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Subshifts defined by forbidden patterns

support U c Z9 finite pattern u e AV
Definition: Subshift of forbidden parterns F c A*
T(A,d, F)={xe Az patterns of F does not appear in x} € Az J

Some classes of subshifts:
T fullshift (FS) <= F=oand T=T(A,d,F)=A"

T subshift of finite type (SFT) <= 3IF c A* a finite set such that
T=T(Ad,F)
T subshift sofic (Sofic) <= 3F c A* afinite set and w a morphism
such that T=7(T(A,d,F))

Recall Classes of subshifts
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Definition: Subshift of forbidden parterns F c A*
T(A,d, F)={xe Az patterns of F does not appear in x} € Az J

Some classes of subshifts:
T fullshift (FS) <= F=oand T=T(A,d,F)=A"

T subshift of finite type (SFT) <= 3IF c A* a finite set such that
T=T(Ad,F)
T subshift sofic (Sofic) <= 3F c A* a rational set such that
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1D vs 2D SFT /sofic subshifts

1D SFT /sofic subshifts

@ SFT/sofic has periodic configurations
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@ exists aperiodic SFT /sofic
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1D vs 2D SFT /sofic subshifts

1D SFT/sofic subshifts 2D SFT /sofic subshifts

@ SFT/sofic has periodic configurations @ exists aperiodic SFT /sofic
@ Substitutive subshift are not sofic @ Substitutive subshift are sofic

Theorem (Mozes 1989)

Given a substition s, there exists a SFT T(B,d,F) and a factor map 7: B > A
such that 7(T(B,d,F)) = Ts.
Moreover 7 is a conjugacy almost everywhere and T(B, d, F) is substitutive.

Recall 1D vs 2D SFT/sofic subshifts
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1D SFT /sofic subshifts 2D SFT /sofic subshifts
@ SFT/sofic has periodic configurations e exists aperiodic SFT /sofic
@ Substitutive subshift are not sofic @ Substitutive subshift are sofic
o T(A,1,F) =27 is decidable e T(A,2,F)=w7 is undecidable
0/ f,1,«<

O/nvlvb
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A strip of level n allows to code space-time diagram of M of size 2" x 22", thus:

M halts <— TCalcul(M) =g

Recall 1D vs 2D SFT/sofic subshifts



Dynamical operations on subshifts




Factor operation: Fact
Definition

Let T ¢ AZJ be a subshift and 7 : .AZJ - BZJ a morphism,
d
Fact, (T)=7n(T)cB% is T.

Dynamical operations on subshift Classical operations 6/ 38



Factor operation: Fact
Definition

Let T ¢ AZd be a subshift and 7 : .AZJ - BZJ a morphism,
d
Fact, (T)=7n(T)cB% is T.

Exemple :
Consider:
A= {D,I,I} - OCEEEEOO0CEECOESEEEEEECCCEE. . € 2
P =T(A L {mm um mo,0m}) c AZ | o
[ AZ N BZ morphism such that 7 : {E:E Eulal T 1T Juluful T Yufal TTTTTT T Tuluinl | POUNRS W(Z)
-m

So Fact, (X) = {x € {0, m}?/ blocks of m have even sizes} = T (o u} (om2n+10:neny

Thus SFT 2 CIe(SFT)
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Factor operation: Fact
Definition

Let T ¢ AZd be a subshift and 7 : AZJ - BZJ a morphism,
d
Fact, (T)=7n(T)cB% is T.

Exemple :
Consider:
A= {D,I,I} - OCEEEEOO0CEECOESEEEEEECCCEE. . € 2
P =T(A L {mm um mo,0m}) c AZ o
> AZ N BZ morphism such that 7 : {E‘:E‘ Eulal T 1T Juluful T Yufal TTTTTT T Tuluinl | POUNRS W(Z)
-m

So Fact, (X) = {x € {0, m}?/ blocks of m have even sizes} = T (o u} (om2n+10:neny
Thus SFT 2 CIe(SFT)

By definition Cle(SFT) is the class of sofic subshifts .

Théoréme (Weiss-73)

In dimension 1, a subshift is sofic if and only if the set of forbidden pattens is
rational (i.e. described by a finite automaton)

Dynamical operations on subshift Classical operations 6/ 38



Subshift realized by subaction of a sofic?
Let Y =T({a,b,%},1,{ba,8a"b"a:n+ m,« + a,3 + b}). Consider the subshift

T={xe({a b,$}Zz :3y € X tel que x(_j) = y such that j e Z}

‘%—M——@\’“——W%-ﬁ—’“—fé

il Il il Dt St il Il il Bt Il v

AlA | A|A A |lA|A| A A |A|A| A|A|A| AN
AlA | A|A A A A | A A | A|A | A|A| A A A
AlA|A|A A|lA| A A A A A A A A|A|A

AlA|A|lA A|lA|A| A A | A|A A|A|A|A|HA
%%%&H%%%%%M%%%M%%%#

%’%%%%%%%%%%%%%%%%*

hlalon

T/‘W—%%*%—
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Subshift realized by subaction of a sofic?
Let Y =T({a,b,8},1,{ba,Ba"b"c: n+ m,« + a, 8 + b}). Consider the subshift

T={xe({a b,$}Zz :3y € X tel que x(_j) = y such that j e Z}

51 a"|b" a" b 1517 b st s
§|s HE a” b" $|$[$[a"[b"|S ]85!
$]s $ a"|b" $|s[s[a"[p"[s]8]]
$]s $ o b s[s|s|a"|p"[s]s

B $ 2 v s[s|s|a"[p7[s]s][8
$|s HEE o bls|s[s|a"[p]s]s]$
HE 5 |a o s|s[s|a"[p”]s]s

HE s [ala vl b|s|s|s[a"|b"][s]s]$
§ls $ a” b s[s|s|ap’]s]s

$[s|a $ a" b" s[s]slao”[s]|s]$
$ls $ a"|b" s[s]slap’[s]|s]$
s $ a b s[s]slap[s]|s]$
B $ o v s[s|s|a"[p7[s]s]$
$[s | HEE obls|s]s|a"[p"]s]s]3
5|s $|a o|s|s|s|a"[p"]s]s]$
3]s s |ala” b/ bls|s[s|a"[p7]s]s]§
§ls $ a” b s[s|s|a"[p[s]s]$
b' [ a" b s1s-1a” b 51515
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Subshift realized by subaction of a sofic?
Let Y =T({a,b,8},1,{ba,Ba"b"c: n+ m,« + a, 8 + b}). Consider the subshift

%M@’w%%%%—?

[ AT eA-A A
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517

Dynamical operations on subshift

13y € X tel que x(_j) = y such that jeZ}
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Subshift realized by subaction of a sofic?
Let Y =T({a,b,8},1,{ba,Ba"b"c: n+ m,« + a, 8 + b}). Consider the subshift

T={xe({ab*

13y € X tel que x(_j) = y such that j e Z}

n a" 15127 b 51518
B $[sla[p”|s]s]$
$|s s[sla[p]s]s]8
$]s s[sla[p”]s]s]$
55 s[sla"[p”|s]s]$
$ || HEEEHE
K $ |8 |a"[b"|8]%]9
5 | 5 s[sa[p”]s]s]$
B s[sla"[p”|s]s]$
$[s]a s[sla[p”|s[s]}
B s[s[a|p]s]s]$
B HEHEEEE
§|s $|s[a"]p"[s]5]9
§[s]a HEEEEE
515 $|s[a"]p”[s]5]9
B HEHEEEE
B $|s|a"p”[s]s
' H s151{a" b/ 51518
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Projective subaction: SA

d . . . .
Let T c AZ" be a subshift and G be a sublattice of Z9, the G-action on T is not
necessary a subshift. However if we restrict to a row one obtains a subshift.

Definition

Let G be a sublattice of Z? generated by ug,ua,...,ug (d' <d). Let T ¢ AZd be
a subshift :

o’ . . '
SAG(T)z{ yeAZ : Ax e T tel que Vll,...,IdIGZd, }

}/il >"'1icl’ = Xil up +---+id/ uys

Let G={(i,i):ieZ} c 72

SA; =...  AEEEN.EEEEN...

Dynamical operations on subshift
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Example of projective subaction

Il b el |

5.8$.$ s[aﬁa‘aia

‘$‘$‘a‘b‘$‘$‘$‘$‘a‘
=+ == — = 4 = = =4

\$ﬂ$ a a\b\b\$ $ aa a\b\b\b $, $
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Example of projective subaction

Vbl s
L 1B}
, 8]
R LA
I $:%
‘ b'$'$'Sl
\ \ \ i : +: Fb#\b: $
516 $$'¢ $ a‘a‘a‘b‘b‘b‘$‘$‘$‘$‘$‘$‘$‘$‘$‘$‘$
$.$,$.$.$,a,a,a,a b bbb %5 59$,5%abs s )
’ ﬂﬁ A b«;” gﬁgﬁ‘f%‘zzg%lbﬂ‘ﬁgﬁi eTrcA”
.3 \$4$\;$L$4§\7$4$7\$¢$\§L$4$\7 .$.$,22,2bb,b
$1$ %% %% %% %% abs s S$%aaaabbb
\$7§\7$T‘—;\LT$7§\7$T$:\},T37\277b7§\7$T$:\:$T$7§T$T§f$7$
$'$ala bb S $aaabbbs$$sssss s
$
4:

iSA;l

§ $ S $aaaaabbbbbssssaabbsecSAe (Tr)

Thus Clsa(Sofic) + Sofic.
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Subshifts defined by forbidden patterns

support U c Z9 finite pattern u e AV
Definition: Subshift of forbidden parterns F c A*
T(A,d, F)={xe Az patterns of F does not appear in x} € Az J

Some classes of subshifts:
T fullshift (FS) <= F=oand T=T(A,d,F)=A"

T subshift of finite type (SFT) <= 3IF c A* a finite set such that
T=T(Ad,F)
T subshift sofic (Sofic) <= 3F c A* afinite set and w a morphism
such that T=7(T(A,d,F))

Dynamical operations on subshift The class of effective sushifts
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Subshifts defined by forbidden patterns

support U c Z9 finite pattern u e AV
Definition: Subshift of forbidden parterns F c A*
T(A,d, F)={xe Az patterns of F does not appear in x} € Az J

Some classes of subshifts:
T fullshift (FS) <= F=oand T=T(A,d,F)=A"

T subshift of finite type (SFT) <= 3IF c A* a finite set such that

T=T(Ad,F)
T subshift sofic (Sofic) <= 3F c A* a rational set such that
T =T(ALF)

T effective (RE) <= 3IF c A* a recursively enumerable set
such that T=T(A,d,F)

Dynamical operations on subshift The class of effective sushifts



Computability obstruction

Proposition

Clsa(RE) = RE
In particular Clsa(Sofic) = Clract,sa(SFT) c RE

Proof:

Let T =T(B,2,F) be a subshift such that F is enumerated by a Turing machine
and denote F,, the m first patterns enumerated. Consider ¥ = SAg (T):

u is a forbidden pattern of ¥ <= Im such that all patterns of support
[-m, m]? which satisfy F,, does not
contain u in the center.

@ For ue A", consider a Turing machine M, which on the enter m enumerate
patterns of support [~m, m]? which contains u and satisfies F,,,. The
machine M, halts, and forbid v, if no pattern are produced.

@ The Turing machine which enumerates forbidden patterns of X is constructed
using (M) yean in parallel.

Dynamical operations on subshift The class of effective sushifts



An important tool:
Simulation of effective subshifts by SFT
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Realisation of effective subshift by sofic
Theorem (Hochman-09, Durand-Romashchenko-Shen-2010, Aubrun-Sablik-2010)

If T c A% is an effective subshift, there is a subshift of finite type Trina1 C B%
and a factor map 7 : B - A such that

T(Trina1) = {X €AY 3y e T,Vi € Z, Xgeysie; = y},

Moreover hiop(Trina1) = 0.

y € T iff a "superposition" of y in
one direction is in m(Trina1)- - yeT

Corollary:
] C/SA(SOﬁC) =RE.

@ Every d-dimensional effective subshift is conjugate to the sub-action of a
subshift of finite type.

An important tool: realization of effective subshift Four layers 13 / 38



Realisation of effective subshift by sofic

Theorem (Hochman-09, Durand-Romashchenko-Shen-2010, Aubrun-Sablik-2010)

If T c A% is an effective subshift, there is a subshift of finite type Trina1 C B%
and a factor map 7 : B - A such that

7(Trina1) = {X € AT 13y € T Vi€ Z, Xpeysies = y},

Idea of the proof: Layer 1:

TAIign =

Aim:
We want to eliminate each x which contains
forbidden patterns of .

An important tool: realization of effective subshift

Four layers 13 / 38
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An important tool: realization of effective subshift

Four layers 13 / 38



Realisation of effective subshift by sofic

Theorem (Hochman-09, Durand-Romashchenko-Shen-2010, Aubrun-Sablik-2010)

If T c A% is an effective subshift, there is a subshift of finite type Trina1 C B%
and a factor map 7 : B - A such that

7(Trina1) = {X € AT 13y € T Vi€ Z, Xpeysies = y},

Idea of the proof: Layer 2:

An important tool: realization of effective subshift

Four layers 13 / 38



Realisation of effective subshift by sofic

Theorem (Hochman-09, Durand-Romashchenko-Shen-2010, Aubrun-Sablik-2010)

If T c A% is an effective subshift, there is a subshift of finite type Trina1 C B%
and a factor map 7 : B - A such that

7(Trina1) = {X € AT 13y € T Vi€ Z, Xpeysies = y},

Idea of the proof:

Layer 2:

An important tool: realization of effective subshift
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Theorem (Hochman-09, Durand-Romashchenko-Shen-2010, Aubrun-Sablik-2010)
If T c A% is an effective subshift, there is a subshift of finite type Trina1 C B%
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Realisation of effective subshift by sofic

J

Shen-2010, Aubrun-Sablik-2010)

-09, Durand-Romashchenko.

Theorem (Hochman

there is a subshift of finite type Trina1 C B%

— A such that

is an effective subshift,

c AZ

and a factor map 7: B
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Idea of the proof

Theorem (Hochman-09, Durand-Romashchenko-Shen-2010, Aubrun-Sablik-2010)
If T c A% is an effective subshift, there is a subshift of finite type Trina1 C B%

Realisation of effective subshift by sofic
and a factor map 7 : B - A such that
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Theorem (Hochman-09, Durand-Romashchenko-Shen-2010, Aubrun-Sablik-2010)
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Realisation of effective subshift by sofic
Theorem (Hochman-09, Durand-Romashchenko-Shen-2010, Aubrun-Sablik-2010)

If T c A% is an effective subshift, there is a subshift of finite type Trina1 C B%
and a factor map 7 : B - A such that

T(Trina1) = {X €AY 3y e T,Vi € Z, Xgeysie; = y},

Idea of the proof: Layer 3: Enumeration of forbidden patterns
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An important tool: realization of effective subshift Four layers 13 / 38



Realisation of effective subshift by sofic

Theorem (Hochman-09, Durand-Romashchenko-Shen-2010, Aubrun-Sablik-2010)

If T c A% is an effective subshift, there is a subshift of finite type Trina1 C B%
and a factor map 7 : B - A such that

7(Trina1) = {X € AT 13y € T Vi€ Z, Xpeysies = }’}.

Idea of the proof:

Layer 3: Responsability zones of Mrqrbia
CEE - I BE EE - - i

Meorbia of a level n can ask at Msearen Of the

same level or neighbor Mgearcn of the same level.
An important tool: realization of effective subshift Four layers
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If T c A% is an effective subshift, there is a subshift of finite type Trina1 C B%
and a factor map 7 : B - A such that

7(Trina1) = {X € AT 13y € T Vi€ Z, Xpeysies = y},

Idea of the proof:

Layer 3: Responsablllty zones of Mporbld

MeEorbia Of a level n can ask at Mgearen of the
same level or neighbor Msearcn of the same level.

An important tool: realization of effective subshift
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Realisation of effective subshift by sofic

Theorem (Hochman-09, Durand-Romashchenko-Shen-2010, Aubrun-Sablik-2010)

If T c A% is an effective subshift, there is a subshift of finite type Trina1 C B%
and a factor map 7 : B - A such that

7(Trina1) = {X € AT 13y € T Vi€ Z, Xpeysies = y},

Idea of the proof: Layer 4:
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An important tool: realization of effective subshift
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Realisation of effective subshift by sofic
Theorem (Hochman-09, Durand-Romashchenko-Shen-2010, Aubrun-Sablik-2010)
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Realisation of effective subshift by sofic
Theorem (Hochman-09, Durand-Romashchenko-Shen-2010, Aubrun-Sablik-2010)

If T c A% is an effective subshift, there is a subshift of finite type Trina1 C B%
and a factor map 7 : B - A such that

7(Trina1) = {X € AT 13y € T Vi€ Z, Xpeysies = y},

Idea of the proof: Layer 4:
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Realisation of effective subshift by sofic
Theorem (Hochman-09, Durand-Romashchenko-Shen-2010, Aubrun-Sablik-2010)

If T c A% is an effective subshift, there is a subshift of finite type Trina1 C B%
and a factor map 7 : B - A such that

7(Trina1) = {X € AT 13y € T Vi€ Z, Xpeysies = y},

Idea of the proof: Layer 4:

101 1
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T e e T e e e TR e T LT

Msearcn holds:

@ There is enough space to code address.
@ The time taken to give back the
information is t(n) < 2" x O(n?2") which
is "absorbed" by the exponential time of
the clock (227).
Four layers

An important tool: realization of effective subshift




Realisation of effective subshift by sofic
Theorem (Hochman-09, Durand-Romashchenko-Shen-2010, Aubrun-Sablik-2010)

If T c A% is an effective subshift, there is a subshift of finite type Trina1 C B%
and a factor map 7 : B - A such that

T(Trina1) = {X €AY 3y e T,Vi € Z, Xgeysie; = Y}.

Idea of the proof: Layer 4:

Communication between layers:

@ condition Request : Mg ask Msearch the
value of a box in the responsability zone
and wait the answer

@ condition Forbid : exclude configuration
when forbidden pattern are encounter a

To obtain X :

A @ operation Fact to keep only letters of Ay

@ operation SA to keep only an horizontal

line
An important tool: realization of effective subshift Four layers




Perspectives around sub-dynamic

Optimality of the construction
@ A so huge alphabet.
@ A long range of dependance to detect forbidden patterns. Wait course 3!

@ Construction very rigid: What happens if we impose some mixing properties?
Wait course 3!

An important tool: realization of effective subshift Perspectives 14 / 38
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Perspectives around sub-dynamic

Optimality of the construction
@ A so huge alphabet.
@ A long range of dependance to detect forbidden patterns. Wait course 3!
@ Construction very rigid: What happens if we impose some mixing properties?

Wait course 3!

v

Sub-dynamic

In Hochman-09 there is a characterization of subaction of d-dimensional sofic
with d > 3. What happens for d = 27

Projective sub-dynamic of SFT

We have Clsa(Sofic) = RE. Which information we have about Clsa(SFT)? In
this case we cannot use additional alphabet to make computation.
Wait course 3!

An important tool: realization of effective subshift Perspectives 14 / 38
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Applications to find local rules

Theorem (Hochman-09, Durand-Romashchenko-Shen-2010, Aubrun-Sablik-2010)

If T c A% is an effective subshift, there is a subshift of finite type Trina1 C B%
and a factor map 7 : B - A such that

T(Trina1) = {X €AY 3y e T,Vi € Z, Xgeysie; = y},

A framework for computability results :

o Computability Obstructions on SFTs are usually also obstructions for
effective shifts.

@ Prove the obstruction is the only obstruction for effective shifts.
@ Use the previous theorem to go back to SFTs.

Applications A general framework 16 / 38



Applications to find local rules
Theorem (Hochman-09, Durand-Romashchenko-Shen-2010, Aubrun-Sablik-2010)

If T c A% is an effective subshift, there is a subshift of finite type Trina1 C B%
and a factor map 7 : B - A such that

T(Trina1) = {X €AY 3y e T,Vi € Z, Xgeysie; = y},

Applications:

@ characterization of the entropy of multidimensional SFTs
(Hochman-Meyerovitch-10),

@ characterization of multidimensional S-adic subshift with local rules
(Aubrun-Sablik-12),

@ characterization of tilings which approximate discrete plane
(Fernique-Sablik-12),

@ characterization of periods of multidimensional SFTs (Jeandel-Vanier-13),

@ characterization of the function with measure quasi-periodicity
(Ballier-Jeandel-10),

Applications A general framework 16 / 38



Applications to find local rules
Theorem (Hochman-09, Durand-Romashchenko-Shen-2010, Aubrun-Sablik-2010)

If T c A% is an effective subshift, there is a subshift of finite type Trina1 C B%
and a factor map 7 : B - A such that

7(Trina1) = {X € AT 13y € T Vi€ Z, Xpeysies = y},

Applications:

@ characterization of the entropy of multidimensional SFTs
(Hochman-Meyerovitch-10),

@ characterization of multidimensional S-adic subshift with local rules
(Aubrun-Sablik-12),

@ characterization of tilings which approximate discrete plane
(Fernique-Sablik-12),

@ characterization of periods of multidimensional SFTs (Jeandel-Vanier-13),

@ characterization of the function with measure quasi-periodicity
(Ballier-Jeandel-10),

Applications A general framework 16 / 38



Approximation of discrete plane




n — d tilings

o A n—d tileis a parallelotope generated by d of the v;’s, there are (Z) tiles.

o A n— d tiling is a face-to-face tiling of R by n — d tiles.

@ The set X,

g of all tilings of RY by n — d-tiles is the full n - d tiling space.




n — d tilings
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o A n—d tileis a parallelotope generated by d of the v;’s, there are (Z) tiles.

o A n— d tiling is a face-to-face tiling of R by n — d tiles.
@ The set X,_4 of all tilings of R? by n — d-tiles is the full n — d tiling space.
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Lift

yd N\ AN N

Consider a n — d tiling.

Approximation of discrete plane Problematic 19 / 38



Lift
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Map an arbitrary vertex onto an arbitrary vector of Z".

Approximation of discrete plane Problematic 19 / 38



Lift

v A\ AN N

Modify the k™ entry when moving along the k*® direction.

Approximation of discrete plane Problematic 19 / 38



Lift

v A\ AN N

n — d vertices are mapped onto vertices of [0,1]".

Approximation of discrete plane Problematic 19 / 38



Lift

-1,0,0,0,0

9,0,0,0,-1

The whole tiling is mapped onto a stepped surface of R": its ift.

Approximation of discrete plane Problematic 19 / 38



Planar tilings

Definition
A n— d tilings set T c X,,_q4 is a planar tiling space if there are a d-dimensional

vector subspace V c R”, the slope and a positive integer w, the width, such that
all tiling t € T can be lifted into the slice V + [0, w)".

|~
w —

Approximation of discrete plane Problematic 20 / 38



Planar tilings

Definition
A n— d tilings set T c X4 is a planar tiling space if there are a d-dimensional

vector subspace V c R”, the slope and a positive integer w, the width, such that
all tiling t € T can be lifted into the slice V + [0, w)".

w=17

The w =1 case corresponds to strong planar tilings.

Approximation of discrete plane Problematic 20 / 38



Planar tilings

|

A n — d-tilings set T c X4 is a planar tiling space if there are a d-dimensional
vector subspace V c R”, the slope and a positive integer w, the width, such that
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Planar tilings

|

A n — d-tilings set T c X4 is a planar tiling space if there are a d-dimensional
vector subspace V c R”, the slope and a positive integer w, the width, such that

all tiling t € T can be lifted into the slice V + [0, w)".

Definition

weak planar tilings.

(o}

3, if w > 2, this corresponds t

Here w

®
)
~
e
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Local rules

@ A n— d-pattern of size r of a tiling t € X,,.4 is a set of tiles lying inside a

ball of radius r > 0. For T c X,,_4 denote P,(T) the set of n - d-pattern of

size r of each tiling of T.

@ The set of tilings of forbidden n — d-patterns F is

{t € X4 : no patterns of F appears in t}

Tr




Colored local rules

Consider these decorated 3 — 2 tiles: . a} which can match only if

the corresponding edges have the same color.
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Colored local rules

Consider these decorated 3 — 2 tiles: . a}, which can match only if

the corresponding edges have the same color.
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A set of tilings has colored local rules if it is possible to decorate tiles to obtain it.

the corresponding edges have the same color.

Consider these decorated 3 — 2 tiles



Colored local rules

Consider these decorated 3 — 2 tiIes:{0 . 0 . a 0} which

can match only if the corresponding edges have the same color.
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Colored local rules

Consider these decorated 3 — 2 tiles:{0 . a . a O} which

can match only if the corresponding edges have the same color.
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Colored local rules

Consider these decorated 3 — 2 tiIes:{O . a . a 0} which

can match only if the corresponding edges have the same color.
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Colored local rules

Consider these decorated 3 — 2 tiles:{O . a . a O} which

can match only if the corresponding edges have the same color.
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Historic of the problem

Which vector space admits local rules or colored local rules? J

n-fold tiling: plane tiling of slope R(uy, ..., u,) + R(vq, ..., v,), where

(ka) . (2k7r)
u,=cos| — | and v, =sin| —
n n

\ Slope of the Tiling || undecorated rules | decorated rules |
5,10-fold stong strong®)
8-fold none(® strong(®
12-fold none(® strong®
n-fold (with 4 not divide n) weak®) strong?
quadratic slope in R* weak(®) strong(")
non algebraic none(® ?
M Penrose 1974 (@: Burkov 1988  (3):Le 1992 #®):Socolar 1989

(). Socolar 1990  (®: Levitov 1988 (V: Le & al. 1992 ®): Le 1997
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Main results

@ A vector v € R" is computable if there exists a computable function
f:N— Q" such that ||[v - f(n)]|e < 27" for all neN.

@ The vector space V c R" of dimension d is computable if there exists a set of
d computable vectors which generate V.
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Main results

@ A vector v € R" is computable if there exists a computable function
f:N— Q" such that ||[v - f(n)]|e < 27" for all neN.

@ The vector space V c R" of dimension d is computable if there exists a set of
d computable vectors which generate V.

Theorem (Fernique & S.)

A d-dimensional vector space V admits n — d weak colored local rules (of width
3) for n> d if and only if it is computable.

Theorem (Fernique & S.)

A d-dimensional vector space V admits n — d weak local rules (of width 4) for
n> d if and only if it is computable.

Approximation of discrete plane Problematic 25 / 38



Historic of the problem

Which vector space admits local rules or colored local rules? J

n-fold tiling: plane tiling of slope R(uy, ..., u,) + R(vq, ..., v,), where

(2k7r) . (2k7r
uy =cos| — | and v, =sin —)
n n

\ Slope of the Tiling || undecorated rules | decorated rules |
5,10-fold stong strong()
8-fold none(® strong(®)
12-fold none®) strong(®)
n-fold (with 4 not divide n) weak(®) strong?
quadratic slope in R* weak(®) strong(")
non algebraic none(® ?
computable weak weak
M. Penrose 1974  (@: Burkov 1988  (3):Le 1992 (%):Socolar 1989

(5): Socolar 1990  (®: Levitov 1988 (: Le & al. 1992 ®): Le 1997
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Historic of the problem

Which vector space admits local rules or colored local rules? J

n-fold tiling: plane tiling of slope R(uy, ..., u,) + R(vq, ..., v,), where

2k . [ 2km
Uy = cos(—) and vy = sin (—)
n n

‘ Slope of the Tiling | undecorated rules | decorated rules |
5,10-fold stong strong(®)
8-fold none(® strong®
12-fold none®) strong®)
n-fold (with 4 not divide n) weak®) strong?
quadratic slope in R* weak(®) strong(")
non algebraic none(® ?
computable weak (non natural) weak
Notion of natural local rules
Local rules are said natural if there are verified by strong planar tiling. J
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Computability obstruction
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Algorithm to obtain the slope

Input: Local rules of the planar tilings set T ¢ X,,_.4, the width w and an integer
m which corresponds to the precision.

Algorithm:

@ rp:=2wm, ri=rgand d:=1
o While d > 5& do

» enumerate P(T), the set of all the diameter r patterns centered on 0 allowed

by these local rules (this takes exponential but finite time in r)
» enumerate X7, the’

d= max_ d(Wi, W)
Wi, WsoeX,
> ri=r+1

o Output: an element of W € X,

The algorithm halts: For sufficiently large r all vector spaces of X, are near of
V, if not by compacity one obtains one other slope for the n — d tiling.
The algorithm holds: There exists W’ € X, such that d(W’, V) < %, thus

AW, VY <dW, W+ dW V)< 2 W
2m n

Approximation of discrete plane

Computability obstruction
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Realization of computable 3 — 2 planar
tilings with colored local rules




Stripes of 3 — 2 strong planar tilling

NNy sn AN AN

ININANININS AN Ngganng

NININA NN gRsNaN NN
NINANANS NN AN

UL LI PIRSRSRRR
e T T T PP TITIRS

intertwined stripes encoding Sturmian words.

For 3 — 2 strong planar tilling,

30 / 38

Colored local rules for computable 3 — 2 planar tilings
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Stripes of 3 — 2 strong planar tilling

NIARIN NP AN PN AN AN

OIS A ST T T
NEANINININANININININ

Parallel stripes encode Sturmian words with the same slope.

30 / 38

Colored local rules for computable 3 — 2 planar tilings
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Quasi-Sturmian words
»Define the Sturmian word s, . € {0, 1}% of slope € [0,1] and intercept p by

Spa(n) =0 < (p+na) mod1le[0,1-a).

»For x,y € {0,1}” define d(x,y) := SUPp<q [IXpXp+1 - - - Xglo = [VpYp+1 - - - Yalol -

Fact: Sturmian words with equal slopes are at distance at most one.

w=117

Sp,ai  ---0010001000100010001000010001000100010. ..
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Quasi-Sturmian words
»Define the Sturmian word s, . € {0, 1}% of slope € [0,1] and intercept p by

Spa(n) =0 < (p+na) mod1le[0,1-a).
»For x,y € {0,1}Z define d(x,y) := SUP peg |1XpXp+1 - - Xqlo = [YpYp+1 - - - Yqlol -
Fact: Sturmian words with equal slopes are at distance at most one.

»x € {0,1}” is a quasi-Sturmian of slope o if d(x,s,q) < 1.

w = 21
Spa’ ---0010001000100010001000010001000100010. ..
Quasi-Sturmian: ...0010101000100000001001000001001001010...
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Quasi-Sturmian words
»Define the Sturmian word s, . € {0, 1}% of slope € [0,1] and intercept p by

Sp.a(n)=0 < (p+na) mod1le[0,1-a).
»x € {0,1}7 is a quasi-Sturmian of slope o if d(x,s,q) < 1.
Fact: Two words in {0,1}% are at distance at most one if and only if each can be

obtained from the other by performing letter replacements 0 -1 or 1 - 0,
without two consecutive replacements of the same type.

w = 21
Sp,al  -..0010001000100010001000010001000100010...
Quasi-Sturmian: ...0010101000100000001001000010001001010...
Changes: f [l 100 L A O

EBWED

Colored local rules for computable 3 — 2 planar tilings
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Quasi-Sturmian words
»Define the Sturmian word s, . € {0, 1}% of slope € [0,1] and intercept p by

Sp.a(n)=0 < (p+na) mod1le[0,1-a).
»x € {0,1}7 is a quasi-Sturmian of slope o if d(x,s,q) < 1.
Fact: Two words in {0,1}% are at distance at most one if and only if each can be

obtained from the other by performing letter replacements 0 -1 or 1 - 0,
without two consecutive replacements of the same type.

w = 21
Sp,ai  --.0010001000100010001000010001000100010...
Quasi-Sturmian: ...0010101000100000001001000010001001010...
Coding: ...0000011111111110000000110001000100111...

EBWED

Colored local rules for computable 3 — 2 planar tilings
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From strong planar 3 — 2 tilings to quasi-Sturmian subshifts

Spa) <1
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From strong planar 3 — 2 tilings to quasi-Sturmian subshifts

Spa) <1

:dp¥m d(X(.,m)7

1}%

)

{x € {0
Quasi-sturmian subshift

Je

= Sp,a

x € {0, 1}Zz :Vm3p X, m)
Sturmian subshift

Tc{

EYED

Colored local rules for computable 3 — 2 planar tilings
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From strong planar 3 — 2 tilings to quasi-Sturmian subshifts

)
=i
N (o

o.%.

|
.-“-..-..
e

Sp,a) <1

:3pVYm d (X m),

Quasi-sturmian subshift

xe{0,1}%

{

JE

= Sp,a

2VYm3p X(.,m)
Sturmian subshift

17

x€{0

Tc{

EYED

Colored local rules for computable 3 — 2 planar tilings
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From strong planar 3 — 2 tilings to quasi-Sturmian subshifts

' Spa) <1

m7

{x € {0, l}Z2 :3pVm d(x

JE

17 :Vm3p x(.m)

x € {0,

Tc{

Quasi-sturmian subshift

Sturmian subshift

EYED

Colored local rules for computable 3 — 2 planar tilings
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From strong planar 3 — 2 tilings to quasi-Sturmian subshifts

T fxe{0, 137 :YmIp x(_m =Spatc  {xe{0,11Z :3p¥m d(X(_ m,Sp.a) <1
P X(.,m) = Sp, (.,m)>>p,
Sturmian subshift Quasi-sturmian subshift
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From strong planar 3 — 2 tilings to quasi-Sturmian subshifts

:3pVm d(X( m),Sp,a) <1

{xeto, 13"
Quasi-sturmian subshift

be

= Sp,a

cix €0, 1}Zz :Ym3p X m)
Sturmian subshift

T
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Realisation of effective subshift by sofic

Theorem (Hochman-09, Durand-Romashchenko-Shen-2010, Aubrun-Sablik-2010)

If T c A% is an effective subshift, there is a subshift of finite type Tripa1 C B%
and a factor map 7 : B - A such that

7(Trina1) = {X € AT 13y e T Vi€ Z, Xpeysies = y},

Moreover hyop(Trina1) = 0.

y € T iff a "superposition" of y in
one direction is in 7(Trina1)-

Approximation of discrete plane Colored local rules for computable 3 — 2 planar tilings 33 / 38



Independent quasi-Sturmian subshifts of slope « is sofic

If o is computable then {sa,p €e{0,1}2:pe R} is an effective subshift. So there
exists an SFT T g 13.8,7 ¢ ({0,1} x B)Zz such that:

1 0 Q& o 5 1]{[0 off{ 1]]o
Lo [ o f{o 2 [Holflolflofflzlflolflol{loffllflol{lo]{lo}z{llo
0

o lflol{{olf 2 loltol{lof]xllofofl[ofl2flof{lo]]lo 0

o lflol (ol loltol{lofxllolofl[ofli]of{lo]]lo 0

o lflol ol Hloltfol{lof]llofofl[ofl2fl[of{lo]]lo 0

o lflol{folf 2 bloltol{lof]xlolofl[ofl2fl[of{lo]]lo 0

0

Eaclffinesthesathe sttrmian word 35,
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Independent quasi-Sturmian subshifts of slope « is sofic
Consider the SFT Z, c ({0,1} x B x {0, 1})Zz such that:
m12(x) € Tn 7,

x€Z, < T3(Xmn) =0 and m3(Xm ps1) =1 = T1(Xm,n) =0,

T3 (Xmn) =1 and m3(Xm ns1) =0 = 71 (Xm,n) = L.

1{0[ [{OO] | (OO[ [ [OOF{|L LI {{OL||{OL{|{OL|{{LL{{[OO][[{OOf]|[0OL{{{L1}||OO]f[0O]]||0OFffL{L

1O {{OO] | (OO [ [0 TP{|L LI {{OL||{OL{|{OL}{{LL{{[OO][[{OOf]|[0OOFf{LO}||0O[f[O01]][0Lff{L)L

1/0[ [ {0 O] | (OOf|[OOF{|LO[{[OO]|{0OOf|[0OL|{|LLf{[OL][[OL|]|[0OL[}{L1}||OO]f[0O]]|0Off|L)0

1(0[ {{OO] | (OL{[[O1|{|LL{{[OO]|[{0OOf|[OOf{{LOf{[OL|{{OL||[0OL{f{L1}||OO[f[0O]][0Lff{L(L

I CaCiT 1mie C auu dir IIIUCIJCIIUCIIt diid UUII'IB.
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Independent quasi-Sturmian subshifts of slope « is sofic
Wl(Xm,n) if 7T3(Xm,n) = 7T3(Xm,n+1)a

Define =
[ W(X)mm 1—7T1(Xm,n) otherwise.

(Zy) = Zo = {X € {0, 1}22, VmeZ, d(X(,m)Sa,0) < 1}

1 il
[11({Jo1]{jox(| Pl 1] il
1(|Ji1]{ox| ox(| Pl il 1(| pIfJi
il il 1|11 { o1l | ox(| Pl
K 1|1l fJiT il 1| pIffiT )i
i 1]
1{[O[]|JO1{[O{{]11|/O][[O{|JO]|[L{[]O]|[O{]O]|/L]|]O{|]O]|[O{[]1]]]O][/O]|]O
1{[1{|]O]{[O{{]O]|fO][[O{|JO1|JL{|]O]|[O{[O]|/O[|O{|J1]{[O{[]1]]]O][/O]|]O
L{[O[]JO][JL{[]1]|[O][[O]|]O]|[O{|]O]|fL{{[O]|/O][]O{|JO1|JL{|]1]]]O][/O]|]O
1{[O[]|JO1{[O{{JL1|/O][[O{|JO1|[L{[]O]|jO{[O]|/L]|]O{|]O]|[O{[]1]]]O][/O]|]O
1{[O[|JO1{[O{{JL1|/O][[O{|JO1|[L{[]O]|[O{[O]|/L][]O{|JO]|[O{[]1]]]O][/O]|]O
1{[1{|]O][[O{{]O]|[O][[O{|JO1|JL{|]O]|[O{[O]|/O|[O{|J1]{[O{[]1]]]O][/O]|]O
L{[O[|JOL[JL{[]1]|[O][]O]|]O1|[O{|]O]|jL{{[O]|/O][]O{|JO1|JL{|]1]]]O][/O]|]O
After the factor 7, each Tine is an independent quasi-sturmian of slope «.
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Transformation of tiles of Z, in 3 — 2-tiles

Each tiles of Z, can be viewed as a wang tile.

We construct a set 723 of 3 - 2 colored tiles in the following way:

nnnnn

lllll

DDDDD

00000

lllll

00000

00000

00000

00000

lllll

Call v;-ribbon of a 3 — 2 tiling a maximal sequence of tiles, with two consecutive

tiles being adjacent along an edge v;.

Then, 723 exactly forms the 3 — 2 tilings whose vs-ribbons has slope a.
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Width of the planar tiling built width local rules
In the same way we construct the set of tiles 7'}3,’2 and T;}B and we consider colored

3 — 2 tilings formed with 7 4 5 = T;>ﬁ x ng X TH3,

These tilings are all planar tilings of slope orthogonal to (1,«, 3). Moreover, the
width of such a tiling is at most 3, since any two of its vertices can be connected
by a path made of two ribbons.

Theorem (Fernique & S.)

A d-dimensional vector space V admits n — d weak colored local rules (of width
3) for n> d if and only if it is computable.




How delete the colors?

Given a slope, it is possible to substitute each tile of a strong planar tiling by a
"meta" tile arbitrary large. Thus decorations can be encoded by “fluctuations” at
the cost of an increase of 1 in the width.

Theorem (Fernique & S.)

A d-dimensional vector space V admits n — d weak local rules (of width 4) for
n> d if and only if it is computable.
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Perspectives around this application

Decorated local rules

The computable slopes have natural decorated rules (of with 3) but it is possible
to have strong decorated local rules (i.e., width 1)7
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Perspectives around this application

Decorated local rules

The computable slopes have natural decorated rules (of with 3) but it is possible
to have strong decorated local rules (i.e., width 1)7

Undecorated local rules

Decorations can be encoded by “fluctuations” at the cost of an increase of 1 in the
thickness, but the rules are no more natural.

v
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Perspectives around this application

Decorated local rules

The computable slopes have natural decorated rules (of with 3) but it is possible
to have strong decorated local rules (i.e., width 1)7

Undecorated local rules

Decorations can be encoded by “fluctuations” at the cost of an increase of 1 in the
thickness, but the rules are no more natural.

v

Natural undecorated local rules

Only algebraic slopes can have natural undecorated rules (Le '95). Even fewer
slopes can have strong undecorated rules (Levitov '88). There is yet no complete
characterization of these slopes.
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