SPEED OF CONVERGENCE FOR THE REALIZATION OF AN EFFECTIVE
SUBSHIFT BY A MULTIDIMENSIONAL SFT OR SOFIC

ABSTRACT. Realization of d-dimensional effective subshifts as projective sub-actions of d + d’-dimensional
sofic subshifts for d’ > 1 is now well know [Hoc09) [DRS10, [AS11]. In this paper we are interested in the
speed of convergence of this realization. That is to say given an effective subshift X realized as projective
sub-action of a sofic T, we study the function which on input an integer k returns the smallest width of
the strip which verify the local rules of T necessary to obtain exclusively the language of size k of ¥ in the
central row of the strip. We study this topological conjugacy invariant for effective subshifts in order to
exhibit algorithmic properties of these subshifts.

INTRODUCTION

A subshift of dimension d is a closed and shift-invariant subset of A% where A is a finite alphabet. A
subshift can be characterized by a set of forbidden patterns. With this last point of view, the simplest class
is the set of subshifts of finite type, which are subshifts that can be characterized by a finite set of forbidden
patterns. Applying a continuous shift-invariant function on a subshift of finite type, one obtains a sofic shift.
This class of symbolic systems is the smallest class stable under factors which contains the class of subshift
of finite type. In dimension one, this class can be characterized by a set of forbidden pattern accepted by a
finite automaton [Wei73].

When we consider multidimensional subshifts, we can consider their stability according to another dynam-
ical operation: tacking a sub-action. To obtain a subshift we consider projective subaction which consists of

restricting the configurations of a subshift of AZ" to a sublattice of Z“, we obtain a subshift of AZd/ where
d’ < d is the dimension of the sublattice. The smallest class stable under this operation which contains
the class of sofic is the set of effective subshifts which are subshifts that can be characterized by a set of
forbidden patterns enumerated by a Turing machine. Clearly this class is stable by projective subaction
and contains all sofic subshifts. Moreover a consequence of the main result of [Hoc09] states that every
d-dimensional effective subshift can be obtained via projective subaction of a d + 2-dimensional sofic. This
result was improved independently in [DRS10, [AST1] to hold for projective subactions of d + 1-dimensional
sofics.

The three classes evoked below are stable by conjugacy and are characterized by computability property
on their set of forbidden patterns. In this article, we introduce new conjugacy invariant classes based on the
speed of convergence of the realization via projective subaction. This emphasizes algorithmic complexity of
the set of forbidden patterns.

In [PS10], the authors characterize which one-dimensional sofic subshifts can be obtained by a projective
subaction of subshift of finite type. This classification shows a difference between certain type of sofic
subshifts, according to wether their realization can be stable or unstable that is to say wether a bounded
strip around the central one is necessary to obtain the desired sofic subshift or wether there is no bounds
which guarantee to the central row to be in the subshift. This approach is inspired by the notion of limit
sets of cellular automata where a such that notion of stable and unstable limit-set appears [Maa93l [Maa95].

In this article, we would like to go beyond the dichotomy stable vs unstable realization and try to quantify
this notion. Thus we introduce the notion of speed of convergence of the realization of an effective subshift
3 by projective subaction of a subshift of finite type or a sofic. This is defined as the function which, for a
given integer k, returns the width of the strip necessary to obtain the language of the effective subshift up
to a word length of size k in the central rows.
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Modulo an equivalence relation this quantity is invariant under conjugacy both for subshifts of finite type
and sofic subshifts (see Section [2)) when we look at the speed of convergence for the projective subaction
according to a given direction. Using this invariant we are able to show that a necessary condition to have
two conjugate substitutive subshifts is that the substitution rules of both system must have the same size.

In another way, given an effective subshift, one can study the set of speed of convergence which realizes it
as projective subaction of subshift of finite type or sofic. Modulo an equivalence relation this set is invariant
under conjugacy (Sections . In Section [4| we exhibit a condition on effective subshift which forces sofic
realization to be equivalent to subshift of finite type realization.

In Section [5] we compare the different constructions of realization of an effective subshift by projective
subaction of a sofic and we propose a quicker construction if the effective subshift has a periodic point.
When the dimension of the sofic increase the convergence is quicker. These results give upper bounds for
realization by sofic, but is also possible to obtain lower bounds (see Section @ These results bring out some
examples of different classes which exhibit the optimality of the different previous results (see Section @

1. DEFINITIONS

1.1. Subshifts

Let A be a finite alphabet and let d be a positive integer. A configuration x is an element of AL Let
U be a finite subset of Z¢, denote zy; the restriction of x to U. A d-dimensional pattern is an element
p € AV where U C Z9 is finite, U is the support of p, which is denoted by supp(p). Denote by A* the set of
d-dimensional patterns. A pattern p of support U C Z% appears in a configuration z if there exists i € Z¢
such that p = zj, 1, this is denoted by p C x.

Endowing A with the discrete topology, one considers the product topology on AZ" . For this topology,
AL is a compact metric space on which Z? acts by translation via the shift map o defined for all i € Z<¢ by:

ol AT A7
r +— o'(z) such that 0'(2), = 244y Yu € Z9.

The Z%dynamical system (AZd,a) is called the fullshift. A Z%-subshift is a o-invariant closed subset of
AP
Let T C A% be a subshift, U C Z¢ be a finite support and n € N, define:
Ly(T) = {p e A" : there exists x € T such that p C x} the language of T of support U
Ln(T) = Lign—1)2(T) the square language of T of size n;
Lrect(T) = Upen Ly (T) the square language of T
L(T)={p € A*: 3z € T such that p C x} the language of T.

We define the entropy of a d-dimensional subshift T as

B(T) = lim log(card(£n(T))) _ f log(card(ﬁn(T)))'

n—00 nd n nd

1.2. Classes of subshifts
Let F be a set of patterns, we define the subshift of forbidden patterns F by:

TF:{zGAZd:VpGF,piz}.

Every subshift can be defined in this way and this allows to define classes of subshifts according to the
complexity of F. Let T be a subshift,

e if there exists a finite set of forbidden patterns such that T = T then T is called a subshift of finite
type;

e if there exists a recursively enumerable set of forbidden patterns such that T = T then T is called
an effective subshift (we recall that a set of patterns is recursively enumerable if there exists a Turing
machine which enumerates all these patterns).
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Let T C A% and T' ¢ BZ" be two subshifts, a morphism between them is a continuous function
7 : T — T’ such that T oo! = o' o7 for all i € Z¢. By Hedlund’s Theorem [Hed69], there exists a local
function 7 : Ly7(T) — B where U C Z? is a finite set called neighborhood such that 7(x); = 7 (251 ) for all
z € A" and i€ Ze For V C Z¢ and u € AV, by extension we denote 7(u); = T(usp) for all i € Z? such
that i +TU C V. If there is no ambiguity one just denotes 7 for 7. The radius of 7 is the minimal r € N
such that U C [—r,7]4 If U = {0}, the morphism is said letter to letter

Let T C A% be a subshift and let 7 : A%" — BZ" be a morphism, then 7(T) C B% is a subshift called
the factor subshift of T by 7 which is called the factor map. A subshift T is called sofic if there exists a
subshift of finite type T with forbidden patterns F and a factor map 7 such that T = 7(T ). The factor
map 7 can be considered letter to letter, that is to say that the neighborhood U = {0},.

Two subshifts T and T’ are conjugate if there exists a bijective morphism 1 : T — T’. The different
classes of subshifts defined here (finite type, sofic and effective subshifts) are stable under conjugacy.

1.3. Operations on subshifts

1.3.1. Finite type condition

Let T C AL be a subshift and F be a finite set of d-dimensional patterns, we consider the subshift
FTp(T)={x € T:Vpe F,p does not appear in x}.

Let F' be a finite set of d-dimensional patterns. It is clear that if T is a subshift of finite type (respectively
a sofic subshift, an effective subshift) then FTx (T) is a subshift of finite type (respectively a sofic subshift,
an effective subshift).

1.3.2. Projective subactions
Let G be a sublattice of Z< finitely generated by Bg = (uy,...,uq)) € Z? (d' < d). We can denote
G=u1,...,uq)y; ={Aur+---+Agua : (A\1,...,Aa) € Zdl}. Let T C A%’ be a subshift, the projective
subdynamic of T with respect to G is the subshift of dimension d’ defined by SA¢ (T) where
SAg: A7 — A%
x +—— y such that y; =z for all i € G,.

Identifying G with Z% according to the basis Bg = (u1,...,uq ), it is possible to consider SA¢ (T) as

a subshift of AZ" denoted SAp, (T) where

SABG : .AZd — Azd
r > Y such that Yy, ..i,) = Tijuy++iyu, forall (i1,...,iq) € 74

Any effective subshift of dimension d can be obtained with factor and projective subaction operations
from a subshift of finite type of dimension d 4+ 1. More precisely one has the following theorem.

Theorem 1.1. [Hoc09, [ASTT] [DRS10] Let ¥ C AL be an effective subshift, then & = {z € AZTT 3y e
¥ such that xgay ;y =y for all i € ZL} is sofic.

In particular there exists a subshift of finite type T C B~ and a factor map ™ : B — A, which can be
considered letter to lefter, such that

SA,,.. (m(T)) = 2.

.,eq)
2. SPEED OF CONVERGENCE: CONJUGACY INVARIANT OF FOR MULTIDIMENSIONAL
SFTS AND SOFIC SUBSHIFTS

2.1. Definitions

Approximation row. In this section we consider G and H two sublattices of Z¢ such that G @ H = Z¢
and consider Bg = (uq,...,uq/) (respectively Bg = (v1,...,var)) a base of G (respectively of H) of

course d = d’' +d". For all n € N, define BBn = {k:lvl + oo kgnvar : (k... kgr) € [-n,n]? } Denote
3



Projy; : ABE]H — AV the projection according to the coordinates U C BE®. For i € BBn, Projg, is just
denoted Proj;.

Let Tr C AZ" be a subshift of finite type defined by the finite set of forbidden patterns F. We are
interested in the subshift on the sublattice G which gives a row of size n and which verifies the local
condition given by F’; that is to say we have a subshift indexed by G x BB# where no pattern of F appear.
Formally, one defines the n-approzimation row following G with the grow along to By of Tg by:

B\ C
T%’G’BH = {:z: € (ABWIH) VpeFipZ (Projj(xi))(i?j)erBEH} .

Let 7 : AZ" — BZ" be a factor map. For n sufficiently large, the function SAg,, : AZ' 5 AZ" can be
mistakenly used as

d/
SAp,om: TEHEB=s . pr

T — y  such that yg,, ., = T(T)iuy+tiguy for all (i1,... ix) € 7.
We verify that
S ((Tr) = ] Sv (x(T3557)).
nelN
Let d < d and consider (eq,...,eq) the canonical basis of Z¢. If Bg = (e1,...,eq’) and By =
(ed’+1,---,€a) then we denote T}’d_’d instead of T?’G’BH.

Speed of convergence. By definition of Tx %P ifu € £ (SAp, (7(Tr))), thenu € £ (SABG (7r (T}’G’BH»).
We want to quantify the reciprocal, that is to say given a k, find the smallest n such that v ¢ L;(SApg (7(TF))) =
u ¢ Ly (SAB(G (W(T’}’G’BH))). This allows to quantify when a word is forbidden by the local rules F' in the
approximation row.
The speed of convergence as sofic of the cover T with the factor 7 following By with the growth along
to the base By is the following function:
YFxBgBrn: N — N
k +— min {n € N:Vu € A0FUT one has u ¢ L(SAp,, (7(Tr))) = u ¢ L (SAs, (W(T;GBH)))} .
When 7 = Id, we call this function the speed of convergence as SFT of T following B with the growth

according to the base Byy.
Clearly ¢r .« Bg,By 15 non-decreasing since we have the following inclusion

SAn,, (r(Tr)) C SAp (r(T ) C SAg,, (w(TF5)).

Denote F the set of non-decreasing functions from N to N. If Bg = (e1,...,eq/) and By = (eq/4+1,...,€d)
then we denote ¢p r q—q instead of Y By By-

Ezxample 2.1. Consider the following set of forbidden patterns

‘O‘\ g T Ty ! tq'!
Fe Bla a:g s e {ld, o}
— |:: 2 such that 13| G{L$,:’ l_b_\}a
o ne{is e}

ST g 50

If we consider the subshift of ﬁnlte type Tr, it is easy to realize that SAe, (TF) is the subshift where

the forbidden patterns are {$a”0™$, $a"b™a, bab™$, ba"ba : m # n}. The idea is that in a configuration

of Tp, if a line contains a forbidden pattern with the word a™b™ with n # m in the center, the next line in

the direction ey contains the forbidden patterns $a”~16™~'$ and recursively. Thus it appears the pattern
a$ or $b and the configuration considered is excluded (see Figure [1)).

If we consider the n-approximation row following e; with the grow along to es. In the subshift of finite

n,ei,exz Tn 2—1

type Ty =T """, there is only n lines to detect a forbidden pattern so SAe, (T’}’Zﬁl) is the subshift
where the forbidden patterns are {$a?b™$, $a?b™a, ba?b™$, baPb™a : m # p and max(p,m) < n} (Figure [2).
We deduce that ¢ 1q,2-1(n) = n. In Example We will see that it is possible to obtain SAe, (TF) thanks
to another SF'T but with a better speed. A natural question is to determine the optimal speed.
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(BBT]H) . Moreover, given a finite set of patterns F' one considers 6,.(F') is the set of patterns obtained as

Speed of convergence with larger row. Let r € N, recall that for the basis By
Clearly 6, is a conjugacy. Given a morphism 7 : AZ* — BZ” one just denotes 7 = 6, omof

denotes IB?]H = {klvl +--



pre-image of F by 6,71 defined by
0,.(F) = {p € (AB?H) 13’ € A%, 3p” € F such that pl,,,(p") =p" and 0,.(p") = p} )

Study speed of convergence of Ty (ry is the same that define speed of convergence of Tr for a row of size r
along to Bg. There is no reason for the speeds of convergence of Tr and Ty, () being comparable.

2.2. Some Invariances

Note that for a given subshift of finite type, its speed of convergence depends on the finite set of forbidden
patterns chosen, this variation can nevertheless be bounded as specified in the next proposition.

Proposition 2.1. Let F and F' be two finite set of forbidden patterns such that Tp = T C AL There
exists M € N such that |pr14,Be By (k) — ©F 1d,Bg By (k)| < M for all k € N.

Proof. Let G and H be two sublattices such that Z¢ = G @ H of basis Bg = (uy,...,uq’) and By =
(ug/11,--.,uq). Denote By = {njuy +--- +nguq : (n1,...,nq) € [~k, k]}.

Assume that the supports of patterns of F' are included in Bg. There exists M such that if a pattern
p € ABM verifies p’ 7 p for all p’ € F’, then no pattern of F appears in pg,. If not, by compactness, there
exists a configuration of T p which contains a pattern of F'. The same property holds if we reverse the role
of I and F’, moreover it is possible to choose the same M.

Thus, one has SAp,, (TH " “P") c SAp, (TEP") C SAg, (T} ""%P") for n € N sufficiently
large. The result follows. O

We are now study the behavior of speed of convergence under factor and conjugacy.

Proposition 2.2. Let F' be a set of forbidden patterns such that Tp C AL Consider 7 : A" — BZ" and
e B = B2 two morphisms. There exists  and v’ such that Y F yor Be, By (k) < g, (F)xBg.By (K + 7).
Moreover if the neighborhood of ¥ is included in G, one has YF yor Bg.Bu(k) < @rxBg,Bu(k+7).

Proof. Let U be the neighborhood of v and assume that U C BBe + IBEH. Denote d’ and d” respectively
the dimension of G and H. Consider u € B'0*=1" such that u ¢ L(SAg, (1 om(TFr))). One has

1 BPH [t -1
0,0 () = Jue (4%™) (0 () = up & LSAB (0 (7(Tr)))).
Thus 0, (¥~1(w)) ¢ L (SAsg (7(Th, ))) for all n > g, (p) BBy (k + 2r). One deduces that u ¢
L(SAg (v om(T%))), that is to say n > ¢ryor Bg. B (k)- 0

Using Proposition 2:2] we deduce the following corollary.

Corollary 2.3. Let T C BZ" and T' C B'%" be two sofic subshifts. If T and T' are conjugate, there exist
Ty C AL" ¢ subshift, 7 : Tp — T and 7' : Tr — T' two factor maps and r,r' € N such that

¢rxBe.Bu (k) < @0, () Ba,Bu(k+27) < @0, ()7, Be,Bu(k +47) for all k € N.
One can choose 7' = 0 if the neighborhood of the conjugacy is included in G.

Corollary 2.4. Let Tp C AZ" and T C AZ" be two subshifts of finite type of forbidden patterns F and
F'. If Ty and Tg: are conjugate then there exists r,v', M € N such that

PF1d,Bg,Bu (k) < 90, (F)1d,Bg Bu(k +2r) + M < @y, ,(F)1d,Bg,Bu (k +47) +2M for all k € N.
One can chose r' = 0 if the neighborhood of the conjugacy is included in G.
Proof. Let ¢ : Tp — Tp be the conjugacy map of neighborhood U C BB& + IB]?,]H. Denote

Y HF') = {pec A*: I’ € F’ such that supp(p) = supp(p’) + U and ¥ (p) = p'} .
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Let u € A0+ 1" and n > g, (p~1(F")),1d,Bg,By (F + 27), one has:
u¢ SApg (Tr) = 0. (¥ (w)NL(SAg (00 (Ty-1(51)))) =0
= 0. (u)NL (SABG (OT/(TZE’(]?E‘))» = Dby definition of speed of convergence
— u¢ L(SAp, (TH™P))
One has Ty ,(r)y = Ty, (y-1(F)), from Proposition we deduce that there exists M € IN such that

©F 1d,Be,Bu (k) < 9, (v—1(7)),1d,Ba,Bu (F +27) < 0o, (7),1d,Bg,Br (k +27) + M.
O

Ezample 2.2 (Substitutive tilings). A two-dimensional substitution is a function s : A — Al%e=11x[0,b=1]
which can be naturally iterated to obtain a function s” : A — Al0:@"—1Ux[06" =1 " The substitutive subshift
is defined by

T,={z¢€ A"+ for all u T =, there exists n € N and a € A which verifies u = s"(a)}.

According to Mozes’ result [Moz89], T is sofic, that is to say there exist a subshift of finite type Tp, C ASZ2
and a factor map 75 : A; — A such that 7,(Tr,) = Ts. In the construction of Mozes it is possible to
consider that 74 is a conjugacy almost everywhere and there exists a substitution s on A, which factorizes
on s and verifies T, = T+.

Let Bg = (e1) and By = (e2). One has ¢p, 14, Bg, By = YF. rBg,By Siice 7 is a conjugacy almost
everywhere and letter to letter.

Since it is possible to apply s on T?’SG’B , one deduces that for all k& € IN one has ¢p, 14,By,By(0k) =
by r, 1d,Bg, By (k) so there exists My, My such that

H

log(b) log(b)

Myk'os@ < ¢, 10, Bg B (k) < MakTos(),

and in the same way
log(b) log(b)
M ke@) < WG,,(FS),Id,BG,BH(k) < M2krog(a‘>’
We deduce that if two substitutions do not have the same size of support, then the substitutive subshifts
associated cannot be conjugate.

3. SUBSHIFT ¢, d-REALIZABLE BY SF'T OR BY SOFIC

A subshift ¥ C Azd/ is d-realizable by subshift of finite type (respectively d-realizable by sofic subshift) if
there exists T a subshift of finite type (respectively a sofic subshift) and a basis Bg = (eq,...,eqs) such
that SAp,, (T) = 3. It follows from Theorem 1.1 that every d’-dimensional effective subshift is d-realizable
by sofic subshift for d;d’, nevertheless the same result does not hold for realization by SFT (see Section 8
of [PS10] for a counter-example). In the sequel, we are interested in the speed of convergence and we are
going to see that it is an invariant of conjugacy for effective subshift.

3.1. Canonical representation

Consider B = (ey,...,eq) the canonical base of Z?. Let d’,d” € N such that d’ + d’ = d, define Bg, =
(e1,...,eq) and By, = (eda’41,...,€a). In fact when we study the speed of convergence to realize a
subshift by a d-dimensional subshift of finite type, it is sufficient to study the realization of ¥ following G4
with the growth according to the base By, . More precisely, one has the following proposition.

Proposition 3.1. Let G and H be two sublattices such that G & H = Z¢ of basis respectively Bg and By.
Let ¥ C B%" be a d'-dimensional subshift. Assume that there exists a set of d-dimensional patterns F and a
factor map w : AL — B such that SAp, (7(Tr)) = X. Then there exists a set of d-dimensional patterns
F’ and a factor map 7' : A% s BEY such that SABGd, (7'(Tp)) =% and YF . Bg By = PF .7 Be

aBHy_y
where B@d, = (el, . ,ed/) and B]Hd—d’ = (ed/+1, . ,ed).
If 7 is letter to letter, one can choose w instead w'; in particular, if # = Id then ©r1d By By =
¥YF’1d,Ba,, Bu, -



Proof. Assume that Bg = (ui1,...,uq/) and By = (ug/41,...,uq). Denote U the neighborhood of .
Consider the bijection
Trans : Z% — 79
n +—— nie;+---+ngeq
where n = njuy + - - - + ngug with (nq,...,nq) € Z%.
Consider the set of forbidden patterns F’
F' = {p’ : 3p € F such that ply,,em) = Pn for alln € supp(p)}

and the factor map 7’ of neighborhood Trans(U) defined by 7' ((Urcans (i) )iev) = 7(u). Clearly SAp, (7(Tr)) =
SAB;,, (7' (Tp/)) and @p - Bg Bu(k) = PP 7 Bo, Bu, , (k) for all k € N. If 7 is letter to letter then
7 = O

’ n,G /,B ’
Notation. In the following we just denote T}’dﬁd for T ¢ s SAy (+) for SAg,, (-) and ¢pr d—ar
for opxBg , Bu, -
[XiS) ar’ d—d’

3.2. How compare different speed of convergence

If a subshift is realized by a speed ¢, it is possible to find another realization where the speed is slower. This
is formalized by the following proposition.

Proposition 3.2. Let ¥ C B2 be a d'-dimensional subshift. Assume such that SAy (w(TF)) =X for a
morphism 7 : A — B and a finite set of forbidden patterns F'. Let M € N one has:
o there exists a finite set of d-dimensional patterns F' and a factor @' such that SAg (7' (Tp/)) = X
and ppr x dosa (k) = Mg rasa (k) for all k € N (if 1 =1d, one can choose n’ =1d).
e there exists a finite set of d-dimensional patterns F' and a factor ' such that SAy (7' (Tp/)) = 2
and g g—a (k) = ﬁcppmd_,d/(k) for all k € N.

Proof. We are going to prove the first point, the proof of the second point is in the same spirit. Let F' be
a finite set of forbidden patterns and 7 a morphism of neighborhood U such that SAy (7(Tr)) = X. For
1€][0,...,M — 1], define

Trans; : Z¢ — 74

n — n'+(M-1)xn+l)eqgs1+n”’
where n = n’ 4+ neq/41 +n” with n’ € (eq,...,eq'),,n € Z and n” € (eq/42,...,€4)y -
Define the set of forbidden patterns
F' = {p’ : Jp € F such that p’TranSl(n) = py, for all n € supp(p) and [ € [0,..., M — 1]} ,

and 7’ of neighborhood U; Trans; (U) which apply « on each slice [ € [0, ..., M —1]. Clearly SAy (7/(Tr/)) =
Y and ¢prndoa (k) = Mgz aa (k) for all k € N. O

To speak of class of speed convergence of a d-dimensional subshift of finite type (or sofic subshift) towards
a d'-dimensional subshift, we need to introduce an order relation on F the set of non-decreasing functions
from N to N.

Definition. We say that ¢ < ¢’ if there exists r, M € N such that p(k) < M¢'(k+r) for all k € N. We
say that ¢ ~ ¢’ if p < ¢" and ¢’ < .

Definition. A d’-dimensional subshift ¥ is ¢, d-realizable by projective subaction of a SFT if there exists a
set of d-dimensional forbidden pattern F' such that SAy (Tr) =X and pr1d,d—a ~ ¢

A d’-dimensional subshift ¥ is ¢, d-realizable by projective subaction of a sofic if there exists a set of
d-dimensional forbidden pattern F' and a factor = such that SAy (7(Tr)) =X and ¢ dgoa < ©.

Denote

FShle = {<p € F:3F C A* such that ¢ = ¢ra-a and SAzw (Tr) = 2}
and 750, = {4,0 € F:3F C B and w: B — Asuch that ¢ = prasa and SAze (n(Tr)) = 2} .
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Of course fgﬁzd/ C fgfdjicd,? fgﬁzd, C fgﬂL_)d, and fgilf_ifd/ C fgfdﬁcl_)d,.
A d’-dimensional subshift ¥ is sharp ¢, d-realizable by projective subaction of a SF T_(respectively sharp
o, d-realizable by projective subaction of a sofic) if v € .Fgﬁzd, (respectively ¢ € ]—“g‘;f_zfd,) and ¢ < ¢’ for
all ¢ € FEAT 1, (vespectively ¢’ € }"‘Egj’dﬁfd,).
Ezample 3.1. Consider the sofic subshift ¥ C {0, 1,2}% where the forbidden patterns are given by {1027+12:20"1 :
n € N}. Of course ¥ is constant realizable by projective subaction of a sofic. However, like it is unstable, it
is not constant realizable by projective subaction of a SFT (see [PS10]).

3.3. Invariance by conjugacy of subshift ¢, d-realizable

Proposition 3.3. Let X and X/ be two conjugated d'-dimensional subshfits .

The subshift X2 is @, d-realizable by projective subaction of a subshift of finite type if and only if it is the
same for Y.

The subshift ¥ is o, d-realizable by projective subaction of a sofic if and only if it is the same for X'.

Proof. Let 1 : ¥ — ¥/ be the conjugaison between ¥ C AZd/ and X/ C BZdl. The local function associated
of neighborhood U C G4 can be extended in a function 1 : ALY BEY of same neighborhood.

Let T'r be a subshift of finite type and 7 be a morphism such that SAy (7(Tr)) = X. Since v is injective
on ¥ and that its neighborhood is included in G4/, one deduces that v is injective on 7(T ), so 7(Tr) and
Y on(Trg) are conjugate. From Corollary one deduces that ¥ and X’ are ¢p r ¢—q , d-realizable.

The SFT case comes with similar ideas and Corollary [2:4] ]

Thus it is interesting to study the sets .7-"29,57— or ]_-Sodf ““ modulo the equivalence relation induced by <.

The next proposition shows that two elements have always a supremum.

Proposition 3.4. If X is ¢’ and " realized by projective subaction of d-dimensional subshift of finite type,
then there exists ¢ which realizes o such that ¢ < ¢ and ¢" < ¢ and for all " such that ¢ < ¢"" and
@ =< " one has p < "

The same result holds if one consider realization by projective subaction of sofic.

Proof. Let F' and F” be finite set of d-dimensional patterns such that ¥ = SAy (Tr) = SAy (Tpr),
¢~ pp1a,a—d and ¢ ~ @i 1q.4q. For 1 € {0,1}, consider the application

Trans; : Z¢ — 74
n +— n'+2n+l)eq +n”
where n’ € (eq,...,eq/), .0 € (€a/42,...,€q), and n € 7Z
such that n =n’ + neq.y1 +n”.

Consider the set of forbidden patterns

e { . Jp" € F' such that prians,(n) = Ph for all n € supp(p) }
I Jp” € F” such that pryans,m) = P for all n € supp(p)

Clearly SAG (TF) =¥ and WF,Id,d/—Nl(k) = QmaX(QDF/Jdvd/_wl(k), @F/’,Id,d’%d(k)) for all k € N. The result
follows.
The same idea holds for realization by projective subaction of sofic. O

In the case of realization by projective subaction of ¥ by d-dimensional sofic, the next proposition shows
that two elements od ]-'godf *“ admit also an infimum for the order <, so (fgodf “, <) is a lattice order which

is preserved by conjgacy.

Proposition 3.5. If X is ¢’ and ¢" realized by projective subaction of d-dimensional sofic, then there exists
@ which realizes X3 such that p < ¢’ and @ < ¢ and for all " such that ¢ < ¢’ and ¢ < ¢’ one has

(P/” < (p'
Proof. Let F' and F” be finite set of d-dimensional patterns and 7', 7" two morphisms ,such that ¥ =
SAy (n'(Trr)) = SAa (7" (Trr)), ¢ ~ @r wrar—a and @ ~ @pr zr g 4.
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Consider the finite set of forbidden patterns F' such that Tp = {(x,y) € Tp x Tpr : 7'(z) = 7" (y)} and
the morphism 7 which apply 7/ on the first coordinate of Tr (or 7" on the second coordinate). One has

Y =8Ay (n(Tr)) and @ xa—a(k) = min(@r: @ —a(k), prr g —a(k)). O
Remark. We do not know if this result holds for realization by projective subaction of subshift of finite type.

Remark. Tt is also easy to check that fgi{ic is stable by addition and multiplication.

4. REALIZATION OF SUBSHIFT BY PROJECTIVE SUBACTION OF SFT

For an effective subshift X, generally }"‘ES’Jd:T and ]-"Zsf:f “ are different. For example in [PSI0] the authors
exhibit a large class of effective Sturmian subshifts which can be realized by projective subaction of sofic
subshift but which cannot be realized by projective subaction of subshift of finite type. In this section we
give a sufficient condition on an effective subshift > to have fgf;r and fng e equal modulo the equivalence

relation ~.

Definition. A d-dimensional subshift ¥ ¢ A% verifies the H condition if there exist N , N eNand ¥ CX
an effective subshift such that for all z* € ¥/ one can find z* € ¥/, and M C Z? such that:

for all i € Z? there exists i’ € M such that i € i’ + [0, N]%;

for all i € M one has 2{ # 2% and 2§, = 2%j_¢, for all [ € [1,d];

for all i ¢ M + [0, N']? one has 2} = 2%;;

moreover,

i = 25 f NiéM 0, N/ d7
for all z € A%" which verifies { ATA oralli¢ M+ | ]

. — . one has z € 3.
Zi[0,N)4 = 24 1o, N7ja OF Z¥i4[0,N"]d for all i € M,

One says that X verifies the conditions H if moreover there exists a morphism v : ¥’ — ¥’ such that for
all z* € ¥/ one can take z* = ¢(z*).

A subshift with the conditions H or H has positive entropy and the conditions H or H are stable by
conjugacy. The positions of the differences between z* and 2* are illustrated in Figure

N N N
N N N
z* =
N’ N’ N’ N’ N’ N’
<> <+ <> > > >
e s s e e —

mmm - differences between z* and z*

FIGURE 3. Illustration of the positions of the differences between z* and z*.

Example 4.1. If © C A” contains a sofic subshift of positive entropy then it verifies the condition H.

Ezample 4.2. Let a € R, define S, C {0,1}% be the subshift such that every pattern of a configuration is a
pattern of the sturmian sequence of slope a.

Let 7' : {0,0’,1}%2 — {0,1}% be a letter to letter morphism such that 7/(0) = 0 = #/(0') and /(1) = 1.
Define S!, = {x € {0,0',1}2 : 7'(x) € S,}. If a is computable then S’, has the property H whereas S, has
not.

Let 7" : {0,01,02,1}% — {0,1}% be a letter to letter morphism such that ©”/(0) = 7”(01) = 7«”(02) = 0
and 7”(1) = 1. For = € {0,01,02,1}%, define ¢(z) € {0,01,02}% obtained by removing letters 1 in z. Define
St  the set of element z € {0, 01, 02, 1}% such that 7”(x) € S/, and there exists an element of Sg obtained
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from v (z) when we replace 0; by 0,05 by 1 and 0 by 0 or 1. If & and /3 are computable then Sgﬂ has the

property H but not the property H.
The same type of exemples can be constructed with uniform recurrent sequences.

Theorem 4.1. Let ¥ C AZdl be a subshift which verifies the conditon H. Then there exists a finite set
Frina1 of d-dimensional patterns such that SAg (Tp,,.,) =%, that is to say ]-"29,{;7—.

More precisely, if ¥’ C ¥ is an effective subshift given by the H property. Assume there exists two d-
dimensional SFT Tr C B%" and Tr C B and two factor maps w : B%' & A% and 7' - BZ' 5 A%
such that ¥ = SAy (7(TF)) and ¥’ = SAy (7' (Tr/)).

o If x = 0%(x) for all x € 7' (Tp:) and I € [d' + 1,d], then we can assume that ©r,,,, 1d,dsd ~
max(Pprd—sd s PF ' dsd).
o If¥ C X verifies the condition H, then we can assume that g, ., 1d,d—d ~ MaX(PF x.d—d s PF x' d—sd’)-

Remark. Since Y/ is an effective subshift, by TheorenfI.1} it is always possible to find a multidimensional
SFT which verifies the first point.

Proof. Denote d’ =d —d', Gg = (e1,...,eqar); and Ggr = (€q'41,...,€q7)y.
CrLamM 1: It is possible to assume without change the speed of convergence that for all x € T g there
exists T € T s such that for j € Gy one has

M; = {i € G : (0 (2)); # 7' (07 (Z)); and : 7' (09 (2))i—e, # 7' () (T))i—ey, for alll € [1,d]}

which verifies M; + [0, N}d/ = Gy.
Proof: This claim allows to produces two synchronized configurations of T g which allow to code an alphabet.
If we are in the first point of the Theorem, the result is trivial since zg, = 7j1q,, for all i € Ggr and
using the definition of '.
In the case of the second point, it is sufficient to consider the subshift T x {0, 1}Zd and the projection
7 T x {0,1}%" — 7(Tp) defined by 7' (z,y); = 7' (x); if y; = 0 and 7' (x,y); = ¢ o 7' (x); if y; = 1 for
all (z,y) € Tpr x {0, 1}2", < clain 1

Has left to increase the alphabet B, one can assume that Tr and Trs are defined on the same alphabet

B. Let k = [logy(card(BN1)4)] and consider the surjection ¢ : {0,1}* — BN For j,1 € N define:

Trans;;, : Z? — 74
n — n'+({G+19xkxn+leqs1+n”’
where n =n’ 4+ neq/41 +n” withn’ € Gg,n € Z and n” € (eq/12,...,€q)y
We are going to construct a finite set of d-dimensional forbidden patterns on the alphabet A denoted
FFinal = FSyncro U FCode U FCompat ) FSimul U FFact such that SAd/ (TFFinal) =X
Definition of Fgynero: Consider the finite set of patterns Fgynero of d-dimensional forbidden patterns on
the alphabet A such that for all € T, _,, for allmn = n' +n” € Z? with n’ € Gy and n” € Gy there
exists j € [0,19k — 1] such that:
(1) ®Trans, o(n) = TTrans, ,(n) for all 1 € [0,k —1J;
(2) TTrans; . (n) = TTrans; (n) = LTrans,;, (n+e,,) f0F all I € [k, 6k — 1] U [11k, 16k — 1] and ¢’ € [d' + 1, d];
(3) TTrans, gx(n) = TTrans; ;(n) = LTrans;, (n+te,) 10T all I € [6k, 11k — 1] and ¢ € [d' + 1, d];
(4) there exists i € Gy such that n’ € i+ [O,N]d/, TTrans; x(n) 7 TTrans;e(n) 204 TTyans; j (n—e;) =

TTrans; ¢ (n—ey) for all 1 € [1,d'].

The next claim shows that the choose of j does not depend of the position n of the pattern considered
but only of the configuration z € Try,_,,-

Cramm 2:  For all x € Tg,,,,, there exists an unique j € [0, 19k — 1] which verifies the previous properties

independently of the choose of n, we call it the synchronization index of the configuration x.

Proof: Let x € Tr,,,. Consider j; € [0,19k — 1] (respectively j» € [0, 19k — 1]) which verifies the previous
properties for ny € Z% (respectively ny € Z9). There exists n € Z% and | € [0,19k — 1] such that
Trans;, o(nz) = Trans;, o(n1 +n) + leqt1.
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By periodicity conditions given by (2) and (3), TTrans, ;s (n1+n)+G,, 1S the same pattern for U € [k, 6k —
1] U [11k, 16k — 1] and is different for I’ € [6k, 11k — 1] and we cannot say for I’ € [0,k — 1] U [16k, 19k — 1].
The same properties hold for TTrans; s (n2)+G g - One deduces that [ = 0 since if not there is a superposition
which does not hold. That is to say j; = jo <& claim 2
Thus the local rules Fgyncro divide the space in 19k slices according the direction eq/11. Figure E| represent
the different slices. For x € Trg,,, referring to the position index associated j € [0,19%k — 1], Fsynero fixes
the following things for n € Z<:
o condition (1) fixes the same configuration in the slices Trans;;(n) + Gg with I € [0,k — 1], in these
slices will appear a configuration of 7(Tg);
e condition (2) fixes the same configuration in the slices Trans;;(n) + G4 for all I € [k,6k — 1] U
[11k,16k — 1] and condition (3) fixes the same configuration in the slices Trans;;(n) + Gg for all
I € [6k,11k — 1], in these slices will appear the configurations z* and z* and the differences are
imposed by condition (4);
e the repetition of the different lines allows to synchronize the configuration in view to obtain the
unicity of j € [0,19k — 1] as it is shown in Claim
Let x € Tr,,,,, j € [0,19%k — 1] the synchronization index associated and n” € Gg». One defines:

* " A
z (‘T7n ) = de/—Q—Transj,k(n”) S A 3
- " 74
Z*(J},I‘l ) = LG g +Trans; gr (n'’) S\ )
11 . !
M((E,l’l ) = {1 € Gy : TTrans; ; (i+n’") 7é LTrans; g (i+n’") and LTrans; ,(i—e;+n”’) = LTrans; g5 (i—e1+n’’)> vl e [17 d ]} .

The configurations 2%, (x) and 2, (z) give the base for coding the alphabet B and the set My~ () gives
the position where the coding is done.
Definition of Fiog.: We are going to define the condition Fgoge which allows to code the alphabet B

and the the conditions verified by the subshifts Tr and Tg/. For x € Tg,,,, with synchronization index
j€[0,19k —1] and n = n’ + n” € Z¢ with n’ € G and n” € Gy, the forbidden patterns Feoqe verifies
(1) if n’ € M(z,n") then for all I € [16,19k — 1] one has Tyy,ng. (n) 40,V = TTransy,(n)+[0,N]2 =
Z*(xvn”)nf+[o,1v']d’ O Tvansey i (n’)+[0,N/]4 = ?(Jﬁ’n”)nur[o,zw]dﬁ
(2) if n’ ¢ M(z,n"”) + [0, N’]d/ then Trrans; ,(n) = TTrans; (n) for all € [k, 19k — 1].
The local rule Foqe allows to use the difference between z*(z,n”) and z*(2,1n”) to code binary BN in
slices Trvans; ,(n)+ @, With I € [16,19k — 1]. More precisely,
e the slices Trans; , (n) 4G, Withl € [16, 17k—1] codes the configuration contained in TTrans; o(n")+ Gy =
TTrans, , (n)+ G, for all " € [0,k —1J;
e the slices Tmans; , (n)+G,, Withl € [17,18k—1] codes the configuration contained in TTransy, (n")+ Gy =
TTyans; ,/ (n'")+C o for all [ € [k,6k — 1] U [11k, 16k — 1];
e theslices Trans; ,(n)+G, Withl € [18,19k—1] codes the configuration contained in TTransgr(n')+C g =
TTvans, ,(0/)+G,, for all | € [6k, 11Kk — 1].
Let * € Tr,,..,UFu. and j be the synchronization index associated. For [ € [0,2], i € Ggr and i’ €
M(z,i"”) define

— @ 1 if Trans, vy = 25 (x, 1)y
b1(2)i 13 = ¢, .oy ap_1) € BON" where a, = { - Trans; o +yep (7H) 7*( 7.//)1 for all p € [0, k—1].
0 if xTranSj,(16+l,)k,+p(i,+i“) =z (J,‘,l )i/

Definition of Froppat: Consider the finite set of patterns Feompatr such that for all z € T ry, .U FeoseUFoompa:
and i € Ggr, if i1 + j1 = iz + jo where iy,is € M(I,i”) and ji1,j2 € [O,N]dl one has
(@1(@)iy+17);, = (G1(@)iz417),, for all L €[0,2].

Thus, for © € Tr,. UFueUFoms: a0d [ € [0,2] one can define the function

. VA
1t TFyproUPoeU e —— B

z — Gu(z)  where ¢y(2)isj i = (Gu(@)igir); with i” € Ggr,i € M(z,i”) and j € [0, N]7"
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Definition of Fsjm1: Then consider the finite set of patterns Fgip such that for all 2 € T ry ..U Feose U Feompas UFsimn

one has ¢g(z) € Tr and ¢1(z), p2(x) € Tp.

Definition of Frac: To finish, define the finite set of patterns Fract such that for all ¥ € T gy, ..U FuseU Feonpar UFsim U Frace »
one has 7(¢o(z))n = TTrans; o0(n)> 7T/(¢1 (T))n = LTrans; , (n) and 7T/(¢2 (7))n = TTrans; ex (n)

In brief: The previous forbidden patterns involve the following properties on # € T and n” € Ggr:

® Fgynero fixes the index synchronization j, fixes the same configuration z*(z,n”) and z*(z,n”) which
give a reference to code BNl

o Froge verifies the correspondence between z*(x,n”) and 2*(z,n”) in the strips coding;
® Foompat allows to verify the compatibility with redundant coding of the alphabet B;
® Fgiga verifies that the condition F' and F’ are checked to produce one element of T and two

elements of T p/;
® [Fgact verifies that the subshifts given by Fsinn produces the desired element after projection on the

corresponding slice.

code

code

7555555555555; ; ; — :
E R L e :

d@ew 5k
(@) e | : : : : 5k

€d’+1
e1 § § . § A CORINE § § § § 5k

L F@e R T
D@ e i i P : 5k
D O : : Co : 5k
J,19k___________V______________f'__y:_l_e_z ___________________________ k__
i3 i_o i1 19 11 12 13 14 15 16 17 8 19 110 11

FIGURE 4. Part of x € Tx corresponding to the different slices which appear in [i_4, i12]€1 X
[7,7 + 21k]eq/+1. The dotted vertical lines represent differences which allow to code.

CLAIM 3: Ifr € TFFinal7 then SA g (JJ) €.
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Proof: Let x € Tg,,., and j the synchronization index associated. One has:

e since ¢o(z) € Tr and 7(¢o(T))n"+G, = TTrans,o(n”)+a, for all n” € Ggr, one deduces that
ZTrans;,o(n')+G y € ¥, thus by FSyncro one has ZTrans; (/) +G 4 e X forallle [O, k— 1],

e since ¢1(z) € Tr and 7'(¢1(%))n"+G, = TTrans; ,(n)+a, for all n” € Ggr, one deduces that
TTrans, o () 4Gy = 2*(z,n") € ¥, thus by Fsyncro one has TTrans; (n")+ Gy € S for all | € [k, 6k —
1] U 11k, 16k — 1];

e in the same way, ¢2(z) € Tr and 7' (2(2))n/+ G, = TTvans, ¢ (n)+ G, for all n” € Ggr, one deduces
that Trvans, ,(n7)+a, = 2*(z,n") € X', thus by Fsynero one has rmans, ,(my+a, € X' for all I €
6k, 11k — 1];

® by Feoge, for all € [16k,19k —1] and for all n” € Ggr, if i € M(z,n”) one has ;| pyang, , () 1[0, N2 =
xi—&-Transj,k(n”)+[O,N’]d/ or xi-‘rTransj,Gk(n”)+[0,N/]d/ and ifi € Gd/\(M(mv n//)+[07 N/]d ) one has Ti+Trans;(n) =
Ti{ Trans, . (n); Dy the definition of 3 given by the properties H, one deduces that TTrans; ;(n")+ Ty €
Y C % for all I € [16k, 19k — 1].

Thus znryq, € X for all n” € Gy <& Clain 3

CrLaM 4:  For ally € © C AZ" | there exists @ € Tr,., C AZ" such that y = SAy (x) € X.

Proof: Consider z' € T C BZ" such that SA (71'(301)) = y By the property H and Claim 1, there exists
z2, 22 € Ty such that for all j € G4~ one has

M = {i € Ga : 7/(0}(@?))i # 7' (07(22)); and : 7/(0}(22))ie, # 7' (03 (22))i_ey, for all € [1,d']}

which verifies M; + [0, N]% = G
Define z € AZ” such that:
® TG, 4+ Transe, (n') = ’R’({El)n/ur([;d, for all n” € Gg» and [ € [0,k — 1];
® I, 4+ Transe, (n') = xi,/+Gd, for all n” € Gy and [l € [k, 6k — 1] U [11k, 16k — 1];
® TG, 4 Transe,(n”) = T?nr4@,, for alln” € Ggr and [ € [6k, 11k — 1];
o if ¢(ap,...,a1) = xi1+n“+[o,N]d” with i € M,,» and n” € Gy then for I € [0,k — 1] one has

_ 2 : _ — 22 ;
LitTranso 16541 (0")+[0,N]¢ = Ly [0, N/ if ¢y =1 and ZitTranso, 15641 (n")+[0,N]¢ = T7i4(0,N]¢’ if not.
o if ¢lag,...,ap-1) = $i2+n,,+[0 N with i € My~ and n” € Gy then for [ € [0,k — 1] one has

_ 2 : _ — 2 ;
xi+TranSO,17k+L(n”)+[0,N]d/ - xiJ’,[()’N]d/ if ap = 1 and xi+Transoﬁl5k+l(n”)+[0,N]dl =T i+[O,N]dl if not.

o if p(ag,...,a-1) = Pi+n//+[0’N]d” with i € M,» and n” € Gg~ then for [ € [0,k — 1] one has
2 . _ _ 9 .
Tip Transo, se1 () HO,NN = Tipo njar I 0 = 1 and T mangg oo, N2 = o, v if not.
It is easy to verify that € Tp,,_, and y = SAy (x) € X, moreover the speed of convergence is the worst
between r x4 and Qp xr d—ar-
<& clain 4

O

In the majority of the examples of Section m Y is a transitive SFT so it could be realized with constant
speed of convergence. In a larger sense one has the following corollary.

Corollary 4.2. For all d’ -multidimensional subshift X which verifies the condition H where the sharp speed
of convergence of ¥ is better than X then }'gﬁzd, ~ ]:gfif_lfd, for alld > d +1.

Ezample 4.3. Consider the sequence of patterns such that ug = 1 and wu, ;1 = v 0" 1u% with o, = 10%"
for all n € N. Consider the subshift ¥ = {2 € {0,1}% : Vu C x,3n € N such that u = u, } and the one-
to-one block map 7 : {0,1,1}% — {0,1}% such that 7(1) = 1 = 7(1') and 7(0) = 0. Define ¥’ =
{z €{0,1,1'}% : 3y € ¥ such that m(z) = y} and consider X" an effective subshift which cannot be realized
by projective subaction with minimal projective subaction (such subshifts exists [PS10]). Clearly ¥’ is an
effective subshift which does not verify the condition H. We are going to see that X/ x X" has positive
entropy but cannot be realized by projective subaction of a SFT.

CraM 1: X' has positive entropy.
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Proof: Denote |ul; the number of 1 in a word u € {0,1}*. One has |u,|1 = 20, |un—1/1 = 2" [[i2, ou and
tn| = 20 tn—1 +n < 2(an + Dup—1 = 2" [[{=; (o + 1). syndetic One has card(Lj,, (X)) > 2/“=h thus

n 1'17 % 1
h(Z') > lim [uns > lim nﬂ_ila > = >0.
n— 00 ‘un‘ n— 00 Hi:l(ai + 1) 2

<& claim 1
CramM 2:  Let T be a 2-dimensional subshift such that SA; (T) = X/, then for all x € T, for all r € N and
for n < m, the set M, ., () = {i € Z : T iprixnm] = O[O’T]X[n’m]} is ;. ,,_,-syndetic where a; o = g,

and oy, 11 = ., + Qs 4y + 1. Werecall that a a-syndetic set is a subset of integer such that the sizes

of the gaps in the sequence are bounded by «.

Proof: Let x € T and r € N, the set IM’EO} (x) is ag,-syndetic since every sub-pattern of 7(x) is a sub-pattern
of u, for some n € N and by induction, for n > r two consecutive sequences of 0" in u,, is separated at
most by 2a|ur—1| < Jur| < 2" [[i21 (e + 1) < ag, symbols.

Assume that the set M{om] (z) is a. ,-syndetic. If there exists i € Z such that Tliyital, ,+r—1]x{n+1} =

0%t then there exists j € [i,i + o). ] such that z(; jirxjo.nt1) = 00X+ Since ]M?;jf}r(x)
Q3(ar  +r)-Syndetic, one deduces that ]MEO ] (2) is a2(ar , 4r) + a’r’n + r-syndetic. The Claim results by

induction.

[

S

< Claim 2

CrAaM 3: X' x ¥ cannot be realized by projective subaction of a SF'T.

Proof: Assume that X' x X" is realized by projective subaction of a 2-dimensionnal SFT denoted T and
consider T" the projection according the second coordinate. Since ¥’ has arbitrary large zone with only 0
by the previous Claim, one deduces that the local rules which define T can be used to define {0} x T” C T
where 0 is the configuration with only 0. The projective subaction of {0} x T" is include in {0} x X so by
minimality there is equality. One deduces that X" can be realized by projective subaction of a SFT which
is a contradiction.

< claim 3

5. SPEED OF CONVERGENCE IN GENERAL CONSTRUCTIONS

5.1. Notion of Turing Machine

In this section we recall some properties on Turing machine and algorithmic complexity.

Definition. Formally, a Turing machine with &k tapes M = (k,Q, T, #, qo, 0, Q) is defined by:

e [ a finite alphabet, with a blank symbol # € I'. Initially, k£ infinite memory tapes represented as
an element of (I'¥)%, are filled with #, except for a finite prefix on the first tape (the input), and a
computing head is located on the first letter of the tape;

e () the finite set of states of the head and ¢y € @ is the initial state;

e §:QxT* = QxTI*x{«,-, —}* the transition function. Given the state of the head and the letter
associated, it reads on the tape, depending on its position, the head can change state, replace the
letter and move by one cell at most.

o Qr C @ the set of final states, when a final state is reached, the computation stops and the output
is the value currently written on the tape.

Turing machines are a very robust model of computation. We presented above only one of the possible
definitions, but there exist several variants in the literature that are all equivalent from a decidability point of
view (i.e. these variants all define the same recursive sets). Nevertheless these modifications on the definition
are not without effects on the time and space complexities (time unit is one application of the transition
function, space unit is one cell of the tape).

To detect forbidden patterns in the projective subaction, one of the fundamental construction is the use
of SFT to encode Turing machine computations. In this article we choose to use the basic version of TM
because it provides simpler constructions when encoding computations inside an SF'T. But the reader should
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have in mind that it is possible to improve time and space complexities, using by instance the non-exhaustive
following acceleration techniques:

Compare-Copy: It is possible to compare or copy instantaneously a word between two markers from a tape to another
one.
Transfert head: It is possible to transfer instantaneously the head to another cell of the tape marked by a special
symbol.
Fill: It is possible to fill instantaneously a part of a tape with a periodic pattern.

A set of patterns F' C A* is recursive if there exists a Turing machine such that on the input v € A*
gives back 1 if u € F and 0 otherwise. A set of patterns F' C A* is recursively enumerable if there exists a
Turing machine that, on the input u € A*, gives back 1 if u € F' and does not halt otherwise.

Let F be a recursively enumerable set of forbidden patterns.Then the complementary rectangular language
of Tp C .AZd, denoted Lyect(Tr)¢ = Erect(AZd) N Lrect(Tr), is also recursively enumerable. Let My (1.)e
be a Turing machine associated to Lyeet(Tr)¢, denote

e Dtimen,  (r,-(k) the maximal time needed by the Turing machine Mg, ., (T,)- to know if a
pattern of size k is not in the language of Tp;

. DspaceMcrect(TF)c(k‘) the maximal space needed by the Turing machine Mg, (1) to know if a
pattern of size k is not in the language of T (we just take in consideration space necessary for the
computation, thus the input is considered to be in an auxiliary tape).

Of course Dtimex,, (k) and Dspace,, (k) are not computable if Lyect(TF)¢ is not recursive.

rect (TF)¢ ct (T )€
If F is a recursively enumerable set of pat€ér£;, by definition there exists a Turing machine Mp =
(k,Q,T,#,q0,9,QFr) with the following behavior: it starts on the empty tape and successively writes the
patterns of I’ on its tape. Each time a word is entirely written, the machine enters a special state before
starting again the enumeration — the machine may stay a given time in this special state. This machine is
called an enumerative Turing machine of F. Every recursively enumerable language admits an enumerative
Turing machines.
A set of finite patterns F forbids the pattern w if w ¢ L(Tr), equivalently if there exists n € IN such that,
for all u € A0m=11" such that w T u, there exists v/ € F which verifies u/ T w.
enu

Let Mp be an enumerative Turing machine of F', denote Dtimefy; (k) (respectively Dspacefy. (k)) the
smallest time (respectively the smallest space) taken by the Turing machine Mg such that the subset of F

generated at this time forbid all the words of size n of L, (T r)¢ = L, (AL") \ L, (TF).

5.2. Speed of convergence for previous constructions

In this section, we just give some elements to determine the speed of convergence given by the construction
of M. Hochman [Hoc09] and N. Aubrun and M. Sablik [ASTI].

The idea of the two proofs is to construct a d-dimensional subshift of finite type, denoted Tina1, Which
realizes a given effective subshift ¥ C A% in one direction after a projection where d = 3 in [Hoc09] and
d = 2 in [ASTI]. In the two constructions the subshift T;ina1 is constituted by three layers:

e the first one is A% and contains different copies of the same configuration y € A% superposed on
additional directions, the additional finite type conditions check if y € ¥;

e the second is Tgriqa C Agid and constructs a grid which allows to implement well initialized Turing
machine in all the configuration with different size of time and space for the computation;

e the third is Ty C AJZ\,T and cheeks if no forbidden pattern appears: since X is an effective subshift,
its forbidden patterns can be enumerated by a Turing machine, thus the purpose is to implement a
Turing machine M r which enumerates these forbidden patterns and an additional procedure Mgearch
which cheeks if the patterns produced appear in the configuration of the first layer (if it is the case,
the Turing machine enters in a special state which is forbidden by the subshift of finite type Trina1)-

Thus for £ € Tripar C AZY Teria X Taq, one has m(2)ze, = 7(2)itze, € X for all i € (ez,...,eq)y,
where 7 is the factor on the first layer which deletes computation states. In particular ¥ = SA; (7(TFina1))
but moreover ¥ is conjugate to a sub-action of m(Tina1). This result is stronger that only realization by
projective subaction and allows to construct local rules for exotic tilings [AS12, [FS12].
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Now the purpose is to determine @, r.4—1. By definition, Dtimef, and Dspacefyy; are respectively
the time and the space necessary to enumerate all forbidden patterns of F which forbid all patterns of size
k of Tr. Thus to determine ¢g,, ., r d—»1 We must analyze the width of the row necessary in Trina1 to give
Dtimeyy; (k)-time steep and Dspacefyy; (k) space at Mp and the larger of the row necessary to detect the
forbldden pattern by the additional procedure Mgearch-

Speed of convergence in the construction of [HOCOQ} As it is described in Section 4 of [Hoc09)], Teria
gives a rectangular partition of Z3 generated by Wd X W5 where W3 and W5 are obtained thanks a substitution
and generate on each line topelitz sequences. Thus for all s,t € N there exists M C Z such that for all
i € M, the slice {i} x Z? is a partition of rectangle of size 3% x 5! which delimitates computation zones.
Moreover M has not gap bigger than 3°5!. According to the processes of copy of the initial configuration in
the first layer, we need an approximation row of width O(3%5!) to detect a forbidden word enumerated in
space less than 3° and in time less than 5'. One deduces that

(k — ORupar,m,351) ~ (k +—— Dspacefyy,. (k)Dtime(y (k)) .

Speed of convergence in the construction of [AS11]. As it is described in Section 2 of [ASTI] (sum
up in Fact 2.4), Tgrig defines fractured zone of computation to implement the Turing machine of size
2" % 22" the first coordinate according to e; corresponds to the space and the second according to e,
corresponds to the time. By the substitution rules and the clock rules, this ractured zone of computation
is included in a pattern of Tepia of size 4" x (2722") and every row Tp:27" of size m = 2"+2" contains
such computation zone every 4™ cells. Since the time to cheek if a forbidden pattern of size k appears in
the responsibility zone (n?2" steep in direction ey by Fact 3.4 of [AST1]) is negligible according to the time
given at the Turing machine to compute forbidden patterns (2”+2n steep in direction ez), one deduces that

(k = @Frpa,m2—1(k)) ~ (k: — 2"(’“)"’2"“)) where n(k) = min{n : Dspacefy, (k) < 2"}. Thus

(]g — @Fpinalyﬂﬂﬁl) ~ (k — Dspaceenu (k)ZDspaceﬂu (k)) )

5.3. A more efficient construction

In the particular case where X is an effective subshift that contains a periodic configuration, the previous
constructions can be highly simplified, and this simplification also improves the speeds of convergence. In
a few words, the same type of construction with different layers is built. However the computation cheeks
if no forbidden patterns appear only in one line, the other lines are mapped into the periodic configuration
by the factor map. Thus the computation zones do not need to be fractionated, one uses a simplified layer
Terig which allows a computation in real time.

Theorem 5.1. Let & C A%’ be an effective subshift of dimension d with a periodic point defined by a
recursively enumerable set F' of forbidden patterns enumerated by a Turing machine Mpg.

Then there exists a subshift of finite type T of dimension d+1 and a factor map 7 such that SA4 (w(T)) =
Y and

. enu
PFmd+1—d ~ Dlimeyy, .

Proof. The proof is given for d = 1 but may be easy generalizes to any dimension.

Consider an effective subshift ¥ C A% of dimension 1 with a periodic point “w> € ¥. Suppose that X
is defined by a recursively enumerable set F' of forbidden patterns, enumerated by the enumerative Turing
machine M = (k,Q, T, #, qo, 9, QF) (we suppose that M enumerates all forbidden patterns of F on the first
tape separated by the symbol $). Finally we assume that the tapes of M are onside, that is to say indexed
by N, if not it is sufficient to double the alphabet and consider that each cell stocks the positive and negative
indexed cell.

We now construct a subshift of finite type Trina1 C AFmal and a factor map 7rina1 : Arinar — A such
that SA1 (7rina1 (TFina1)) = X. The subshift Trina; is constituted by four layers:
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Layer 1:

Layer 2:
Layer 3:

Layer 4:

The first layer is Trine C (Ax {L 1, L0 HU{ B })Z the subshift of finite type such that the
forbidden patterns are

.’_a_. .
where a € A

. — [
Frine = «al‘ <o O where ay ... ap, £ w™
L

where ay ... ajp,| £ w™

Concretely, for a configuration € Tprine there is at most one ¢ € Z such that SAe, 7 (Uie? (x)) =

B and for all j # i one has SAq, 7 (07°2(2)) € {o"(®w™®) ke Z}y x { L |, I}~
The second layer is the subshift of finite type Teonsig = {x € AL . ger— °2(x) = x}.
The third layer is Tgpiq C { " Tl 00, B\ the subshift of finite type such that the forbidden

R ¥
patterns are Fapiq = Fl,y U F2,, UFS. Félrld U Fg,14 where:
o [l = {‘*‘ LIS }, :_*: 0,0 e TR T T } this set implies that
if the symbol x appears in a cell of one line then all cells of this line contain the symbol *;

I
2 _ [
o [Gria = {\
I—

! I
I
|
_l
crosses the sy

[ —
3

I (|
"N e }, this set implies that in a column the color changes only if it
[N B

|
, |
I _l
bol * fr_om ottom to top;
T
I
|
|

C | (T I B e R R PO O |*|* \*I* |_*_l_*_‘
3 ) L_L_ S Iy ey O L O S I i O [
oFGrid—{‘ el s Tl Tl |,.*|*|,‘*.*‘,‘*.*‘,,*|*.,,*.* , this set implies that
L= \_ | I S [N [
when it crosses a line with the symbol *, a monochromatlc sequence of symbols remains
monochromatic;
Cr T ! %! Ty
|
o Fit. = :L 8 g *— *—i , :-*-E— * :‘ this set implies that when it crosses a line with the
— — - ==

Cr

5 — [
.FGrid_{l*l*\a N
[ [ E

*AI

l i
[ | I
I | g |
[ U S
symbol *, a transition
B
I

symbol *, a transition | |
colors.

- - - - 72
Consider a configuration « € Tgriq = FT g, <{ L L, e ) ) On each line of z, the

[
two colors alternates and this alternation is repeated above until it crosses a line which contains the
symbol *. In this case the transitions red/blue become monochromatic and the transitions blue/red
force the alternation. Thus the sequences of monochromatic colors become larger. We remark that

if a line contains the periodic configuration > ( IR )Oo then all lines below contain this periodic

configuration and upstair, if we have cross n time a line with the symbol %, we obtain a line with
2n _ 2n

the periodic configuration *° ( NN | ) (see Figure |5 .

By definition the alphabet I' of M contains A U {#,$}. Denote Ar = ((Q x T) UT)* where k is
the number of tapes and maq,, the projection on the Eth coordinate of Aag which corresponds at
the information on the k*" tape. We recall that the forbidden words are enumerated on the first
tape. The forth layer is a subshift of finite type Ty C A% given by the following set of forbidden
patterns.
e The behavior of the machine is given on each tape by Ftonput = FC1omput Fgomput Fgomput Féomput
where:

I ! | !
FclOmput = { ;—Z—é—}c—i ta, 8,7 €1",a,b,c € Ay such that Tag7y) # laib|c, }, this
set implies that 1f7th head does not appear, the tape does not change;
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FIGURE 5. x and y are two examples of configurations of T¢ri4. The configuration y is an
example where at least one line is periodic, thus all lines are periodic.

— the folowing set implies that if the head moves to the left, the transition is respected

\7a7l7 71767‘
9 \La_r%lb_try_: 41,92 S Q?a?IB7/B/ € F/577a7bac S A./Vl such that
FComput: LBl

Tal Khile!
3 ‘La‘g%lbﬂ C—: : qlv Q2 S Qvﬁv 5,77 € F/7a7a7 ba cec AM SuCh that
FComput = Loi @L’X‘

Thus condition Fgepput codes the rules to obtain the space-time diagram of the Turing Machine
M.

e Sometime, we need to erase the two tapes and put the blank symbol, we use the following
forbidden patterns:

1R A
Fosse = { SH00 c08.9.0/,7 € Angand 8 € Ane\ (2]
= J S
Each tape must verify the previous rules, so we consider the forbidden patterns Faq = Fgrase N
Us ﬂx/ll,i(FComput) and one defines

Ty =FTp,, (A%),

Thus the evolution of a cell following e can be given by the transition of the Turing machine M or
be erased, this will be precise by the condition Fgxtend-
Layer 5: The fifth layer is the full-shift Teoppar = { [:} [:} }22.
On the subshift of finite type Tprine X Teontig X Teria X Tar X Teompar We define the factor maps mpspe,
Tcontigs Merids MM ald Teompar Which correspond to the projection of each coordinate.
To obtain the subshift of finite type Trinai € Trine X Tcontig X Taria X Tatr X Toompar We add to the
subshift of finite type Trine X Tcontig X Taria X Tat X Teompar the finite set of forbidden patterns Fsyncrorine U
Frnig U Fixtena U Foompar Which codes the interaction between the different layers, that is to say

TFinal = FTFsymmLineUFInitUFExtendUFCQmpa, (TLine X TConfig X TGrid X T./\/l X TCompar) .
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These local rules are:

Rules FgyneroLine: The forbidden patterns Fgynerovine imply that for 2 € Trina1 if Trine () iy i) = . then mria (%) (i) ,i141],i0) &

{C 0, e, D00, 6% ) for (i1,i2) € Z2. Thanks to these rules, if a line * ._Of appears
in the layer Tprine of a configuration, then it is synchronized with a periodic point ' | |~ or
° B! ™ in the layer Tgriq.
Rules Fryi: The forbidden patterns Frnse imply that for 2 € Trina if TLine(7) (i, ,i5) = . then magi ()3, ) =
% on each tape i € [1,k]. Thank to these rules, if a line *° . > appears in the layer Tprine of a

|
configuration, then this line is initialized in T .

Rules Fgyreng: The forbidden patterns Fgyreng imply that for o € Trina: one has the two following things:

o one has 6(mad(@) iy i) = (@5 @ =), Torsa(@)(piy,in11i) € {1 L0, DU, 0, B} if
and only if Teria(2) @, i) = X1 OF X

[ L.

o if Taria(®)(iy,i0) = Li"__: then ma(2) (i, ip4+1) = Lﬁ] ;
o if 7'(-Grid(qf')(il,ig) 7é 1_*_: then 7'r./\/l,i('r)([ilfl,il+1],[i2,1’24»1]) ¢ FComput (that is to say FErase is not
take in consideration) for all tape i € [1, k.
Thanks to these rules, if a computation needs more space, the space allowed by a Turing machine
is doubled if the head is in a blue zone and disappear if it is in a red zone, and this action is done
only if the Turing machine need more place. Moreover, the tape can be erased if and only if the
corresponding cells in Tqri4 are in the state [*:} , in other place the computation holds following the
transition rule of the Turing machine given by Feomput-
Rules Fyoppar: The forbidden patterns Feoppar imply that for & € Trina one has the following things:
o if 7T-./\/l,l(aj)(il,iz) = [$] then 7TCompar<x)(i1,i2) = :_ _: 3
[ ] 1f 7TM71("E)(7;171'2) = 7: = ﬂ—CODfig(:’E)(il,ig) Wlth a € A and WCompar(x)(il—LiQ) = 1__: then
7TCom}:war("E)(il,ig) = l_ o
o if 7T-Compar(x)(1’171,1'2) 1__: then TrM:l(x)(ihiZ) 7& [$] .
Thanks to these rules, a forbidden pattern which appears in the enumeration obtained in T, is
compared with the corresponding pattern which appears in Teonsig. If the two patterns coincide
then the configuration is forbidden in Tfiga1.

)

[

We define the factor map mrina: : Trinar — AZ by
TConf (x)l if TLine (‘/'E)l = .

for all z € Trina1 and i € Z2 then 7(z); =
Final () {the first coordinate of mipe(x);  if not

CLamM 1:  SAq,z (FFinal(TFiual)) DX

Proof: Let x € X we construct a configuration y € Trine X Teontig X Teria X Tas X Teompar such that

SAe,z (M) = I~ . SAc,z (Teontig(v)) = =,

SAcyz (Marsa(®) = QU0 T and  SAeyz (mu(y) =< @7

Since z € ¥, M does not enumerate sub-patterns of x. Thus it is possible to complete the configuration y
to obtain a configuration of Tgina; such that SAe, 7z (Trina1(y)) = . <& claim 1

CLAIM 2:  SAg,z (Wpinal(TFinal)) C X

PTOOf.' Let Yy S TFinal-
If WLine(y)((),O) 7é . then SAe1Z (ﬂ-Final(y)) = w> e 3.
If TLine(¥)(0,0) = B ve consider u a sub-pattern of 2 = SAe,7 (Trina1(y)) of size n. Assume that
u ¢ L(X), then there exists a word w C x such that w © w or w C u which is enumerated by M in time
tr(n) = Dtime}'(n) and space sp(n) = Dtimejyy' (n).

" i
L -

- 2k ok
!

By construction of Tgina, one has SAq, 7 (m;rid(UtF(”)(y))) = ( ) where k = min{k’ :

sp(n) < 2%}, moreover there exists i € Z such that SAe,z (TMWY)) (425 5, i o] + 1425 )t (n)) = SwS for
all j € Z. Since M waits 2¥*! steeps of time before to use more space to compute the next one and
20



SA.,z (Uez (7rc°nfig(z))) =0 (SAelZ (ﬂ—config(z)))7 we conclude there exists k' such that tp(n) < k¥ <
tp(n) + 2-rmintksr (<2} and j € Z such that

SAc,7 (TMm (y))([i+2kj,i+\w\—1+2kj],tp(n)) =w=SAe,z (”Config(y))([i+2kj,z'+|w|—1+2kj],tp(n)) :

By the condition Feoppar this is impossible. Thus SAe, 7 (7rina1(y)) € 2. <& Clainm 2
Thus SAe,z (ﬂ'Final(TFinal)) = X, moreover Yr ro1(k) = tr(k) + ol+min{n:sr(k)<2"} for gl k € N. In
particular ¢ r x 441-a ~ max(Dtimely , Dspacefyy, ) = Dtimejy, . O

5.4. Increase the dimension to increase the speed

In general, the properties studied on subshifts of finite type exhibit a gap between dimension one and
dimension two, and one assimilates that behaviors for the other dimension identical to those of dimension
2. In fact it appears differences in an algorithmic point of view, in particular we have the following result

which shows that if ¢ € fgzﬁz,%d then varphi% € fgf)dﬁfiu_}d. The idea is to wrap configurations of
the d + d’-dimensional subshift on the higher dimensions following a Hilbert curve obtained thanks to a
substitution (see Figure ?7).

Theorem 5.2. Let ¥ C AZ" be a subshift which is o, d + d'-realizable by projective subaction of a sofic then
it s @ﬁ,d + d" -realizable by projective subaction of a sofic for d’ > d'.

Proof. Let & C AZ be an effective subshift. Consider Tp C BZ” a subshift of finite type with forbidden
patterns F' and 7 : B — A be a factor map such that 7(SAe,z (Tr)) = X. Denote ¢ = ¢pr21. One

constructs T C B2 a subshift of finite type with forbidden patterns F’ and 7’ : B’ — A a factor map
such that SAe,z (7'(Tr/)) = ¥ and @p/ 5351 € O(y/®). This prove the Theorem for d = 1, d’ = 1 and
d’' = 2.

Construction of a tangled grid. Consider the alphabet C formed by the three following tiles, their
rotations and their symmetrized about to the axis, thus card(C) = 3 x 4 x 2 = 24.

] ] [

Define the following substitution on the alphabet C (modulo rotations and symmetries):

e [ [ A
=52 e B Eg

By iterating substitution s on a letter a € C (see Figure @, we construct for every n € N the pattern
s™(a) called the super-tile of order n and type a. The substitutive subshift defined by

T, = {x € C”" . u C z if there exists n € N and a € C which verifies u Sn(a)} ,

is sofic according to Mozes’ result [Moz89]. That is to say there exist a subshift of finite type Tr, C CSZ2
and a factor map 7, : Cs — C such that 75(Tp,) = Ts. In the Mozes’ construction, it is possible to consider
a substitution 5 on Cy which factorizes on s and verifies T, = Ts. Moreover in the Mozes’ proof, forbidden
patterns F force every tile to be in a super-tile of order 1, and then every super tile of order n to be in a
super tile of order n + 1. Moreover, one just uses the fact that a pattern localy verifies the condition Fy but
not that the pattern is in a globally admissible configuration. Thus if p € Cgfk’k]Q is a pattern which does
not contain patterns of Fj, then the center letter pg is in a super-tile of order n such that 2" < k < 27+,
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FIGURE 6. Three iterations of s on an element of C.

Construction of a three-dimensional sofic subshift which realizes X. For any configuration x € T,
define the function Coor, : Z — Z? such that for i € Z, Coor,(i) corresponds to the position i starting
from the cell x¢ and following the arrows of the alphabet C.

Consider B’ = B x Cs and the factor maps 71 : B — B and w5 : B’ — C, corresponding to the projection
on each coordinates. Define the subshift of finite type Tp C B’ Z® guch that the set of forbidden patterns
F' = F{ U F} U Fj contains the following patterns:

e F{ = {m;'(p) : p € F,}, these conditions ensure to have the tangled grid described above on the
second layer on each slice {i} x Z? with i € Z;

e Fi={pe B/1(0,0.0),(1,0.0)} - 7, (P(0,0,0)) # T2(P(1,0,0)) }» these conditions force each tangled grid to be
similar by translation according to eq;

o F3={p € (BxCs)": thereexist p € I'and x € T such that p(; ;) = 71(p')i,coor, (j) and ¢ j) =
75 © T2(p')i,Coor, () for all (,7) € supp(p)}, these conditions transfer the 2-dimensional forbidden
patterns of F' in 3-dimensional forbidden patterns where the second coordinate is wrapped following
the tangled grid (see Figure @

By construction, if 2 € T, there exists y € T and x € T, such that for all (i, j) € Z2, 2i,Coory (j) = Y(i,j)
and 7y 0 2 (SAe,z+e5z (2)) = 2. Reciprocally, for every y € Tp, there exists z € Tps and @ € T, such that
for all (4,7) € Z2, zi Coor,(j) = Y(i,j) and s © T2(SAe,z1e57 (2)) = @. Thus mo 11 (SAe,7 (Tp)) = 3.

7' (Tr/) has the expected speed of convergence. By definition of the speed of convergence, for any
u€ A* if u ¢ ¥ then u ¢ L (77’ (SAelz <T§(k)’2ﬁ1))).

2[ Lp(k)-l 31 . .
Let z € SAq,7 (TF, ) and consider the pattern p = 772,(z){0}X [2[ Vo] 2 {\/W]L Since the

condition Fj is verified on %0y [_2 {mw 72{ so(k)” 2, we deduce that zg is included in a super-tile of order

n= LlogQ ([ cp(k)-‘ )J, that is to say there exist ¢ € C and i € Z3 such that s"(c) = 75 0 m2(2)it {0} x[1,27]2
and 0 € i+ {0} x [1,2"]2. Moreover for j € {(0,0,0), (0,2",0), (0, —2",0), (0,0,2"), (0,0, —2™)}, the paterns
w (2)i4j+{0}x[1,27)2 are well assembled super-tiles of order n, that is to say there exists v € T, such that
7 o me(2)y C o where U =1+ {(0,0,0), (0,2",0), (0, —27,0), (0,0,2"), (0,0, —2")} + {0} x [1,2"]2.

One deduces that 7, o ma(2)g is in the center of a segment of blue line of amplitude <2 Loz ([v/e®]) ] > .

According to the conditions imposed by F}, there exists y € SAe, 7 (Tﬁ(km_ﬂ) such that y(; j) = 2(i,Coor. (4))

\/@] ,3—>1)
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for all i € Z x [—p(k), ¢(k)]. Thus u ¢ L (Ti[ that is to say @rs 351 < /@
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FIGURE 7. Pattern of T wrapped following the tangled grid in a pattern of T p.

In the same way the reverse holds and so @/ 351 = /.

The same proof holds when we increase the dimension d of ¥ since we do not use explicitly the direction
e;. To increase the co-dimension d” it is sufficient to generalize the 2 x 2 substitution in a d”-dimensional
substitution which codes an Hilbert’s curve covering a d’-dimensional vector space. Finally to increase the
co-dimension d’ of the initial sofic which simulates X, one uses a substitution which codes an Hilbert’s hyper
surface of dimension d’ which cover a d’-dimensional vector space. O

6. LOWER BOUNDS FOR THE SPEED OF CONVERGENCE OF A SUBSHIFT

In this section we exhibit general principles to know whether the bound obtained by a given construction is
sharp.

6.1. Combinatory lower bounds

Definition. Let ¥ be a one dimensional subshift and let u € A*, the folder set of word of size k of u is
Folder (u) = {v € Li() : uwv € L()}.

Remark. 1f u ¢ £(X) then Folder (u) = . Moreover one has card({Folders? (u) : u € A¥1}) < card(A)*.

Theorem 6.1. Let ¥ C A% be an one dimensional effective subshift and ¢ € fgodfic. Then there ezists a
constant M such that for all k1, ke € N one has:

Mop a1 (k1 + ko) > (log(card({Folderlg“ (u):u € .Akl})))m .

Proof. Let Tr C BZ" be a subshift of finite type of forbidden patterns F' and a morphism 7 : ALY, B2t
such that ¥ = SA; (7(Tr)) and ¢ = @ r.a—1. For u € Ly, (X), one has

Foldert? (u) = {SA1 (n(2))g 4,y € A™ : v € TE 2 guch that SAy (m(x))_y, _yy =u} -
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Let r such that every support of pattern of F is included in [0,7 — 1]? modulo a translation. For x €
Tfﬂ(kﬁh)’dﬂl such that SA; (7‘(‘(.’[7))[7]61’71] =u € A*' the knowledge of Ty, 1) X[ o (k1 +ha) o (k1 +ha)]d—1 1S
suffisent to determine which set of {Foldert?(u') : v/ € A*} is allowed to complete u € A* by a word
v € AF2 such that uv € Lk, 41, (SA; (W(Tﬁ(kﬁk"’)’d_’l)) = Ly, 1k, (X) (see Figure . Thus

card({Folder§? (u) : u € AM})) < card ({#(, 1u( gt th2) 000 shppet @ € TR ) < prizetiska) ™,

The result follows by taking the logarithm. O

w(k1 + k2)

k1 ko

FIGURE 8. The knowledge of @[, _1)x[—p(ki+k2),p(ki+ko))a—1 Suffices to determine which set
of {Folder% (W) € Akl} is allowed to complete u € A* by a word v € A*2 such that

w0 € Loy ok, (SA; (m(TEHHEDI7N)) = £y, (2).

6.2. Computational lower bounds
In this subsection we exhibit lower bounds for the speed of convergence of an effective subshift relatively to
the algorithmic complexity.
Theorem 6.2. Let ¥ C A% be an one dimensional effective subshift and p € .nglfic. There exists a Turing
machine M which halts only on the entry Le.t(X)¢ such that

e max(log, (¢rr.a-1)?"1) = logoDtimens;

. (@Fmdﬁl)dfl = Dspace .

Remark. Since Lyect(X)€ is not necessary recursive, Dtimep, and Dspace,, are not necessary computable.
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Proof. Let Tp C BZ" be a subshift of finite type of forbidden patterns F', where the maximal size patterns
of I'is r, and a morphism 7 : AZY 5 B2 such that ¥ = SAe, (m(Tr)) and ¢ = ¢p x,4—1. Denote B, =
{koeg + -+ kgeq : (ko ..., kq) € [-n,n]? 1} and T#*) = Tﬁ(k)’d_ﬂ. One has Ly (SAze, (n(T?0))) =
Lr(X) and T#*) ¢ (BIBM’C))Z is a subshift of finite type of order r. This subshift can be represented by a
graph where the vertices are (BBMM)T N L(T¢®) and there is an edge between wu; ... u, € (BIBWW)T and
V..U, € (ABSD(H)T if ug...upv, = w1 ... 0, € (BB%D(H)TH N ﬁ(T“"(k)) [LM95]. Thus this graph has at
most caurd(B)T@‘p(k))d'_1 vertices and can be viewed as an automaton which accepts words of £(m(T®®))) if
we have eliminated components which cannot be prolonged infinitely (this takes a linear time in the size of
the graph).

Thus, to determine if u € A* is not in the language of ¥, it is sufficient to show that it is not in the
language of SA¢, (m(T™)) for some m € N. To do that we implement an algorithm which progressively, for
each m € N, explores the graph generated by T™ described previously, eliminates non-infinite component
and search if u is accepted with the corresponding automaton. There exists a constant M > 0 such that at
cach steep, one knows if u € £(SAe, (x(T™))) in time less than k x card(A)"@™* ™" Thus the corresponding
Turing machine halts on u ¢ £(o) in time

w(k)
Dtimey (k) < M k Z Card(.A)T(?m)d_1 < M@(k)card(A)r(Qap(k))d_l

m=1

It follows that max(log, ¢?~1) = log oDtime . We deduce the first point of the theorem.

To prove the second point, the naive procedure to find a configuration of SAg, (w(T™)) which contains
u in the center is to start from an element of (BB”)T N L(T™) and complete it respecting the condition F
until to find again the same element on the left and on the right. To be sure to explore all the orbits it is
possible to order them lexicographically. Thus, the algorithm just need to know the last orbit checked, this
need r(2m)?~1 space to know if u € L(SAe, (7(T™))). If u ¢ L(X), the algorithm halts when we explore
(BB")T N L(T*®). So there exists M > 0 such that M (p(k))4~! > Dspace,, (k). We recall that the word
u is written on an annex tape which is only used for the reading and which is not counted in Dspace,,. U

Remark. These theorems do not generalize to dimension 2: Theorem uses a characterization of one
dimensional sofic subshifts with folder sets and Theorem is blocked by the undecidability of emptiness
of two-dimensional subshifts of finite type.

7. SOME CLASSES OF SPEED OF CONVERGENCE

In this section we present some examples of one-dimensional subshifts and give the sharp realization by SFT
or sofic subshift. We do not give formal proof but just some elements to understand the different examples.
Example recalls a result of [PS10], adapted with the formalism of speed of convergence, one obtains
a characterization of one-dimensional subshifts with a constant sharp realization. Proposition [7.1| specifies
that there is no one-dimensional subshift for which the speed of the sharp realization is between constant
and n — log(log(n)). Examples and exhibit subshifts with the speed of convergence of sharp
realization n — log(n) and Example exhibit one with sharp realization n — n. Example exhibit
subshifts where the speed of convergence of sharp realization is given by the space necessary by a Turing
machine to compute a language. To finish, Example[7.7]gives a subshift where the set of speed of convergence
does not contain any recursive function.

Example 7.1. A subshift is constant-realizable by SFT if and only if it is a stable sofic. A subshift is
constant-realizable by sofic if and only if it is a sofic. These results are detailed in [PS10].

Proposition 7.1. If a one-dimensional subshift ¥ is @-realizable by sofic with ¢ € o(log(log(n))) then X is
sofic, so it is constant-realizable by sofic.

Proof. Assume that a subshift ¥ is ¢-realizable by sofic with ¢ € o(log(log(n))), then by Theorem

one deduces that there exists a Turing machine M which defines Lyeet(2)¢ in space o(log(log(n))). Thus

Lrect(X)€ is rational (see [HUGY]), that is to say ¥ is sofic. O
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Let £ C A* be a language and the symbol $ does not appear in .A. Define the subshift T (£) = Tp, C AZ
where A’ = AU{$} and F = {$u$ : v ¢ L}. If L is effective then T (L) is an effective subshift. Moreover it
contains a transitive sofic subshift of positive entropy, so it verifies the condition H (see section E), thus it
is sufficient to study realization by projective subaction of sofic.

Ezample 7.2. Consider £L_ = {a"" : n € N}. Then for all k € N, T (L) C {a,b,$}Z is sharp log, 2-
realizable by subshift of finite type and sofic.

Theorem gives an upper bound. For the lower bound, consider the subshift of finite type Tp C
{a,5,%,04,14,04,0p, 1p, (Z)b}Z2 where F' are the forbidden patterns of shape U = ---'which do not appear in
the configuration represented in Figure[I0] The factor 7 maps $ on $, {04, 14,0,} on a and {04, 15,0} on b.
The principe is to implement a counter and compare it at the frontier.

)

—_—— - - =

o1 15101 1510y 1 1

R N T T

el e
r-a--
SHNHH

=) 1

FIGURE 9. A configuration of Tp.

Example 7.3. Consider Lo = {a”b"2 :n € N}. Then T (L) is sharp log, 2-realizable by sofic.

Ezample 7.4. Let s be a substitution on A and consider £; = {s"(a) : n € N and a € A}. Then T (L,) is
sharp log, 2-realizable by sofic.

Ezample 7.5. For a word v € {0,1}*, define @ the miror of u. Consider Lpuin = {uu : v €€ {0,1}*},
Id: N —- N
k — k
Theorem [6.1] gives an upper bound. For the lower bound, consider the subshift of finite type Tp C
{$,0;, 14,0, 1,,}Z2 where F” are the forbidden patterns of shape U = - or [ which do not appear in
the configuration represented in Figure The factor 7 maps $ on $, {0;,0,} on 0 and {1;,1,} on 1. The
principe is to compare the beginning and the end of a word written in {0, 1}*.

T (Lpatin) C {0,1,$}2 is sharp Id, 2-realizable by projective subaction of sofic where

Example 7.6. If L is a language computable in time Dtimen, with a non-deterministic Turing machine M
then T (£) is Dtimeay, 2-realizable.

If £ is a language computable in time Dspace ,, with a Turing machine M then T (L) is sharp Dspace 4, 2-
realizable.

Example 7.7. Consider an enumeration of Turing machine and
F = {01"0 : n such that the Turing machine of number n halts}.

Since F' is recursively enumerable, the subshift ¥ = Tr is an effective subshift, moreover it satisfies the
property H. Thus for all ¢ € fgf’; *“ ¢ is larger than all recursive function. Otherwise it could be possible
to decide if the Turing machine of number n halts.

For the subshift with rational set of forbidden patterns, which corresponds to sofic subshift, there exists a
characterization with the optimal speed of convergence. There is the only characterization thanks to speed
of convergence of class of effective subshift known, but it seems interesting to explore the links between
dynamical properties of effective subshift and their optimal speed of convergence.
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