = 0 for all ϕ ∈ C1(Ω). By a well-known theorem

(see [14], Ch. 7), this vector is divergence-free on P-almost all realizations:∫
Rn

vδ(Txω) · ∇ψ(x) dµδ
ω(x) = 0 ∀ψ ∈ C∞0 (Rn). (2.6)

For a ∈ C(Ω) we have

0 =
∫

Ω

a(ω)
[ ∫

Rn

vδ(Txω) · ∇ψ(x) dµδ
ω(x)

]
dP(ω)

=
∫

Rn

∫
Ω

a(T−xω)vδ(ω) · ∇ψ(x)ρδ(ω) dP(ω) dx.
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Here we used the fact that P is invariant under the Tx and applied Campbell’s
formula to

f(x, ω) = a(T−xω)∇ψ(x) · vδ(ω).

Since vδ → v in L2(Ω,µδ), we have

lim
δ→0

∫
Ω

a(T−xω)vδ(ω) · ∇ψ(x)ρδ(ω) dP(ω) =
∫

Ω

a(T−xω)∇ψ(x) · v(ω) dµ(ω)

for fixed x ∈ Rn. Therefore,

0 =
∫

Rn

∫
Ω

a(T−xω)v(ω) · ∇ψ(x) dµ(ω) dx

=
∫

Ω

a(ω)
[ ∫

Rn

v(Txω) · ∇ψ(x) dµω(x)
]
dP(ω),

again by Campbell’s formula. Since a is any element of C(Ω), we obtain that∫
Rn

v(Txω) · ∇ψ(x) dµω(x) = 0

P-a. s., as required.

Definition 2.3. We say that g(ω) = divω v(ω), g ∈ L2(Ω,µ), v ∈ (L2(Ω,µ))n, if∫
Ω

g(ω)u(ω) dµ(ω) = −
∫

Ω

v(ω) · ∂u(ω) dµ(ω) ∀u ∈ C1(Ω). (2.7)

It is clear that this identity holds for any pair (u, ∂u) ∈ H1(Ω, µ).

The next theorem is a generalization of Theorem 2.1 and can be proved likewise.

Theorem 2.2. If g(ω) = divω v, then P-a. s. div v(Txω) = g(Txω) in the sense
of µω , that is,∫

Rn

v(Txω) · ∇ϕdµω(x) = −
∫

Rn

g(Txω)ϕdµω(x), ϕ ∈ C∞0 (Rn). (2.8)

Remark 2.1. It is easy to verify that (2.8) holds for a more general class of test
functions. In particular, it holds for an arbitrary ϕ ∈ H1(Rn, µω) with compact
support.

Consider the auxiliary problem∫
Ω

∂u(ω) · ∂v(ω) dµ(ω)+
∫

Ω

u(ω)v(ω) dµ(ω)=
∫

Ω

f(ω)v(ω) dµ(ω), v ∈ H1(Ω,µ),

(2.9)
where f ∈ L2(Ω,µ). Since the left-hand side of this equation is the scalar
product of (u, ∂u) and (v, ∂v) in H(Ω,µ) and the right-hand side is a continu-
ous functional, Riesz’ theorem implies that this equation has precisely one solu-
tion (u,∇u) ∈ H(Ω,µ). Hence, it has precisely one solution in H1(Ω,µ).

Let us note that in equation (2.9) the gradient of a solution is defined unam-
biguously by the following condition: ∂u is orthogonal to the gradients of zero, that
is, to the z ∈ Γµ(0). It is obvious that this condition is necessary. The following
assertion implies that it is sufficient.
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Proposition 2.1. Every u ∈ H1(Ω,µ) has precisly one gradient orthogonal
to Γµ(0).

Proof. Let ∂u be a gradient of u. Since Γµ(0) is a closed subspace of (L2(Ω,µ))n,
the equation

(z + ∂u, v)(L2(Ω,µ))n = 0 ∀v ∈ Γµ(0)

has precisely one solution in Γµ(0). The function (z+∂u) gives the desired gradient.

The main condition imposed on the Palm measure can be stated as follows.

Definition 2.4. The measure µ is said to be ergodic or 2-connected if u = const
µ-a. s. for every u ∈ H1(Ω,µ) such that z = ∂u is equal to zero.

The following approximation lemma holds for ergodic measures.

Lemma 2.5. If µ is ergodic, then the set {g(ω)} of functions of the form g(ω) =
divω v(ω) is dense in

{
u ∈ L2(Ω,µ) :

∫
Ω
u dµ(ω) = 0

}
.

Proof. Assume the opposite. Then there is a ζ ∈ L2(Ω,µ), ζ 6= 0, such that∫
Ω
ζ(ω) dµ(ω) = 0 and ζ is orthogonal to every vector of the form div v. Consider

problem (2.9) with f = ζ. Putting v = u, we obtain that∫
Ω

|∇u|2 dµ(ω) +
∫

Ω

u2 dµ(ω) =
∫

Ω

ζu dµ(ω),

whence ∫
Ω

u2 dµ(ω) 6
∫

Ω

ζ2 dµ(ω). (2.10)

The relation (2.9) implies that∫
Ω

(ζ − u)v dµ(ω) =
∫

Ω

∇u∇v dµ(ω),

whence ζ − u = divω(∇u). The choice of ζ implies that
∫
Ω
(ζ − u)ζ dµ(ω) = 0.

Further, we have

0 6
∫

Ω

(ζ − u)2 dµ(ω) = −
∫

Ω

u(ζ − u) dµ(ω),

whence ∫
Ω

u2 dµ(ω) >
∫

Ω

uζ dµ(ω) =
∫

Ω

ζ2 dµ(ω).

Using (2.10), we obtain that
∫
Ω
u2 dµ(ω) =

∫
Ω
ζ2 dµ(ω). Hence, ∇u = 0. Since µ

is ergodic, we have u = const. Therefore, ζ = const, whence ζ = 0.

§ 3. Constructing a closed Dirichlet form and a self-adjoint operator

Let a = (aij(ω)) be a symmetric, F-measurable and positive-definite matrix such
that

Λ−1|ξ|2 6 aijξiξj 6 Λ|ξ|2, ξ ∈ Rn, Λ > 0,
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µ-a. s. In this section we regard µω as a Borel measure on Rn and construct a
self-adjoint operator

A = −div a(Txω)∇,

that acts on L2(Rn, µω). We also construct a closed Dirichlet form corresponding
to it.

Let f ∈ L2(Rn, µω). We say that u ∈ H1(Rn, µω) is a solution of the equation

Au+ u = f

if the following integral identity holds:∫
Rn

a(Txω)∇u(x) · ∇ϕ(x) dµω(x) +
∫

Rn

u(x)ϕ(x) dµω(x)

=
∫

Rn

f(x)ϕ(x) dµω(x) ∀ϕ ∈ C∞0 (Rn). (3.1)

By Riesz’ theorem, there is precisely one solution (u,∇u). The unique gradient
in (3.1) is determined by the condition that the flux a∇u is tangential, that is,
a∇u ⊥ Γµω

(0). We claim that the set of solutions is dense in L2(Rn, µω).

Lemma 3.1. The set of solutions of the equation Au+ u = f , f ∈ L2(Rn, µω), is
dense in L2(Rn, µω).

Proof. We denote the set of solutions by D(A) and assume that there is a non-zero
function f0 orthogonal to D(A). Let v be a solution of equation (3.1) with
the right-hand side f0 and let u be a solution of this equation with an arbitrary
right-hand side f . By continuity, the integral identity (3.1) holds for test functions
belonging to H1(Rn, µω). Using v as a test function in the equation for u and vice
versa, and subtracting one of the integral identities thus obtained from the other,
we obtain that (f, v) = 0 for all f ∈ L2(Rn, µω). Therefore, v = 0 and ∇v ∈ Γµω (0).
Hence, (a(Txω)∇v,∇v) = 0, which contradicts our assumption.

Now for the u ∈ D(A) corresponding to the right-hand side f we put Au = f−u.
The operator (A + I)−1 assigns to f ∈ L2(Rn, µω) the corresponding solutions of
problem (3.1). This operator is bounded, non-negative and symmetric. There-
fore, A is a self-adjoint operator.

The solution of the equation Au+ u = f (or equation (3.1), which is equivalent
to it) provides a minimum in the variational problem

inf
u∈H1(Rn,µω)

{ ∫
Rn

(a(x)∇u(x) · ∇u+ u2(x)) dµ(x)− 2
∫

Rn

f(x)u(x) dµω(x)
}
. (3.2)

We can define A in a somewhat different way by constructing the corresponding
Dirichlet quadratic form. We put

E(u, u) = min
∇u∈Γµ(u)

∫
Rn

a(x)∇u(x) · ∇u(x) dµω(x), (3.3)

where Γµ(u) is the set of all gradients of u. We claim that this quadratic form is
closed. Let E1(u, v) = E(u, v) + (u, v) and let uk ∈ H1(Rn, µω) be a sequence of



36 V. V. Zhikov and A. L. Pyatnitskii

functions such that E1(uk − um, uk − um) → 0 as k,m → ∞. Our purpose is to
prove that there is a u0 ∈ H1(Rn, µω) such that E1(uk−u0, uk−u0) → 0 as k →∞.
Consider the following scalar product in H̃(Rn, µω):

((u,∇u), (v,∇v))H̃ =
∫

Rn

(
u(x)v(x) + a(Txω)∇u(x) · ∇v(x)

)
dµω(x).

Let (u, z(u)) be the projection of (u,∇u) to the orthogonal complement of the
subspace (0,Γµ(0)) (with respect to this scalar product). It is easy to verify that

E1(u, u) =
∫

Rn

(
u2(x) + a(Txω)z(u) · z(u)

)
dµω(x).

Now the existence of the desired u0 follows from the fact that H(Rn, µω) is closed
in (L2(Rn, µω))n+1.

We can also prove that the form E(u, u) is closed using the following relaxation
theorem:

E(u, u) =
∫

Rn

â∇tu · ∇tu dx,

where ∇tu is the tangential gradient of u,

â(x)ξ · ξ = min
η∈T⊥(x)

a(Txω)(ξ + η) · (ξ + η)

and T⊥(x) is the orthogonal complement of the tangential space of µω at x. This
theorem immediately implies that the form is closed.

A detailed discussion of problems concerning the construction of tangential
gradient, tangential space and relaxation can be found in § 10.

Now let us verify that this form is Markov.

Lemma 3.2. E(u, u) is a closed Markov form.

Proof. By definition, a form is said to be Markov if for any ε > 0 there is a
monotonic function φε(t), t ∈ R,

φε(t) = t for t ∈ [0, 1], −ε 6 φε(t) 6 1 + ε, φ′(t) 6 1,

such that φε(u) ∈ D(E) and E(φε(u), φε(u)) 6 E(u, u) for all u ∈ D(E).
For every ε > 0 consider the function φε such that

φ′ε ∈ C∞0 (R), φ′ε(t) = 1 if t ∈ [0, 1], 0 6 φ′ε 6 1, suppφ′ε ⊂ (−ε, 1 + ε).

The obvious relation ∇tφε(u) = φ′ε(u)∇tu, which holds for all u ∈ H1(Rn, µω), and
the relaxation theorem stated above imply that E(φε(u), φε(u)) 6 E(u, u).

Lemma 3.2 implies, in particular, that the maximum principle holds for the
semigroup e−tA.

Along with the problem for the functions defined on the whole space, we shall
deal with the Dirichlet problem and other boundary-value problems in bounded
domains G with Lipschitz boundaries. Let us state one of these problems.
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Let S be a part of ∂G. We shall assume that S is a closed subset of ∂G with
Lipschitz boundary.

Given f ∈ L2(G,µω) and ϕ0 ∈ C∞0 (Rn), we consider the variational problem

inf
(ϕ−ϕ0)∈C∞0 (Rn\S)

∫
G

(
a(Txω)∇ϕ · ∇ϕ+ ϕ2(x)− 2f(x)ϕ(x)

)
dµω(x). (3.4)

The space H̃(G,S, µω) is defined to be the closure of the set of vector-valued
functions {(ϕ,∇ϕ) : ϕ ∈ C∞0 (Rn \ S)} in the norm of (L2(G, dµω))n+1. We denote
the set of their first components by H1(G,S, dµω). In particular, we denote this
space by H1

0 (G, dµω) if S is empty.
A standard verification shows that problem (3.4) has precisely one minimum on

the set {v : (v − ϕ0,∇v − ∇ϕ0) ∈ H̃(G,S, µω)}, and the function at which this
minimum is attained satisfies the equation∫

G

a(Txω)∇u(x)·∇ϕ(x) dµω(x)+
∫

G

u(x)ϕ(x) dµω(x) =
∫

G

f(x)ϕ(x) dµω(x) (3.5)

for all ϕ ∈ H1(G,S, dµω).

§ 4. A dual definition of Sobolev spaces and approximation problems

In [19] one can find another (dual) definition of Sobolev spaces, which suits our
purposes.

Recall that for a ∈ L2(Rn, dµω) and b ∈ (L2(Rn, dµω))n we say that div b = a in
the sense of µω if ∫

Rn

b · ∇ϕdµω = −
∫

R
aϕdµω ∀ϕ ∈ C∞0 (Ω).

Let us note that, by continuity, this equality remains valid if the pair (ϕ,∇ϕ) is
replaced by an arbitrary (u, v) ∈ H(Rn, µω).

Here is another definition of H1(Rn, µω).

Definition 4.1. A pair (u, v), u ∈ L2(Rn, µω), v ∈ (L2(Rn, µω))n, is an element
of H1(Rn, µω) and v = ∇u if∫

Rn

ua dµω = −
∫

Rn

v · b dµω whenever div b = a. (4.1)

We claim that Definitions 4.1 and 2.1 are equivalent. It is obvious that (4.1) holds
for all (u, v) = (u,∇u) ∈ H(Rn, µω). Therefore, all elements of H(Rn, µω) satisfy
Definition 4.1. It is easy to verify that the set of functions satisfying Definition 2.1
is a closed subspace of (L2(Rn, µω))n+1. Assume that it is bigger than H(Rn, µω).
Then there is a non-zero element (u0, v0) for which (4.1) holds and the equality∫

Rn

u0(x)u(x) dµω(x) = −
∫

Rn

v0(x) · ∇u(x) dµω(x)
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holds for all u ∈ H1(Rn, µω). This means that u0 = div v0 with respect to µω.
Taking (u0, v0) for the test function in (4.1), we obtain the equality∫

Rn

u2
0 dµω(x) = −

∫
Rn

v2
0 dµω(x),

which contradicts the fact that (u0, v0) is a non-trivial function.
We shall need an analogue of Lemma 2.4.

Lemma 4.1. For any p ∈ L2(Rn, µω) there is a pδ ∈ L2(Rn, µδ
ω) such that∫

Rn

pδϕdµ
δ
ω =

∫
Rn

pϕδ dµω ∀ϕ ∈ C∞0 (Rn), (4.2)

pδ → p in L2(Rn, µδ), (4.3)

where ϕδ is the standard smoothing :

ϕδ(x) = δ−n

∫
Rn

ϕ(x− y)K(δ−1y) dy

with the kernel K(y) as in (1.8).

Lemma 4.2. Let div b = a in the sense of µ. Then there are families bδ and aδ

such that bδ → b, aδ → a strongly in L2(Rn, µδ), and div bδ = aδ in the sense
of µδ .

Proof. Let bδ and aδ be as in Lemma 4.1. It follows from (4.2) that∫
Rn

bδ · ∇ϕdµδ =
∫

Rn

b · ∇(ϕ)δ dµ = −
∫

Rn

aϕδ dµ = −
∫

Rn

aδϕdµ
δ,

as required.

The results obtained above enable us to establish the following assertion.

Theorem 4.1. Assume that the sequence (uδ,∇uδ) belongs to H1(Rn, dµδ) and
we have the weak convergence

uδ ⇀ u, ∇uδ ⇀ v in L2(Rn, dµδ). (4.4)

Then u ∈ H1(Rn, dµ) and v = ∇u.

Proof. Let us use Definition 4.1 of H1(Rn, dµ). If div b = a in the sense of µω

and bδ, aδ are as in Lemma 4.2, then we have∫
Rn

uδaδ dµ
δ
ω = −

∫
Rn

∇uδ · bδ dµδ
ω.

Taking into account the properties of strong convergence, we obtain that∫
Rn

ua dµ = −
∫

Rn

v · b dµ.

Hence, (u, v) ∈ H1(Rn, dµ).
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Theorem 4.1 is closely connected with the fact that µδ is obtained by smooth-
ing µ. For other methods of approximating µ by absolutely continuous measures,
passage to the limit in the variable Sobolev space may be invalid. Passage to the
limit in Sobolev spaces was studied in [5], [21].

Consider the problem of convergence of solutions of elliptic equations in Rn. As
before, µ is a Radon measure on Rn and µδ is a smoothing. Consider the equations

divAδ∇uδ + uδ = fδ in L2(Rn, dµδ), (4.5)

divA∇u+ u = f in L2(Rn, dµ) (4.6)

under the following assumptions:
(i) λ 6 Aδ 6 λ−1 µδ-a. e., λ > 0,
(ii) λ 6 A 6 λ−1 µ-a. e.,
(iii) Aδ → A strongly in L2

loc(Rn, dµδ),
(iv) fδ → f strongly in L2(Rn, dµδ).

Theorem 4.2. Let uδ(x) and u(x) be solutions of problems (4.5) and (4.6). Then

uδ → u strongly in L2(Rn, dµδ). (4.7)

Proof. Since the sequence (uδ,∇uδ) is bounded in H1(Rn, dµδ), we can assume
without loss of generality that uδ ⇀ ũ weakly as δ → 0. Theorem 4.1 implies
that (ũ,∇ũ) ∈ H1(Rn, dµ).

We can pass to the limit in the integral identity∫
Rn

[Aδ∇uδ · ∇ϕ+ uδϕ] dµδ =
∫

Rn

fδϕdµδ

using the obvious relation

Aδ∇uδ ⇀ A∇ũ in L2(Rn, dµδ).

Therefore, (ũ,∇ũ) is a solution of equation (4.6), whence (ũ,∇ũ) = (u,∇u). The
strong convergence (4.7) follows from the convergence of energies

lim
δ→0

∫
Rn

[Aδ∇uδ · ∇uδ + u2
δ ] dµ

δ = lim
δ→0

∫
Rn

uδf
δ dµδ

=
∫

Rn

fu dµ =
∫

Rn

[A∇u · ∇u+ u2] dµ

and lower semicontinuity.

§ 5. Two-scale convergence in spaces with random measures

Let us introduce the concept of two-scale convergence associated with the random
measures

dµε
ω(x) = εn dµω

(
x

ε

)
.

Let G be a domain in Rn. In particular, G may coincide with Rn. Let Txω̃ be
a typical trajectory. The term “typical” means that formula (1.12) holds for the
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trajectory Txω̃ for all g ∈ C(Ω). Let us note that trajectories are typical a. s., as
follows from the fact that C(Ω) is a separable space.

Consider a family of functions vε(x) bounded in L2(G,µε
ω̃), that is,

lim sup
ε→0

∫
G

|vε(x)|2 dµε
ω̃(x) <∞. (5.1)

Our purpose is to make the definition of the weak two-scale limit

vε(x) 2
⇀ v(x, ω), (5.2)

where v ∈ L2(G×Ω, dx×dµ(ω)). Although the original sequence vε(x) is connected
with the concrete trajectory Txω̃, the two-sale limit will be defined on G× Ω.

Definition 5.1. The relation (5.2) means that (5.1) holds and

lim
ε↓0

∫
G

vε(x)ϕ(x)b
(
T x

ε
ω̃
)
dµε

ω̃(x) =
∫

G

∫
Ω

v(x, ω)ϕ(x)b(ω) dµ(ω) dx (5.3)

for all ϕ(x) ∈ C∞0 (G) and b(ω) ∈ C1(Ω).

Theorem 1.1 implies that

lim sup
ε↓0

∣∣∣∣ ∫
G

vε(x)ϕ(x)b
(
T x

ε
ω̃
)
dµε

ω̃(x)
∣∣∣∣

6 lim sup
ε↓0

‖vε‖L2(G, µε
ω̃
)

( ∫
G

ϕ2(x)b2
(
T x

ε
ω̃
)
dµε

ω̃(x)
)1/2

6 C C(ω̃) lim
ε↓0

( ∫
G

ϕ2(x)b2
(
T x

ε
ω̃
)
dµε

ω̃(x)
)1/2

= C C(ω̃)
( ∫

G

∫
Ω

ϕ2(x)b2(ω) dµ(ω) dx
)1/2

for P-almost all ω̃. Using the standard diagonal procedure, we obtain (see [1], [4])
that for the family of function vε for which (5.1) holds, there is a subsequence εk → 0
such that the limit on the left-hand side of (5.3) exists and is a linear functional
continuous on L2(G×Ω, dx×µ). Hence, this limit can be represented in the form∫

G

∫
Ω

v(x, ω)ϕ(x)b(ω) dµ(ω) dx

with v(x, ω) ∈ L2(G× Ω, dx× dµ(ω)).
The result thus obtained can be stated as follows.

Lemma 5.1. Every family of functions vε such that (5.1) holds converges along a
subsequence to some v(x, ω) ∈ L2(G×Ω, dx×dµ(ω)) in the sense of weak two-scale
convergence.

Lemma 5.1 holds for an arbitrary sequence of functions bounded inL2(G,dµω̃(x)),
but the trajectory Txω̃ is typical (not arbitrary). As usual, the term “typical” is
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connected with the validity of the assertion of the ergodic theorem. A point ω ∈ Ω
is said to be typical if (1.12) holds at this point for all g(ω) ∈ C(Ω). Let Ω̃ be
the set of typical points. Then Ω̃ is invariant, P(Ω̃) = 1 and µ(Ω̃) = m. The last
equality follows from Campbell’s formula. The following important assertion holds:
every function g ∈ L1(Ω,µ) can be changed on a set of µ-measure zero in such a
way as to be defined on Ω̃, and (1.12) holds for all ω̃ ∈ Ω̃.

Let us note that for every g ∈ L1(Ω,µ), the relation (1.12) holds for all ω ∈ Ω1,
where Ω1 is an invariant set of full µ-measure. We can assume without loss of
generality that Ω1 ⊂ Ω̃. We have to define g on Ω̃ \ Ω1. Consider a sequence gk ∈
C(Ω), gk → g in L1(Ω,µ) as k →∞. Formula (1.12) implies that

lim
m,k→∞

lim
t→∞

1
t|A|

∫
tA

|gk(Txω)− gm(Txω)| dµω(x) = 0

for ω ∈ Ω̃ \ Ω1. One can find a measurable function g(x), x ∈ Rn, such that

lim
k→∞

lim
t→∞

1
t|A|

∫
tA

|gk(Txω)− g(x)| dµω(x) = 0,

lim
t→∞

1
t|A|

∫
tA

g(x) dµω(x) =
∫

Ω

g(ω′) dµ(ω′)

for ω ∈ Ω̃ \ Ω1. In the case when µω(dx) = dx, this assertion was proved in [14],
Ch. 7, § 5. That proof remains valid in the present case. It remains to define g
on Txω, ω ∈ Ω̃ \ Ω1, by the equality g(Txω) = g(x).

In what follows we identify functions belonging to L2(Ω,µ) with modifications
of them for which (1.12) holds.

Lemma 5.2. In Definition 5.1, the class of test functions can be extended by requir-
ing that b(ω) ∈ L2(Ω,µ).

Proof. Let b(ω) ∈ L2(Ω,µ) and assume that the sequence of functions bk(ω) ∈
C1(Ω) approximates b(ω) in the norm of L2(Ω,µ). Putting Q = suppϕ, we have

lim sup
ε→0

∣∣∣∣ ∫
Q

vε(x)ϕ(x)
(
bk

(
T x

ε
ω̃
)
− b

(
T x

ε
ω̃
))
dµε

ω̃(x)
∣∣∣∣

6 Cϕ lim sup
ε→0

‖vε‖L2(Q, µε
ω̃
) lim sup

ε→0

( ∫
Q

(
bk

(
T x

ε
ω̃
)
− b

(
T x

ε
ω̃
))2

dµε
ω̃(x)

)1/2

6 C‖bk(ω)− b(ω)‖L2(Q,µ).

The last relation follows from the ergodic theorem. The desired assertion can be
easily deduced from this inequality.

The next two lemmas deal with other properties of two-scale convergence.

Lemma 5.3. Let

‖vε‖L2(G, µε
ω̃
) 6 C(ω̃), lim

ε→0
ε‖∇vε‖(L2(G, µε

ω̃
))n = 0.

Then
vε(x) 2

⇀ v0(x) (5.4)

along a subsequence, where v0(x) does not depend on ω.
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Proof. Lemma 5.1 implies that vε 2
⇀ v0(x, ω). Assume that ψ ∈ L2(Ω,µ) and

b ∈ (L2(Ω,µ))n are such that ψ(ω) = div b(ω), which means that∫
Ω

∇ωθ(ω)b(ω) dµ(ω) =
∫

Ω

θ(ω)ψ(ω) dµ(ω)

for all θ ∈ H1(Ω,µ). Theorem 2.2 implies that∫
G

v(x)ϕ(x)ψ(T x
ε
ω) dµε

ω(x) =
∫

G

ε∇
(
v(x)ϕ(x)

)
b
(
T x

ε
ω
)
dµε

ω(x) P-a. s. (5.5)

for v ∈ H1(G,µε
ω) and ϕ ∈ C∞0 (G). Substituting v(x) = vε(x) in (5.5) with vε as

in (5.4) and passing to the two-scale limit on both sides of this equality, we obtain
that ∫

G

∫
Ω

v0(x, ω)ψ(ω)ϕ(x) dµ(ω) dx = 0

for all ψ representable in the form ψ(ω) = divω b(ω). Since ϕ is arbitrary,
Lemma 2.5 implies that ∫

Ω

v0(x, ω)ψ(ω) dµ(ω) = 0

for all ψ(ω) with the zero mean value. Hence, v0 = v0(x).

We associate with µ the quadratic form

τ(ξ) = min
v∈L2

pot(Ω,µ)

∫
Ω

|ξ + v|2 dµ(ω), ξ ∈ Rn.

We say that µ is non-degenerate if this form is non-degenerate: τ(ξ) > c0|ξ|2,
c0 > 0. In the case of degeneracy the kernel of τ consists of those ξ ∈ Rn that are
potential vectors ξ ∈ L2

pot(Ω, µ). The form τ(ξ) is a special case of the averaged
matrix.

Proposition 5.1. The set of mean values
∫
Ω
v dµ(ω), where v ∈ L2

sol(Ω,µ), coin-
cides with the orthogonal complement of the kernel of τ .

This assertion is a special case of results on averaged matrices that will be
obtained in § 6 below.

Lemma 5.4. Let

‖vε‖L2(G, µε
ω̃
) 6 C(ω̃), ‖∇vε‖(L2(G, µε

ω̃
))n 6 C(ω̃).

Then

vε(x) 2
⇀ v0(x), (5.6)

∇vε(x) 2
⇀ ∇effv0(x) + v1(x, u), (5.7)

∇effv0 ∈ L2(Rn), v1 ∈ L2(G;L2
pot(Ω,µ)), (5.8)

along a subsequence, where ∇eff = Q∇ and Q is the orthogonal projector to the
orthogonal complement of the kernel of τ . In particular, v0 ∈ H1(G) if µ is
non-degenerate.
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Proof. We denote the two-scale limit of ∇vε by w(x, ω). Let b(ω) ∈ L2
sol(Ω,µ) and

〈b〉 ≡
∫
Ω
b(ω) dµ(ω) = η 6= 0. For every ϕ ∈ C∞0 (G) we have∫

G

∇vε(x) · b
(
T x

ε
ω
)
ϕ(x) dµε

ω(x) =
∫

G

∇(vε(x)ϕ(x)) · b
(
T x

ε
ω
)
dµε

ω(x)

−
∫

G

vε(x)∇ϕ(x) · b
(
T x

ε
ω
)
dµε

ω(x) = −
∫

G

vε(x)∇ϕ(x) · b
(
T x

ε
ω
)
dµε

ω(x).

Passing to the two-scale limit, we obtain that∫
Ω

∫
G

w(x, ω) · b(ω)ϕ(x) dx dµ(ω) = −
∫

Ω

∫
G

v0(x)∇ϕ(x) · b(ω) dx dµ(ω)

= η ·
∫

G

v0(x)∇ϕ(x) dx.

Therefore,

∇v0(x) · η =
∫

Ω

w(x, ω) · b(ω) dµ(ω) ∈ L2(G),

whence ∇effv0 ∈ L2(G). It remains to observe that

−
∫

Ω

∫
G

v0∇ϕ(x) · b(ω) dx dµ(ω) = −
∫

Ω

∫
G

v0∇effϕ(x) · b(ω) dx dµ(ω)

=
∫

Ω

∫
G

∇effv0 · b(ω)ϕ(x) dx dµ(ω)

for all b ∈ L2
sol(Ω,µ), whence∫

Ω

∫
G

(w(x, ω)−∇effv0) · b(ω)ϕ(x) dx dµ(ω) = 0,

and (w(x, ω)−∇effv0) ∈ L2(G;L2
pot(Ω,µ)).

Corollary 5.1. Let G be a Lipschitz domain and assume that the sequence of func-
tions vε ∈ H1

0 (G, µε
ω̃) is such that

‖vε‖L2(G, µε
ω̃
) 6 C(ω̃), ‖∇vε‖(L2(G, µε

ω̃
))n 6 C(ω̃). (5.9)

Then we have the following convergence along a subsequence:

vε 2
⇀ v0(x) ∈ Heff

0 (G), (5.10)

∇vε 2
⇀ ∇effv0(x) + v1(x, ω), (5.11)

where Heff
0 (G) is the closure of C∞0 (G) in the norm of Heff(G) (see formula (6.13)

below), ∇effv0 ∈ (L2(G))n and v1(x, ω) ∈ L2(G;L2
pot(Ω,µ)). In particular, v0 ∈

H1
0 (G) if µω is non-degenerate.
If the estimates (5.9) hold for vε ∈ H1(G,S, µε

ω̃) and µω is non-degenerate, then
we have the following convergence along a subsequence:

vε 2
⇀ v0(x) ∈ H1(G,S), (5.12)

∇vε 2
⇀ ∇v0(x) + v1(x, ω), (5.13)
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where v1(x, ω) ∈ L2(G;L2
pot(Ω,µ)) and H1(G,S) is the closure of C∞0 (Rn \ S) in

the norm of H1(G).

Proof. We extend the vε by zero to the exterior of G, retaining the same notation
for the extensions. Since the assumptions of Lemma 5.4 hold for the extended
functions, we have v0 ∈ L2(Rn) and ∇effv0 ∈ L2(Rn). It is obvious that v0 = 0 in
the exterior of G. By [17], Ch. X, § 2, Lemma 2.6, we have v0 ∈ Heff

0 (G), which
completes the proof of the first assertion. The second assertion can be proved
likewise.

The following lemma also deals with an important property of two-scale conver-
gence.

Lemma 5.5. Let

‖vε‖L2(G, µε
ω̃
) 6 C(ω̃), ε‖∇vε‖(L2(G, µε

ω̃
))n 6 C(ω̃).

Then we have the following convergence along a subsequence:

vε 2s
⇀ v(x, ω), (5.14)

ε∇vε 2s
⇀ ∇ωv(x, ω). (5.15)

Proof. For functions of the form ψ(ω) = divω b(ω), Theorem 2.2 implies that
ψ

(
T x

ε
ω
)

= ε div b
(
T x

ε
ω
)

with respect to µε
ω, whence∫

G

vε(x)ϕ(x)ψ(T x
ε
ω) dµε

ω =
∫

G

ε∇vε(x)ϕ(x)b
(
T x

ε
ω
)
dµε

ω

for all ϕ ∈ C∞0 (G). Passing to the two-scale limit and denoting the limit of ε∇vε

by p(x, ω), we obtain that∫
Rn

∫
Ω

v(x, ω)ϕ(x)ψ(ω) dµ(ω) dx =
∫

Rn

∫
Ω

p(x, ω)ϕ(x)b(ω) dµ(ω) dx.

Therefore, ∫
Ω

v(x, ω)ψ(ω) dµ(ω) =
∫

Ω

p(x, ω)b(ω) dµ(ω),

whence p(x, ω) = ∇ωv(x, ω) for almost all x. Here we used the equivalence of the
following two definitions of H̃(Ω,µ):

(i) H̃(Ω,µ) is the closure of the set {(v(ω),∇ωv(ω)) : v ∈ C1(Ω)} in the norm
of (L2(Ω,µ))n+1,

(ii) (v(ω), z(ω)) ∈ H̃(Ω,µ) if the equality∫
Ω

v(ω)ψ(ω) dµ(ω) =
∫

Ω

z(ω)b(ω) dµ(ω) (5.16)
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holds for ψ(ω) = divω b(ω). To prove that these definitions are equivalent, note
that (5.16) obviously holds for every element of H̃(Ω,µ) in the sense of the first
definition. Assume that the second definition gives a bigger space. Then there is
a (v0(ω), z0(ω)) such that (5.16) holds and∫

Ω

v0(ω)v(ω) dµ(ω) +
∫

Ω

z0(ω)∇ωv(ω) dµ(ω) = 0.

By Definition 2.3, this means that v0 = divω z0. Substituting the test func-
tion (v0, z0) in (5.16), we obtain that∫

Ω

v2
0(ω) dµ(ω) = −

∫
Ω

z2
0(ω) dµ(ω),

which contradicts the fact that (v0, z0) is non-trivial.

Now let us define strong two-scale convergence in the variable space L2(Rn, µε
ω̃).

Definition 5.2. We say that we have strong two-scale convergence of the family
of functions {vε}, vε ∈ L2(G,µε

ω̃), to v0(x, ω) ∈ L2(G × Ω, dx dµ(ω)) as ε → 0 if
we have two-scale convergence of vε to v0 and

lim
ε→0

∫
G

vε(x)uε(x) dµω̃(x) =
∫

G

∫
Ω

v0(x, ω)u0(x, ω) dx dµ(ω) (5.17)

for every family uε for which we have two-scale convergence to u0 in L2(G,µε
ω̃).

Strong two-scale convergence will be denoted by vε 2s→ v0. An important conse-
quence of strong two-scale convergence is the convergence of the norms

lim
ε→0

∫
G

(vε(x))2 dµω̃(x) =
∫

G

∫
Ω

(v0(x, ω))2 dx dµ(ω). (5.18)

It is easy to verify that this relation can be used instead of (5.17) in the definition
of strong two-scale convergence.

We can now extend the class of test functions used in (5.3). Indeed, if we have
two-scale convergence of uε to u0 in L2(G,µω̃(x)), then (5.17) holds if we have the
strong two-scale convergence of vε.

§ 6. Homogenization

We shall now state the asymptotic problems studied in this paper. To the random
measure µω we assign the family of measures

dµε
ω(x) = εn dµω

(
x

ε

)
, ε > 0, (6.1)
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and consider the equation Aεuε+uε = fε, fε ∈ L2(Rn, µε
ω), whose integral identity

has the form

∫
Rn

a
(
T x

ε
ω
)
∇uε(x)∇ϕ(x) dµε

ω(x) +
∫

Rn

uε(x)ϕ(x) dµε
ω(x) =

∫
Rn

fε(x)ϕ(x) dµε
ω(x).

(6.2)
The function uε is a solution of the variational problem

min
{ ∫

Rn

a
(
T x

ε
ω
)
∇u · ∇u dµε

ω(x) +
∫

Rn

u2 dµε
ω(x)− 2

∫
Rn

fεu dµε
ω(x)

}
, (6.3)

where the minimum is taken over all u ∈ H1(Rn, µε
ω). Instead of this minimum,

we can consider the infimum over the set of all smooth finitary functions. We have
already shown that problem (6.2) is well posed and has a. s. precisely one solution
for every positive ε.

Since µε
ω converges weakly to the Lebesgue measure, the effective equation is an

ordinary equation.

Let us recall the definitions of strongly and weakly converging sequences of func-
tions in variable spaces.

Definition 6.1. We say that a family vε, ‖vε‖L2(Rn,µε) 6 C, converges weakly
in L2(Rn, µε) to v0 ∈ L2(Rn, dx) if

∫
Rn

vε(x)ϕ(x) dµε(x)−→
ε↓0

∫
Rn

v0(x)ϕ(x) dx (6.4)

for all ϕ ∈ C0(Rn). The family vε, ‖vε‖L2(Rn,µε) 6 C, converges strongly
in L2(Rn, µε) to v0 ∈ L2(Rn, dx) if

∫
Rn

vε(x)pε(x) dµε(x) −→
ε↓0

∫
Rn

v0(x)p0(x) dx (6.5)

for every sequence pε converging weakly in L2(Rn, µε) to p0.

Strong and weak convergence in a bounded domain can be defined likewise.

Assuming that the fε in (6.2) converge strongly (weakly) to some f ∈ L2(Rn),
we shall study the asymptotic behaviour of uε as ε ↓ 0. In other words, we shall
homogenize equation (6.2).

In many cases it is sufficient to assume that f ∈ C0(Rn) and does not depend
on ε.
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We formally define the averaged matrix aeff by the equality

aeffξ · ξ = inf
∫

Ω

a(ω)(∇µϕ(ω) + ξ) · (∇µϕ(ω) + ξ) dµ(ω), (6.6)

where ξ ∈ Rn is an arbitrary constant vector and the infimum is taken over all
ϕ ∈ C1(Ω). Here is an equivalent definition:

aeffξ · ξ = min
∫

Ω

a(ω)(v(ω) + ξ) · (v(ω) + ξ) dµ(ω), v ∈ L2
pot(Ω,µ). (6.7)

The function vξ(ω) at which the minimum is attained is a solution of the problem

vξ ∈ L2
pot(Ω,µ), a(ω)(ξ + vξ(ω)) ∈ L2

sol(Ω,µ). (6.8)

This solution depends linearly on ξ. Now aeff can be defined by the equality

aeffξ =
∫

Ω

a(ω)(ξ + vξ(ω)) dµ(ω). (6.9)

It is easy to verify that aeff is a symmetric matrix.
The following matrix can be useful:

w(ω) = (vej

i (ω)), i, j = 1, . . . , n, (6.10)

where the ej comprise the standard basis of Rn. By the ergodic theorem, the
measures µε

ω converge weakly P-a. s. to mdx as ε ↓ 0 on every compact subset
of Rn. In what follows we assume without loss of generality that m = 1. Hence, µε

converges to the standard Lebesgue measure.
Now consider the formally homogenized problem

− div aeff∇u0 + u0 = f, (6.11)

where f ∈ L2(Rn). This equation can be written in the integral form∫
Rn

aeff∇u0(x)∇ϕ(x) dx+
∫

Rn

u0(x)ϕ(x) dx =
∫

Rn

f(x)ϕ(x) dx (6.12)

for all ϕ ∈ C∞0 . Since the matrix aeff is non-negative, this problem has precisely
one solution in L2(Rn). If aeff is positive definite, then we have an elliptic problem
whose solution belongs to H1(Rn). In the case when aeff is partially degenerate,
we can only assert that aeff∇u0 belongs to L2(Rn), which implies that u0 belongs
to the function space

Heff = {u ∈ L2(Rn) : aeff∇u ∈ (L2(Rn))n} (6.13)

with the norm ‖u‖2
Heff = ‖u‖2

L2(Rn)+‖a
eff∇u‖2

L2(Rn). It is obvious that neither Heff

nor the kernel of aeff depend on the choice of the positive-definite matrix a(ω)
in (6.2) (they depend only on µω).

Let us note that µω is non-degenerate if and only if aeff is positive definite.
Moreover, the following assertion holds.
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Lemma 6.1. The kernel of aeff coincides with the set of constant potential
vectors in L2

pot(Ω,µ). In particular, µω is non-degenerate if and only if there are no
non-trivial constant functions in L2

pot(Ω,µ). A vector η belongs to the orthogonal
complement of the kernel of aeff if and only if there is a v ∈ L2

sol(Ω,µ) such that∫
Ω
v(ω) dµ(ω) = η.

Proof. The first assertion follows immediately from formula (6.7). It is clear that the
mean value of every divergence-free vector is orthogonal to every constant poten-
tial vector. On the other hand, the set of vectors of the form aeffξ, ξ ∈ Rn,
coincides with the orthogonal complement of the kernel of aeff since aeff is sym-
metric. By (6.8) and (6.9), every aeffξ is the mean value of the divergence-free
vector a(ω)(ξ + vξ). The lemma is proved.

Note that the integral identity (6.12) holds for all ϕ ∈ Heff .
We now state a theorem on homogenization in the whole space.

Theorem 6.1. Assume that the fε in problem (6.2) (or problem (6.3), which is
equivalent) converges strongly (weakly) in L2(Rn, µε

ω) to f ∈ L2(Rn) as ε → 0.
Then the solutions uε of problem (6.2) converge strongly (weakly) in L2(Rn, µε

ω) to
the solution u0 of problem (6.11) P-a. s.

The proof will be based on the technique of stochastic two-scale convergence
developed in § 5.

Note that in the case when the solution of the limit problem is a continuous func-
tion that decreases sufficiently rapidly at infinity, the convergence in the assertion
of Theorem 6.1 can be expressed in the usual way:

lim
ε→0

∫
Rn

(uε(x)− u0(x))2 dµε
ω(x) = 0.

This condition holds, for example, if the right-hand side of (6.2) is continuous, does
not depend on ε and admits the estimate f(x) 6 g(|x|), where g(s) is a function
non-negative and monotonic on [0,∞) such that g(|x|) ∈ L2(Rn).

Similar results hold for boundary value problems. For example, in the Dirichlet
problem

− div a
(
T x

ε
ω
)
∇uε(x) + uε(x) = fε(x), (uε − ϕ0) ∈ H1

0 (G, dµω), (6.14)

the difference between u0 and ϕ0 belongs toHeff
0 (G), which is the closure of C∞0 (Rn)

in the norm

‖ϕ‖2 =
∫

G

(ϕ2(x) + aeff∇ϕ(x) · ∇ϕ(x)) dx.

The integral identity∫
G

aeff∇u0 · ∇ϕdx+
∫

G

u0ϕdx =
∫

G

fϕ dx (6.15)

holds for all ϕ ∈ Heff
0 (G). It is easy to verify that the solution of this problem is

unique.
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Theorem 6.2. Assume that the fε in problem (6.14) converges strongly (weakly)
in L2(G,µε

ω) to f ∈ L2(G) as ε → 0. Then the solution uε of problem (3.5) con-
verges strongly (weakly) in L2(G,µε

ω) to the solution u0 of problem (6.15) P-a. s.

Consider the mixed boundary-value problem. Let G be a domain with
piecewise-smooth boundary and let S be a closed subset of ∂G with Lipschitz
boundary. Recall that uε is called a solution of the mixed boundary-value problem

−div a
(
T x

ε
ω
)
∇uε(x) + uε(x) = fε(x),

uε|S = ϕ0,
∂

∂νa
uε|(∂G\S) = 0,

(6.16)

if (uε − ϕ0) ∈ H1(G,S, µε
ω) and∫

Rn

a
(
T x

ε
ω
)
∇uε(x) · ∇ϕ(x) dµε

ω(x)+
∫

Rn

uε(x)ϕ(x) dµε
ω(x) =

∫
Rn

fε(x)ϕ(x) dµε
ω(x)

(6.17)
for all ϕ ∈ H1(G,S, µε

ω). When dealing with the mixed boundary-value problem,
we shall assume for the sake of simplicity that µω is non-degenerate. Then u0 −ϕ0

belongs to H(G,S), which is the closure of C∞0 (Rn \S) in the norm of H1(G). The
integral identity (6.15) holds for u0 for all ϕ ∈ H(G,S).

Theorem 6.3. Assume that µω is non-degenerate and that the fε converge
strongly (weakly) in L2(G,µε

ω) to f ∈ L2(G) as ε → 0. Then the solution uε

of problem (6.16) converges strongly (weakly) P-a. s. in L2(G,µε
ω) to a u0 such

that (u0 − ϕ0) ∈ H(G,S) and (6.15) holds for all ϕ ∈ H(G,S).

In all the homogenization problems mentioned above, we have convergence of
fluxes and energies.

Theorem 6.4. Let the assumptions of Theorem 6.1 hold. Then the following rela-
tions hold P-a. s.:

a
(
T x

ε
ω
)
∇uε ⇀ aeff∇u0 weakly in L2(Rn, µε

ω) (6.18)

and, if fε converges strongly to f ,∫
Rn

a
(
T x

ε
ω
)
∇uε · ∇uε dµε

ω(x) →
∫

Rn

aeff∇u0 · ∇u0 dx. (6.19)

In a similar way, the following relations hold for the Dirichlet problem and the
mixed boundary-value problem :

a
(
T x

ε
ω
)
∇uε ⇀ aeff∇u0 weakly in L2(G,µε

ω) (6.20)

and, in the case when the right-hand sides converge strongly,∫
G

a
(
T x

ε
ω
)
∇uε · ∇uε dµε

ω(x) →
∫

G

aeff∇u0 · ∇u0 dx. (6.21)
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Proof of Theorem 6.1. The elementary a priori estimate

‖uε‖L2(Rn,µε) + ‖∇uε‖L2(Rn,µε) 6 C

and Lemma 5.4 imply that

uε 2
⇀ u0(x),

∇uε 2
⇀ ∇effu0(x) + u1(x, ω), u1 ∈ L2

(
Rn;L2

pot(Ω,µ)
)
,

a
(
T x

ε

)
∇uε 2

⇀ a(ω)
(
∇effu0 + u1

) (6.22)

for all typical realizations. Let us substitute the test function εϕ(x)v
(
T x

ε
ω
)

with
ϕ ∈ C∞0 (Rn) and v(ω) ∈ C1(Ω) in equation (6.2):∫

Rn

a
(
T x

ε
ω
)
∇uεϕ(x) · ∇ωv

(
T x

ε
ω
)
dµε + ε

∫
Rn

a
(
T x

ε
ω
)
∇uε∇ϕ(x)v

(
T x

ε
ω
)
dµε

+ ε

∫
Rn

uεϕ(x)v
(
T x

ε
ω
)
dµε = ε

∫
Rn

fε(x)ϕ(x)v
(
T x

ε
ω
)
dµε.

Passing to the two-scale limit, we obtain that∫
Rn

∫
Ω

a(ω)(∇u0(x) + u1(x, ω)) · ∇ωv(ω)ϕ(x) dµ(ω) dx = 0.

Therefore, ∫
Ω

a(ω)(∇u0(x) + u1(x, ω))∇ωv(ω) dµ(ω) = 0

for almost all x. Hence, u1(x, ω) is a solution of the auxiliary problem (6.8) for
ξ = ∇effu0(x), that is, u1(x, ω) = w(ω)∇effu0(x). Hence,∫

Ω

a(ω)(∇u0(x) + u1(x, ω))P(dω) = aeff∇u0(x).

Combining this equality with (6.22), we obtain that

a
(
T x

ε
ω
)
∇uε ⇀ aeff∇u0 in L2

(
Rn, dµε

ω

)
(convergence of fluxes). Passing to the limit in (6.2), we obtain that u0(x) satisfies
the equation∫

Rn

aeff∇u0(x) · ∇ϕ(x) dx+
∫

Rn

u0(x)ϕ(x) dx =
∫

Rn

f(x)ϕ(x) dx. (6.23)

This equation has precisely one solution, and the solutions uε of equation (6.2) (or
of the variational problem (6.3)) converge weakly with respect to µε to the unique
solution u0(x) of problem (6.23), which is a determinate function.

We claim that uε converges strongly to u0 in L2(Rn, µε) if fε converges strongly
to f . Our arguments are based on the weak convergence proved above. Consider
the following auxiliary problem:

− div a
(
T x

ε
ω
)
∇vε(x) + vε(x) = uε(x), vε ∈ H1

(
Rn, µε

ω

)
. (6.24)
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The solution vε of this problem converges weakly to the solution of the homogenized
problem

−div aeff∇v(x) + v(x) = u0(x), v ∈ Heff(Rn).

Using vε as a test function in the original equation, using uε as a test function in
equation (6.24) and subtracting one of the integral identities thus obtained from
the other, we obtain the equality∫

Rn

(uε(x))2 dµε
ω(x) =

∫
Rn

vε(x)f(x) dµε
ω(x).

Considering the limit functions, we likewise obtain that∫
Rn

(u0(x))2 dx =
∫

Rn

v(x)f(x) dx.

Hence,

lim
ε→0

‖uε‖2
L2(Rn,µε

ω) = lim
ε→0

∫
Rn

vε(x)f(x) dµε
ω(x) =

∫
Rn

v(x)f(x) dx =
∫

Rn

(u0(x))2 dx,

which completes the proof of strong convergence.

The assertions of Theorem 6.3 concerning the weak and strong convergence of
solutions of boundary-value problems can be proved likewise.

Proof of Theorem 6.4. First we shall prove the theorem for the problem stated in the
whole space. Since the uε converge to u0 and the ∇µε

ω
uε are bounded in L2(Rn, µε

ω),
Lemma 5.4 implies that we have the weak two-scale convergence

a(T x
ε
ω)∇µε

ω
uε 2
⇀ a(ω)

(
∇effu0 + v1(x, ω)

)
, ε→ 0,

where v1(x, ω) ∈ L2(Rn;L2
pot(Ω,µ)). In particular, we have the weak convergence

a
(
T x

ε
ω
)
∇µε

ω
uε ⇀

∫
Ω

a(ω)
(
∇effu0 + v1(x, ω)

)
dµ(ω)

in L2(Rn, µε
ω). It was shown in the proof of Theorem 6.1 that v1(x, ω) has the

form v1(x, ω) = w(ω)∇u0(x), where w(ω) is the solution of the auxiliary prob-
lem (6.8), (6.10). Therefore,∫

Ω

a(ω)
(
∇effu0 + v1(x, ω)

)
Q(dω) = aeff∇u0,

as was to be shown.
The convergence of fluxes in boundary-value problems (with homogeneous or

non-homogeneous boundary conditions) can be verified likewise.
Let us prove the convergence of energies. Since the pair (uε,∇uε) belongs

to H1(Rn, µε
ω), it can be used as a test function in (6.2), which implies that∫

Rn

a
(
T x

ε
ω
)
∇uε · ∇uε dµε

ω(x) +
∫

Rn

|uε|2 dµε
ω(x) =

∫
Rn

fεuε dµε
ω(x).
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Passing to the limit in this equality and using the strong convergence of uε to u0

in L2(Rn, µε
ω), we obtain that

lim
ε→0

∫
Rn

a
(
T x

ε
ω
)
∇uε · ∇uε dµε

ω(x) = −
∫

Rn

|u0|2 dx+
∫

Rn

fu0 dx

P -a. s. On the other hand, using u0(x) as a test function in (6.12), we obtain the
equality ∫

Rn

aeff∇u0 · ∇u0 dx = −
∫

Rn

|u0|2 dx+
∫

Rn

fu0 dx.

The last two relations imply that the energies converge in the case when the
equation is defined on the whole space.

For boundary-value problems, the strong convergence of solutions and the con-
vergence of energies can be verified in the same way as was done for problems in
the whole space.

To conclude this section, we state a theorem on the (two-scale) convergence of
arbitrary solutions which can be useful in the study of properties of the solutions
of boundary-value problems.

Theorem 6.5. Let the functions uε(x) be solutions of the equation

−div a
(
T x

ε
ω
)
∇uε + uε = fε(x)

in the domain G ⊂ Rn in the sense of the integral identity∫
G

(
a
(
T x

ε
ω
)
∇uε · ∇ϕ(x) + uεϕ

)
dµε

ω(x) =
∫

G

fε(x)ϕ(x) dµε
ω(x) ∀ϕ ∈ C∞0 (G).

Further, let fε → f strongly in L2(G,µε
ω) and let ‖uε‖L2(G, µε

ω) 6 C . Then for
every typical realization, every two-scale limit u0 of uε depends only on the slow
variable x and satisfies the equation

div
(
aeff∇u0

)
+ u0 = f.

We have the following convergence of gradients and fluxes :

∇uε 2
⇀ ∇effu0 + w(ω)∇effu0,

a
(
T x

ε
ω
)
∇uε 2

⇀ a(ω)∇effu0 + a(ω)w(ω)∇effu0(x),

where w(ω) is the matrix defined in (6.8), (6.10).

Theorem 6.5 can be proved by the methods used in the proofs of the preceding
assertions in this section.

§ 7. Kesten’s problem

Let us apply the technique developed above to the study of effective diffusion on
an infinite cluster in the two-dimensional percolation model. Consider the standard
percolation model in R2, in which to every node of Z2 the values 1 and 0 are assigned
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with probabilities p and 1−p, respectively, and the corresponding random variables
are independent. Neighbouring nodes to which the value 1 is assigned are joined
by edges. It is well known (see, for example, [18]) that for p > pc ∼ 0.59, the set of
edges thus obtained has a. s. precisely one unbounded connected component, which
is called an infinite cluster.

We shall study an important example of a singular random measure defined
as follows. The support of this measure coincides with the union of the edges
belonging to the infinite cluster. On each of these edges the random measure µω is
defined to be the standard one-dimensional Lebesgue measure H1(γk), where γk

is the corresponding edge. This definition implies that µω is a random locally finite
Borel measure of finite intensity stationary with respect to integer shifts. The
construction of the probability space and of the random ergodic dynamical system
in this example are well known (see [18]). According to [18], the density of the
infinite cluster is positive for all p > pc. Therefore, the intensity of µω is positive
if p > pc.

Lemma 7.1. The measure µω is ergodic.

Proof. Consider an arbitrary u(ω) ∈ H1(Ω,µ) such that ∇u(ω) = 0. By
Lemma 2.2, we have u ∈ H1(R2, µω) P-a. s. and ∇µωu(Txω) = 0. According
to [3] and [12] the function u(Txω) belongs P-a. s. to H1(γk) on every segment of
the infinite cluster and has a continuous modification. It is easy to verify that the
tangential gradient of this function coincides on every segment with the derivative
along the segment and vanishes under our assumptions. Therefore, u(Txω) is equal
to a constant on the segments of the infinite cluster P-a. s. Since the infinite cluster
is connected, this function is equal to a constant on the whole cluster P-a. s. Com-
bining this with the ergodicity of Tx and using Campbell’s formula, we obtain that
u(ω) = const µ-a. s.

A property of the channels in the corresponding percolation model (see [18])
implies that µω is non-degenerate if p > pc. This property, in a form adapted for
our purposes, can be described as follows.

For an arbitrary sequence x0, x1, . . . , xk of elements of Z2 such that |xi+1−xi| = 1
for all i = 1, 2, . . . , k, a path is defined to be a sequence of edges γ0, γ1, . . . , γk,
γi = [xi, xi+1].

Theorem 7.1. Let p > pc. Then there are constants c(p) > 0 and c1(p) > 0
such that P-a. s. for all sufficiently large N , there are at least c(p)N disjoint paths
(channels) in the square [0, N ]2 joining its upper and lower sides and such that
the edges contained in these paths belong to the infinite cluster. Moreover, one can
assume that the length of each channel does not exceed c1(p)N .

Let us verify that µω is non-degenerate. First we observe that the averaged
matrix is isotropic, since the original model is stochastically invariant under rotation
through angles that are multiples of π/2. Therefore, aeff = κeffI, where I is the
identity matrix, and it is sufficient to verify that κeff > 0.
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Consider the following Dirichlet problem with non-homogeneous boundary
conditions in G = [0, 1]2:

− div∇µε
ω
uε + uε = 0,

(uε − x1) ∈ H1
0 (G,µε

ω).
(7.1)

If κeff = 0, then the energy of the limit problem vanishes, and the theorem of
convergence of energies for the Dirichlet problem implies that

lim
ε→0

∫
G

|∇uε|2 dµε
ω(x) = 0.

Therefore, it is sufficient to verify that
∫

G
|∇uε|2 dµε

ω(x) > C > 0 a. s. with respect
to P. By Theorem 7.1, for P-almost all ω and all sufficiently small ε > 0, one
can find in G at least c(p)/ε disjoint channels that join the upper and lower sides
of the square, and the length of every polygonal arc that forms a channel is at
most c1(p). On each of these arcs we take the natural parametrization defined by the
arc-length. The restriction of uε to each of these polygonal arcs is an H1-function
of the coordinate thus defined. The tangential gradient ∇tuε is parallel to the
corresponding segments of this polygonal arc and coincides with the derivative
of uε along it. Denoting the number of edges in the jth channel by Nj and the
above coordinate by t, we obtain that

1 =
( ∫ εNj

0

duε

dt
dt

)2

6
∫ εNj

0

dt

∫ εNj

0

∣∣∣∣duε

dt

∣∣∣∣2 dt.
Hence, ∫ εNj

0

∣∣∣∣duε

dt

∣∣∣∣2 dt >
1

c1(p)
.

Adding these inequalities for all channels, we obtain that

∑
j

∫ εNj

0

∣∣∣∣duε

dt

∣∣∣∣2 dt >
c(p)
εc1(p)

.

The definition of µε implies that dµε(x) = mεdt on every channel, where m is the
density of the infinite cluster. Therefore,∫

G

|∇uε|2 dµε(x) >
∑

j

∫ εNj

0

∣∣∣∣duε

dt

∣∣∣∣2 dµε(x) = mε
∑

j

∫ εNj

0

∣∣∣∣duε

dt

∣∣∣∣2 dt >
mc(p)
c1(p)

.

This implies that the energy is uniformly positive. Hence, the effective matrix is
positive definite.

Now consider Kesten’s problem as stated. Assume that p > pc in the percolation
model considered above. Let S be the union of the upper and lower sides of the
square G = [0, 1]2 and consider the following problem in G:

−div∇µε
ω
uε = 0,

(uε − ψ) ∈ H1(G,S, µε
ω),

∂

∂x1
uε

∣∣∣∣
∂G\S

= 0,
(7.2)
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where ψ is an arbitrary C∞0 -function (in particular, we can assume that ψ coincides
with a linear function in the neighbourhood of G). Problem (7.2) can have more
than one solution since the intersection of the infinite cluster with the square 1

εG
is, generally speaking, disconnected. Consider a family of solutions uε, ε > 0, such
that

‖uε‖L∞(G) 6 C. (7.3)

It is easy to verify that such solutions exist by adding a small positive potential
to the right-hand side of (7.2). For fixed ε > 0 and arbitrary λ > 0, the maximum
principle holds for the solution of the problem

−div∇µε
ω
uε

λ + λuε
λ = 0,

(uε
λ − ψ) ∈ H1(G,S, µε

ω),
∂

∂x1
uε

λ

∣∣∣∣
∂G\S

= 0,

whence
‖uε

λ‖L∞(G) 6 ‖ψ‖L∞ .

Passing to the limit as λ → 0 in the integral identity corresponding to this
problem, we establish that every weak limit point of the family uε

λ is a solution
of problem (7.2). Note that the tangential gradient of the solution of problem (7.2)
is defined unambiguously.

Now let us write equation (7.2) in the form

−div∇µε
ω
uε + uε = uε.

Under the condition (7.3), we can pass to the weak limit along a subsequence
on the right-hand side of this equation. By Theorem 6.3, the limit function satisfies
the equation

κeff∆u0 = 0,

(u0 − ψ) ∈ H1(G,S),
∂

∂x1
u0

∣∣
∂G\S = 0,

whose solution is unique since κeff is positive. Hence, every family of solutions such
that condition (7.3) holds converges weakly in L2(G,µε

ω) to the solution of the last
problem. By the theorem on the convergence of fluxes, we have

∇µε
ω
uε ⇀ κeff∇u0

weakly in L2(G,µε
ω). To prove the convergence of energies, we use (uε − ψ) as a

test function in the integral identity corresponding to problem (7.2) and pass to
the limit as ε→ 0. This yields

lim
ε→0

∫
G

|∇µε
ω
uε|2 dµε

ω(x) = lim
ε→0

∫
G

∇µε
ω
uε · ∇ψ dµε

ω(x)

=
∫

G

κeff∇u0 · ∇ψ dx = κeff

∫
G

|∇u0|2 dx.

Here we have used the convergence of fluxes and the integral identity corresponding
to the limit problem.
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Thus we obtain the following method of determining the effective conductance
of the infinite cluster. We define κ(N) to be the minimal energy in the variational
problems

κ(N) = inf
u∈C∞([0,N ]2)

u(0,x2)=0, u(N,x2)=N

1
N2

∫
[0,N ]2

|∇u(x)|2 dµω(x).

We have proved that
lim

N→∞
κ(N) = κeff

P-a. s.

Remark 7.1. The results obtained in this paper for two-dimensional percolation
models remain valid in higher dimensions (bear in mind that the property of chan-
nels was proved in all dimensions). We also note that Kesten’s problem for the
continuous percolation model was considered in [6].

§ 8. An example

In this section we consider in more detail the example of random measures abso-
lutely continuous with respect to the Lebesgue measure. Let dµω(x) = ρ(Txω) dx,
where ρ(ω) > 0, ρ ∈ L1(Ω,P). In this case dµ(ω) = ρ(ω) dP(ω).

Assume that 1
ρ ∈ L

1(Ω,P). We claim that µω is ergodic and non-degenerate.
Let ∇µ

ωu(ω) = 0. Consider a sequence of C1(Ω)-functions um(ω) such that∫
Ω

|um(ω)− u(ω)|2 dµ(ω) −→ 0,
∫

Ω

|∇um(ω)|2 dµ(ω) −→ 0

as m→∞. For k > 0 we put

uk
m(ω) =


um(ω) if −k 6 um(ω) 6 k,

k if um(ω) > k,

−k if um(ω) 6 −k,

and

uk(ω) =


u(ω) if −k 6 u(ω) 6 k,

k if u(ω) > k,

−k if u(ω) 6 −k.

We have ∫
Ω

∣∣uk
m(ω)− uk(ω)

∣∣2 dµ(ω) 6
∫

Ω

|um(ω)− u(ω)|2 dµ(ω) −→ 0

as m→∞. Hence,

lim
m→∞

E

∫
G

∣∣uk
m(Txω)− uk(Txω)

∣∣2ρ(Txω) dx = 0

for all bounded Borel sets G. Therefore, the relation

lim
m→∞

∫
G

∣∣uk
m(Txω)− uk(Txω)

∣∣2ρ(Txω) dx = 0
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holds along a subsequence P-a. s. Since the functions uk
m(Txω) are uniformly

bounded, we have

lim
m→∞

∫
G

∣∣uk
m(Txω)− uk(Txω)

∣∣2 dx = 0

P-a. s. Passing once again to a subsequence, we obtain that

lim
m→∞

∫
G

|∇um(Txω)|2ρ(Txω) dx = 0.

Therefore,∫
G

∣∣∇uk
m(Txω)

∣∣ dx 6
∫

G

|∇um(Txω)| dx

6

( ∫
G

|∇um(Txω)|2ρ(Txω) dx
)1/2( ∫

G

ρ−1(Txω) dx
)1/2

−→ 0

as m → ∞. Hence, uk(Txω) is constant P-a. s. on G. Since G is an arbitrary
set, uk(Txω) is constant P-a. s. on Rn. Since Tx is ergodic, this constant does not
depend on ω ∈ Ω. Hence, u(ω) is equal to a constant P-a. s. and µ-a. s. , which
proves that dµω(x) is ergodic.

To show that dµ(ω) = ρ(ω) dP(ω) is non-degenerate, we assume that there is a
sequence of functions um ∈ C1(Ω) such that

lim
m→∞

∫
Ω

|∇ωum(ω)− ξ|2ρ(ω) dP(ω) = 0 (8.1)

for some ξ ∈ Rn \ {0}. Then∫
Ω

|∇ωum(ω)− ξ|dP(ω)

6

( ∫
Ω

|∇ωum(ω)− ξ|2ρ(ω) dP(ω)
)1/2( ∫

Ω

ρ−1(ω) dP(ω)
)1/2

−→ 0

as m→∞. On the other hand,
∫
Ω
∇ωum(ω) dP(ω) = 0, whence

|ξ| =
∣∣∣∣ ∫

Ω

(
∇ωum(ω)− ξ

)
dP(ω)

∣∣∣∣ 6
∫

Ω

|∇ωum(ω)− ξ| dP(ω).

Hence, (8.1) cannot hold and µ is non-degenerate.
Now consider the more general case of an absolutely continuous measure when

the density ρ(ω) ∈ L1(Ω) can vanish on a set of positive measure.
Assume that there is a measurable set U ⊂ Ω such that
(i) ρ = 0 in U ,
(ii) 1Ω\U (ω)ρ−1(ω) ∈ L1(Ω), where 1Ω\U is the characteristic function of the

set Ω \ U ,
(iii) the set Q(ω) = {x ∈ Rn : Txω ∈ Ω \ U} is open and connected P-a. s.
Then the measure µ is connected. In the special case when ρ(ω) = 1Ω\U , we are

dealing with homogenization in a perforated domain. The proof of connectedness
is similar to the proof of ergodicity given at the beginning of this section.

Note that, generally speaking, we do not assert that µω is non-degenerate.
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§ 9. Parabolic problems. The central limit theorem

In this section we consider the homogenization problem for parabolic equations
in variable stochastically homogeneous spaces and prove the central limit theorem in
mean.

We study the asymptotic behaviour of solutions of the Cauchy problem

∂tu
ε(x, t) = divµω

a
(
T x

ε
ω
)
∇uε(x, t),

(x, t) ∈ Rn × (0,∞), uε(x, 0, ω) = fε(x, ω)
(9.1)

as ε→ 0. We assume that the functions fε belong P-a. s. to the spaces L2(Rn, µε
ω).

In particular, f can be a determinate continuous function that does not depend
on ε and decays sufficiently rapidly at infinity.

Theorem 9.1. Assume that fε a. s. converges strongly as ε → 0 in the variable
space L2(Rn, µε

ω) to a function f(x) ∈ L2(Rn). Then the solution of problem (9.1)
converges strongly in L2(Rn, dµε

ω) a. s. for every t > 0 to the solution u0 of the
homogenized problem

∂tu
0(x, t) = div(aeff∇u0(x, t)),

(x, t) ∈ Rn × (0,∞), u0(x, 0) = f(x),
(9.2)

where aeff is defined by formula (6.6) and coincides with the averaged matrix of the
elliptic problem.

We can deduce the desired assertions from similar assertions on the homoge-
nization of elliptic operators using a theorem of Trotter–Kato type [20] on the con-
vergence of semigroups in variable spaces. Before stating this theorem we recall a
definition. Let µh and µ be Radon measures on Rn and let µh ⇀ µ. If Bh and B are
operators on L2(Rn, dµh) and L2(Rn, dµ), respectively, and ‖Bh‖, ‖B‖ 6 M0, then
we say that Bh → B if

Bhfh → Bf in L2(Rn, dµh)

whenever fh → f in L2(Rn, dµh).

Theorem 9.2 [20], [24]. Let A and Ah be non-negative self-adjoint operators
in L2(Rn, dµ) and L2(Rn, dµh), respectively, and assume that (Ah + λ)−1 →
(A + λ)−1 strongly for all λ > 0. Then e−Aht → e−At strongly for all t > 0,
and we have weak convergence

(Ah + λ)−1fh ⇀ (A+ λ)−1f in L2(Rn, dµh)

whenever fh ⇀ f in L2(Rn, dµh).

We shall need another theorem on passage to the limit in parabolic equations.
This theorem will be applied to equation (9.1) with a fixed ε. Let us state it
for ε = 1.

Consider the two Cauchy problems

∂u

∂t
= divµω

a(Txω)∇u, ∂uδ

∂t
= divµδ

ω
aδ(Txω)∇uδ,

u|t=0 = uδ|t=0 = ϕ ∈ C∞0 ,
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where the µδ
ω are smoothed measures and

aδ(Txω) → a(Txω) in L2(Rn, dµδ
ω) strongly

as δ → 0.

Theorem 9.3.

uδ(x, t, ω) → u(x, t, ω) in L2(Rn, dµδ
ω) strongly

P-a. s. as δ → 0.

Proof. This theorem follows immediately from Theorems 4.2 and 9.2.

Now let us proceed to the central limit theorem. Consider the equation

∂tu
ε(x, t, ω) = divµω a

(
T x

ε
ω
)
∇uε(x, t) in Rn × (0,+∞),

uε(x, 0) = φε(x) = ε−nφ

(
x

ε

)
,

(9.3)

where φ(y) is a non-negative C∞0 -function such that
∫

Rn φ(y)dy = 1. With this
initial condition it is sufficient to solve problem (9.3) for ε = 1 and put uε(x, t, ω) =
ε−nu1

(
x
ε ,

t
ε2 , ω

)
.

By the maximum principle, uε(x, t, ω) is non-negative. We claim that uε con-
verges for all t > 0 to the fundamental solution G(x, t) of the homogenized equation
in the following sense (as ε→ 0):

lim
ε→0

E

( ∫
Rn

{
uε(x, t, ω)− γ(ω)G(x, t)

}
ϕ(x) dµω(x)

)2

= 0 (9.4)

for all ϕ ∈ C∞0 (Rn), where

γ(ω) =
∫

Rn

φ(x) dµω(x).

Definition 9.1. We say that the CLT holds in mean if (9.4) holds for all ϕ ∈
C∞0 (Rn).

We shall assume only the following hypothesis.
(H1) The ellipticity condition ρδ(Txω) > 0 holds for the smoothed measures

µδ
ω = ρδ(Txω) dP for all δ > 0.
Note that for a stationary random measure of positive intensity, this hypothesis

imposes no restrictions on the measure since in formula (1.9) (which defines the
smoothed measure µδ

ω) the kernel K(y), instead of being finitary, can decay fairly
rapidly (say, exponentially).

Theorem 9.4. Let (H1) hold. Then so does (9.4).

Proof. Consider the auxiliary problem

∂sv
ε(x, s) + divµω a(T x

ε
ω)∇vε(x, s) = 0 in Rn × (−∞, t),

vε(x, t) = ϕ(x)
(9.5)
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with reversed time. Let ϕ coincide with the test function φ in (9.3). It is obvious
that vε(s) = e(t−s)Aε

ϕ, where e−tAε

is the semigroup generated by Aε. Since Aε is
self-adjoint, we have∫

Rn

uε(x, t)ϕ(x) dµε
ω(x) =

∫
Rn

e−tAε

φε(x)ϕ(x) dµε
ω(x)

=
∫

Rn

e−tAε

ϕ(x)φε(x) dµε
ω(x) =

∫
Rn

vε(x, 0)φε(x) dµε
ω(x).

We can write this relation in the equivalent form∫
Rn

uε(x, t)ϕ(x) dµε
ω(x) =

∫
Rn

V ε(x, t)φε(x) dµε
ω(x),

where V ε is the solution of the problem

∂tV
ε(x, t) = divµω a(T x

ε
ω)∇V ε(x, t) in Rn × (0,∞),

V ε(x, 0) = ϕ(x).
(9.6)

By Theorem 9.1, V ε converges for all t > 0 to the solution V 0 of the problem

∂tV
0(x, t) = div

(
aeff∇V 0(x, t)

)
,

(x, t) ∈ Rn × (0,∞), V 0(x, 0) = ϕ(x).

We denote by V ε(x, y, t, ω) the solution of the problem

∂tV
ε(x, y, t, ω) = divµω a(T x

ε
ω)∇V ε(x, y, t, ω) in Rn × (0,∞),

V ε(x, y, 0, ω) = ϕ(x− y),
(9.7)

where the differentiation is with respect to x and the parameter y ∈ Rn deter-
mines the shift of the argument in the initial condition. First we assume that the
solution V ε(x, y, t) is continuous in x. Properties of µε

ω and aε imply that

V ε(x, 0, t, ω) = V ε
(
x− y,−y, t, T y

ε
ω
)

for all y ∈ Rn. Putting y = x, we obtain that

V ε(x, 0, t, ω) = V ε
(
0,−x, t, T x

ε
ω
)
.

By Lemma 3.2, the maximum principle holds for the solution of problem (9.6).
Therefore,

|V ε(0, x′, t, ω)− V ε(0, x′′, t, ω)| 6 ‖∇ϕ‖L∞ |x′ − x′′| (9.8)

for all x′, x′′ ∈ Rn, that is, the Lipschitz condition with respect to x holds for
V ε(0, x, t, ω) with the constant ‖∇ϕ‖L∞ for all ε > 0, t > 0 and ω ∈ Ω.
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Using Campbell’s formula, we obtain that

E

∫
Rn

(
V ε(x, t, ω)− V 0(x, t)

)2
dµε

ω(x)

= E

∫
Rn

(
V ε

(
0,−x, t, T x

ε
ω
)
− V 0(x, t)

)2
dµε

ω(x)

=
∫

Ω

∫
Rn

(
V ε(0,−x, t, ω)− V 0(x, t)

)2
dx dµ(ω)

=
∫

Rn

( ∫
Ω

(V ε(0,−x, t, ω)− V 0(x, t))2 dµ(ω)
)
dx. (9.9)

Combining this with Theorem 9.1, we obtain the equality

lim
ε→0

∫
Rn

( ∫
Ω

(
V ε(0,−x, t, ω)− V 0(x, t)

)2
dµ(ω)

)
dx = 0.

The inequality (9.8) implies that
∫
Ω
(V ε(0,−x, t, ω)−V 0(x, t))2 dµ(ω) is a Lipschitz

function of x with Lipschitz constant not depending on ε or t. Hence, this integral
tends to zero uniformly in x as ε→ 0.

Now let us discard the assumption of continuity. Consider the relation (9.9) for
the smoothed measures µε

ω,δ with fixed ε > 0. Passing to the limit as δ → 0, we
obtain that

E

∫
Rn

(
V ε(x, t, ω)− V 0(x, t)ε

)2
dµε

ω =
∫

Rn

∫
Ω

Φε(x, t, ω) dµ dx,

where Φε(x, t, ω) is the weak (in L2(Rn × Ω)) limit of the sequence(
V ε

δ (0,−x, t, ω)− V 0(x, t)
)2
.

It is clear that
|Φε(x′, t, ω)− Φε(x, t, ω)| 6 C|x′ − x|.

The following relations hold a. s.:

lim
ε→0

∫
Rn

ϕ(x)G(x, t)λ(ω) dµε
ω(x) =

∫
Rn

ϕ(x)G(x, t)λ(ω) dx

= λ(ω)u0(0, t) = lim
ε→0

∫
Rn

u0(x, t)φε(x) dµε
ω(x).

Hence,

lim sup
ε→0

E

( ∫
Rn

ϕ(x)
(
uε(x, t)− λ(ω)G(x, t)

)
dµε

ω(x)
)2

= lim sup
ε→0

E

( ∫
Rn

(
V ε(x, t)− V 0(x, t)

)
φε(x) dµε

ω(x)
)2

6 C lim sup
ε→0

E

∫
Rn

(
V ε

(
0,−x, t, T x

ε
ω
)
− V 0(x, t)

)2
φε(x) dµε

ω(x)

= C lim sup
ε→0

∫
Ω

∫
Rn

(
V ε(0,−x, t, ω)− V 0(x, t)

)2
φε(x) dx dµ(ω)

= C lim sup
ε→0

∫
Rn

∫
Ω

(
V ε(0,−x, t, ω)− V 0(x, t)

)2
dµ(ω)φε(x) dx.
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We have shown above that the inner integral on the right-hand side of the last
equality tends to zero uniformly in x. Therefore, the whole expression on the
right-hand side tends to zero, which completes the proof of the theorem.

Corollary 9.1. The assertion of Theorem 9.4 holds for every stationary random
measure of positive intensity.

We make several remarks on the “individual” central limit theorem, which states
that

lim
ε→0

∫
Rn

{uε(x, t, ω)− γ(ω)G(x, t)}φ(x) dµε
ω = 0 ∀φ ∈ C∞0 (Rn) (9.10)

for P-almost all ω. We assume without loss of generality that γ(ω) = 1. In this
case we have ∫

Rn

uε(x, t, ω) dµε
ω =

∫
Rn

φ(x) dµω = 1.

We shall try to pass to the limit directly in equation (9.3). Consider the following
conditions on uε:

lim sup
ε→0

∫
Rn

|uε(x, t, ω)|2 dµε
ω <∞ ∀t > 0, (9.11)

lim sup
ε→0

∫
|x|>δ

uε(x, t, ω) dµε
ω 6 Cδ(t), lim

t→0
Cδ(t) = 0 ∀δ > 0. (9.12)

Theorem 9.5. If the conditions (9.11) and (9.12) hold, then so does (9.10) and,
moreover,

uε(x, t, ω) ⇀ G(x, t) in L2(Rn, dµε
ω) ∀t > 0,

where G(x, t) is the fundamental solution of the homogenized equation.

Proof. The sequence uε(x, t0, ω), t0 > 0, is bounded in L2(Rn, dµε
ω). We assume

without loss of generality that this sequence is weakly convergent. By Theorem 9.1,
the sequence uε(x, t, ω) converges weakly for all t > t0. Hence, we can assume that

uε(x, t, ω) ⇀ u0(x, t) in L2(Rn, dµε
ω) ∀t > 0,

where u0(x, t) is the solution of the homogenized equation. It remains to verify
that u0(x, t) = δ(0), that is,

lim
t→0

∫
Rn

u0(x, t)ψ(x) = ψ(0) ∀ψ ∈ C∞0 (Rn).

Let us use (9.12). It is obvious that

uε(x, t) dµε
ω ⇀ u0(x, t) dx

in the sense of the weak convergence of measures. Then (9.12) implies that∫
Rn

u0(x, t) dx = lim
ε→0

∫
Rn

uε(x, t, ω) dµε
ω = 1,

∫
|x|>δ

u0(x, t) dx 6 Cδ(t).

Hence, the desired equality holds: limt→0 u(x, t) = δ(0), that is, u(x, t) = G(x, t).
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It is rather difficult to verify conditions (9.11) and (9.12). This verification
involves the so-called Gaussian estimates for the transition probabilities or, in terms
of differential equations, estimates of Nash–Aronson type for the fundamental solu-
tion. In [23] (see also [14], Ch. 8) conditions (9.11) and (9.12) were verified in the
following cases:

(i) walks in the exterior of a dispersion random ball structure,
(ii) walks on the infinite cluster in the continuous percolation model on the plane.
It would be of interest to verify these conditions for other models, in particular,

for walks on the infinite cluster in the network model considered above.

§ 10. Construction of the tangential gradient

In this section we study the structure of gradients of zero and the structure of
the tangential subspace of the measures µω on Rn and the measure µ on Ω. Let
us recall that the gradients of zero are denoted by Γµω

(0) and Γµ(0), respectively.
First we shall prove several assertions concerning these subspaces.

Lemma 10.1. (i) Let ξ(ω) ∈ L∞(Ω,µ) and g(ω) ∈ Γµ(0). Then ξg ∈ Γµ(0). If
ζ(x) ∈ L∞(Rn, µω) and h(x) ∈ Γµω (0), then ζh ∈ Γµω (0).

(ii) The set Γµ(0) ∩ L∞(Ω,µ) is dense in Γµ(0). The set Γµω
(0) ∩ L∞(Rn, µω)

is dense in Γµω
(0).

Proof. (i) It is sufficient to prove the first assertion for functions ξ ∈ C1(Ω).
Let ψk be a sequence of functions of class C1(Ω) such that

ψk → 0 in L2(Ω,µ), ∇ωψk → g in (L2(Ω,µ))n.

We have

ξψk → 0 in L2(Ω,µ), ∇ω(ξψk) → ξg in (L2(Ω,µ))n,

whence ξg ∈ Γµ(0).
(ii) For an arbitrary ξ ∈ Γµ(0) we define gk to be the characteristic function of

the set {ω : |ξ(ω)| 6 k}. Then gkξ ∈ Γµ(0) ∩ L∞(Ω,µ) and gkξ → ξ as k → ∞.
The other assertions can be proved likewise.

We denote by Πµ and Πµω
the orthogonal projectors in (L2(Ω,µ))n and

(L2(Rn, µω))n to Γµ(0) and Γµω
(0), respectively.

Lemma 10.2. Let the functions ξ(ω), g(ω), ζ(x) and h(x) be as in Lemma 10.1.
Then Πµ(ξg) = ξΠµ(g) and Πµω (ζh) = ζΠµω (h).

Proof. For every ψ(ω) ∈ Γµ(0), Lemma 10.1 implies that

0 =
(
g −Πµ(g), ξψ

)
=

(
ξg − ξΠµ(g), ψ

)
,

where the scalar product is taken in L2(Ω,µ). Since ξΠµ(g) ∈ Γµ(0), we
have ξΠµ(g) = Πµ(ξg).

Lemma 10.3. There is an F-measurable subspace L(ω) ⊂ Rn such that

Γµ(0) = {g ∈ (L2(Ω,µ))n : g(ω) ∈ L(ω)}.
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Proof. Let e1, e2, . . . , en be the standard basis of Rn. Put

ψj(ω) = Πµ(ej)(ω), L(ω) = span{ψj(ω), j = 1, 2, . . . , n}.

Put Θ = {g ∈ (L2(Ω,µ))n : g(ω) ∈ L(ω)}. We claim that Γµ(0) = Θ. For g ∈
Γµ(0) ∩ (L∞(Ω,µ))n we have

g = g1e1 + g2e2 + · · ·+ gnen = Πµ(g) = g1ψ1 + g2ψ2 + · · ·+ gnψn.

Since Γµ(0) ∩ (L∞(Ω,µ))n is dense in Γµ(0) and Θ is closed, we have Γµ(0) ⊂ Θ.
We shall now prove the reverse inclusion. Since ψ1, . . . , ψn ∈ Γµ(0), Lemma 10.1

implies that
∑n

j=1 ξj(ω)ψj(ω) ∈ Γµ(0) for all ξj ∈ L∞(Ω,µ). We claim that the
set of such elements is dense in Θ. Indeed, if for some g ∈ Θ we have

0 =
(
g,

n∑
j=1

ξjψj

)
=

n∑
j=1

(ξj , gψj)

for all ξj ∈ L∞(Ω,µ), then g(ω)ψj(ω) = 0 µ-a. s. , and the definition of Θ implies
that g = 0.

In the same vein, we construct the sets Lµω
(x):

κj = Πµω
(ej), Lµω

(x) = span{κj , j = 1, 2, . . . , n}.

Theorem 10.1. The subspace Γµω (0) can be represented as

Γµω
(0) = {h ∈ L2(Rn, µω) : h(x) ∈ Lµω

(x)}. (10.1)

The equality
Lµω

(x) = Lµ(Txω) (10.2)

holds.

Proof. We prove (10.1) following the scheme of the proof of Lemma 10.3. To
prove (10.2), we observe that Lµω

(x) is measurable with respect to (ω, x) in the
sense of the σ-algebra F × B, where B is the Borel σ-algebra. Since the mea-
sures dµTyω(x) and µω(dx+y) coincide, we have LµTyω

(x) = Lµω (x−y). Therefore,
one can find a measurable subspace L1(ω) ⊂ Rn such that Lµω (x) = L1(Txω).

It is easy to verify that L(ω) ⊂ L1(ω). Indeed, if (g(ω),∇µg(ω)) ∈ H̃(Ω,µ),
then P-a. s. g(Txω) ∈ L2

loc(Rn, µω) and ∇µ(Txω) is a gradient of g(Txω).
To prove the reverse inclusion, we need the following proposition.

Proposition 10.1. Let b(ω) ∈ (L2(Ω,µ))n and g(ω) ∈ L2(Ω,µ). Assume that
b(Txω) is P-a. s. a µω-gradient of g(Txω). Then b(Ω) = ∇µg(ω).

Proof. We shall use (5.16). For r(ω) ∈ L2(Ω,µ) and d(ω) ∈ (L2(Ω,µ))n such
that r(ω) = divω d(ω), Birkhoff’s theorem implies that the following relations hold
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P-a. s.: ∫
Ω

r(ω)g(ω) dµ(ω) = lim
T→∞

1
Tn

∫
(0,T )n

r(Tx)g(Txω) dµω(x)

= − lim
T→∞

1
Tn

∫
(0,T )n

d(Txω) b(Txω)dµω(x)

= −
∫

Ω

d(ω) b(ω) dµ(ω).

The proof of the second equality follows the scheme of the proof of Theorem 2.1.

Now assume that L1(ω) is bigger than L(ω) by a set of positive measure µ.
Let s(ω) be a unit vector belonging to L1(ω), orthogonal to L(ω) and measurable
on this set of positive measure µ. We put s(ω) equal to zero at other values of ω.
By the first assertion of Theorem 10.1, s(Txω) is a gradient of zero in L2(Rn, µω)
P-a. s. By Proposition 10.1 s(ω) is a gradient of zero in L2(Ω,µ), which contradicts
the assumption.

Definition 10.1. The tangential space Tµ(ω) is defined to be the orthogonal com-
plement of L(ω) in Rn. In a similar way, Tµω

(x) is defined to be the orthogonal
complement of Lµω

(x) in Rn.

By Theorem 10.1, we have Tµω
(x) = Tµ(Txω). Let u(ω) be an arbitrary element

of H1(Ω,µ). We denote by ∂t
µu(ω) the orthogonal projection (in Rn) of ∂µu(ω)

to Tµω
(x). The function ∂t

µu(ω) is called a tangential gradient of u. Let us note
that every gradient of every u(ω) ∈ H1(Ω,µ) can be unambiguously represented in
the form

∂µu(ω) = ∂t
µu(ω) + g(ω), (10.3)

where g(ω) ∈ L(ω).
The tangential gradient of an arbitrary u(x) ∈ H1(Rn, µω) can be defined like-

wise. We denote it by ∇tu.
Now consider the following relaxation problem. Let a(ω) be a positive-definite

symmetric matrix and let (u(ω),∇u(ω)) ∈ H(Ω,µ) be a solution of the problem

div(a(ω)∇u(ω)) + u(ω) = f(ω), f ∈ L2(Ω,µ). (10.4)

As mentioned above, the gradient a(ω)∇u(ω) is then defined unambiguously by the
condition of the orthogonality of ∂u to Γµ(0) (generally speaking, this gradient is
not tangential).

We wish to find a matrix ar(ω) such that, for any f ∈ L2(Ω,µ), the solution of
the problem

div(ar(ω)∂u(ω)) + u(ω) = f(ω)

has the form (u, ∂tu), where u(ω) coincides with the solution of problem (10.4) but
the corresponding gradient is tangential. We solve this local problem using point-
wise projection to the tangential subspace. Namely, we have to solve the following
problem: given an η ∈ Rn, find a ζ ∈ Tµ(ω) such that a(ω)(η + ζ(ω)) ∈ Tµ(ω).
It is easy to verify that the matrix ar(ω) of the linear map η → a(ω)(η + ζ(ω)) =
ar(ω)η is symmetric and ar(ω)η = 0 for η ∈ L(ω). Let Πt be the orthogonal pro-
jector to Tµ(ω) in Rn. We have ar(ω)Πtη = ar(ω)η. Since ar(ω)η = a(ω)η for
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all η ∈ Tµ(ω) and the flux a∇u in problem (10.4) is orthogonal to Γµ(0), we have
a(ω)∇u(ω) ∈ Tµ(ω) µ-a. s. and

a(ω)∇u(ω) = ar(ω)∇u(ω) = ar(ω)Πt∂u(ω),

which solves the relaxation problem.
The relaxation problem for the measures µω on Rn can be solved likewise. Using

Theorem 10.1, we obtain that ar
µω

(x) = ar(Txω) for µω-almost all x P-a. s.

Theorem 10.2. Let a(ω) be a positive-definite symmetric matrix. Then P-a. s.
for any f ∈ L2(Rn, µω), the solutions (u,∇u), (v,∇v) of the equations

−div(a(Txω)∇u(x)) + u(x) = f(x),
−div(ar(Txω)∇v(x)) + v(x) = f(x)

have equal first components, and ∇v is the tangential gradient of u, that is, u(x) =
v(x) and ∇v = ∇tu.
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