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Abstract18

The Domino Problem on Z2 asks if it is possible to tile the plane with a given set of Wang tiles; it19

is a classical decision problem which is known to be undecidable. The purpose of this article is to20

parameterize this problem to explore the frontier between decidability and undecidability. To do21

so we fix horizontal constraints H on the tiles and consider a new Domino Problem DPH : given a22

vertical constraint, is it possible to tile the plane? We characterize the nearest-neighbor horizontal23

constraints where DPH is decidable using graphs combinatorics.24
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Introduction35

The Domino Problem is a classical decision problem introduced by Wang [20] to study36

satisfaction procedures for some fragments of first-order logic. Considering a finite set of37

tiles that are squares with colored edges, called Wang tiles, we ask if it is possible to tile38

the plane with shifted copies of these tiles so that contiguous edges have the same color.39

This question is also central in symbolic dynamics. A Zd-subshift of finite type is a set of40

colorings of Zd by a finite alphabet, called configurations, and a finite set of patterns that41

are forbidden to appear in those configurations. The set of tilings obtained when we tile the42

plane with a Wang tile set is an example of Z2-subshift of finite type. In this setting, the43

Domino Problem becomes: given a finite set of forbidden patterns, is the associated subshift44

of finite type empty?45

On Z-subshifts of finite type, the Domino Problem is easily shown to be decidable. On46

those over Z2, Wang conjectured the Domino Problem was decidable too, and produced47

an algorithm of decision relying on the hypothetical fact that all subshifts of finite type48

contained some periodic configuration. However, his claim was disproved by Berger [5] who49

proved that the Domino Problem over any Zd, d ≥ 2 is algorithmically undecidable. The50

key of the proof is the existence of a Zd-subshift of finite type containing only aperiodic51

configurations, on which computations are implemented. In the decades that followed, many52

alternative proofs of this fact were provided [19, 17, 14].53

The exact conditions to cross this frontier between decidability and undecidability have54

been intensively studied under different points of view during the last decade. To explore55

the difference of behavior between Z and Z2, the Domino Problem has been extended on56

discrete groups [7, 11, 6, 1, 2] and fractal structures [4] in order to determine which types of57

structures can implement computation. The frontier is also studied by restraining complexity58

(number of patterns of a given size) [15] or bounding the difference between numbers of colors59

and tiles [13]. Additional dynamical constraints are also considered, such as block gluing60

property [18, Lemma 3.1] or minimality [9].61

In this article we propose a new approach. We fix horizontal constraints H which define a62

Z-subshift of finite type and consider the decision problem DPH that given vertical contraints63

V asks if it is possible to tile the plane. In other words, is the Z-subshift of finite type64

defined by V compatible with the one defined by H? The purpose is to determine for which65

horizontal constraints H the decision problem DPH is decidable.66

This point of view has various motivations. First, one could eliminate horizontal con-67

straints that necessarily yield periodic configurations to perform a more efficient computer68

proof of the smallest aperiodic Wang tile set (reached with 11 Wang tiles in [12]). Second, a69

classical result is that every effective Z-subshift can be realized as an horizontal projection on70

Z of a Z2-subshift of finite type [10, 3, 8]. However, in these constructions, the subshift in the71

vertical direction is trivial. We can ask which other vertical subshift can be compatible with72

a given horizontal restriction: the result presented here is the first step to understand this.73

Finally, looking for the undecidable frontier under horizontal constraints helps us understand74

how to transfer information in order to implement computation.75

Section 1 recalls the notions needed and formalizes the problem. Section 2 presents three76

categories of horizontal constraints that yield a decidable Domino Problem. Finally Section 377

proves that all others have an undecidable Domino Problem. This is shown by reduction: we78

prove that for any Wang tile set W , it is possible to add vertical constraints to these H so79

that the resulting subshift simulates W . These vertical constraints can control the horizontal80

transfer of information and implement any Wang tile set, and by extension computation.81

The proof faces combinatorial explosion into subcases and is based on a careful dichotomy.82
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1 Definitions83

As a preliminary note, any interval mentioned in this article will be an interval of integers,84

unless explicitly stated otherwise.85

1.1 Symbolic Dynamics86

For a given finite set A called the alphabet, AZd is called the d-dimensional full shift over A.87

Any x ∈ AZd , called a configuration, can be seen as a function from Zd to A and we write88

x~v := x(~v). For any ~k ∈ Zd define the shift map σ~k : AZd → AZd such that σ~k(x)~v = x~v+~k.89

The product topology on AZd is generated by the metric d(x, y) = 2− inf{|~v||~v∈Zd,x~v 6=y~v}, and90

makes AZd a compact space. A pattern p is a finite configuration p ∈ APp where Pp ⊂ Zd
91

is finite. We say that a pattern p ∈ APp appears in a configuration x ∈ AZd – or that x92

contains p – if there exists ~k ∈ Zd such that for every ~̀ ∈ Pp, σ
~k(x)~̀ = p~̀.93

A Zd-subshift associated to a set of patterns F , called set of forbidden patterns, is defined94

by95

XF = {x ∈ AZd

| ∀p ∈ F ,∀~k ∈ Zd,∃~̀ ∈ Pp, σ
~k(x)~̀ 6= p~̀}96

that is, XF is the set of all configurations that do not contain any pattern from F . Note97

that there can be several sets of forbidden patterns defining the same subshift X. A subshift98

can equivalently be defined as a closed set under both the topology and the shift map. If99

X = XF with F finite, then X is called a Subshift of Finite Type, SFT for short.100

For Z-subshifts, we will talk about nearest-neighbor SFTs if F ⊂ A{0,1}. For Z2-subshifts,101

the most well-known are the Wang shifts, defined by a finite number of squared tiles with102

colored edges that must be placed matching colors called Wang tiles. Formally, these tiles103

are quadruplets of symbols (te, tw, tn, ts). A Wang shift is described by a finite Wang tile104

set, and local rules x(i, j)e = x(i+ 1, j)w and x(i, j)n = x(i, j + 1)s for all integers i, j.105

Note that Wang shifts are enough to encode any Z2-SFT, albeit changing the underlying106

local rules and alphabet, so that a Z2-SFT is empty if and only if the corresponding Wang107

shift is.108

1.2 One-dimensional SFTs as graphs109

As explained in [16], a nearest-neighbor SFT X = XF ⊂ AZ, with F ⊂ A2, can be described110

as an oriented graph G = (V, ~E) with V = A and (a, b) ∈ ~E ⇔ ab /∈ F . This graph, that111

encodes the allowed patterns, depends on A and F , thus two different descriptions of the112

same SFT will yield different graphs.113

However one graph can be canonically associated to a nearest neighbor SFT from any114

other description of said SFT. It is the only one obtained by iterated suppression of all115

vertices with no incoming edge or no outgoing edge, and so there only remain biinfinite paths116

in the graph, that correspond to proper tilings of the line. This graph, denoted by G(X), is117

called the Rauzy graph (of order 1) of X. Note that a Rauzy graph can be made of one or118

several strongly connected components, SCC for short. In case it has several SCCs it can also119

contain transient vertices, that are vertices with no path from themselves to themselves.120

I Example 1. The subshiftsX = X{10,20,21,11,30,31,32,33} ⊂ {0, 1, 2, 3}Z and Y = Y{10,20,21,11} ⊂121

{0, 1, 2}Z are the same SFT. They have the same Rauzy graph made of two SCCs {0} and122

{2}, and one transient vertex 1 (vertex 3 has been deleted from G(X) else it would be of123

out-degree 0).124

CVIT 2016
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This technique that algorithmically associates a graph to an SFT will be of great use in125

Section 3, because it means that our proof can mostly focus on combinatorics over graphs to126

describe all nearest-neighbor one-dimensional SFTs.127

1.3 The Domino Problem128

Define DP (Zd) = {< H >| H is a nonempty Zd-SFT} where < H > is the encoding of the129

SFT H using a finite alphabet and a finite set of forbidden patterns. DP (Zd) is a language130

called the Domino Problem on Zd. As for any language, we can ask if it is algorithmically131

decidable, i.e. recognizable by a Turing Machine. Said otherwise, is it possible to find a132

Turing Machine that takes as input any finite set of patterns F ⊂ AZd of rules and answers133

YES if XF contains at least one configuration, and NO if it is empty?134

It is widely known that DP (Z) is decidable, because the problem can be reduced to the135

emptiness of nearest-neighbor Z-SFTs, and finding a valid configuration in a nearest-neighbor136

SFT is equivalent, via what precedes, to finding a biinfinite path – hence a cycle – in a137

finite oriented graph. On the contrary, DP (Z2) is undecidable [5, 19, 17, 14], and so is any138

DP (Zd) for d ≥ 2 by reduction to the undecidability of DP (Z2).139

1.4 Framework140

I Definition 2. Let H,V ⊂ AZ be subshifts. The two-dimensional subshift141

XH,V := {x ∈ AZ2
| ∀i, j ∈ Z, (xk,j)k∈Z ∈ H and (xi,`)`∈Z ∈ V }142

is called the combined subshift of H and V , and uses H as horizontal rules and V as143

vertical rules.144

I Remark. The projection of the horizontal configurations that appear in XH,V does not145

necessarily recover all of H; we may simply have a subset of it. Indeed, all configurations in146

H will not necessarily appear because some of them may not be legally extended vertically.147

An easy instance of this is choosing A = {0, 1}, H nearest-neighbor and forbidding 00 and148

11, and V non-nearest-neighbor and forcing to alternate a 0 and two 1s: the resulting XH,V149

is empty, although neither H nor V are. In some sense, said H and V are incompatible.150

The previous remark motivates the main problem we will study in the rest of this article:151

understanding when two one-dimensional SFTs are compatible to build a two-dimensional152

SFT, and by extension where the frontier between decidability and undecidability lies. This153

question is notably reflected by the following adapted version of the Domino Problem:154

I Definition 3. Let H ⊂ AZ be an SFT. The Domino Problem depending on H is the155

language156

DPH := {< V >| V ⊂ AZ is an SFT and XH,V 6= ∅}.157

I Remark. It is important to understand that this Domino Problem is defined for a given H,158

and its decidability depends on such a H we choose beforehand. Subshifts can be conjugate,159

this being defined as a continuous bijection that commutes with the shift maps. Although160

it allows to identify structurally identical subshifts from a dynamical point of view, these161

subshifts remain different in how they can encode information. Indeed, some SFT H1 and162

H2 may be conjugate with DPH1 decidable but DPH2 undecidable. Consider for instance163

the following Rauzy graphs and applications on finite words (extensible to biinfinite words):164
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a b β

α γ

φ :


aa 7→ γ

ab 7→ β

ba 7→ α

bb 7→ β

ψ :


α 7→ a

β 7→ b

γ 7→ a

165

These graphs describe conjugate SFTs through these applications, with φ(x)i+1 =166

φ(xixi+1). However, as we will see in Section 2, the first graph has decidable DPH and the167

second has not.168

2 Main result: frontier between decidability and undecidability169

With all the tools of Section 1 and the following reasoning, we are able to state Theorem 6,170

which contains the precise conditions under which DPH is decidable for nearest-neighbor H.171

To understand where these conditions stem from, we study three examples:172

I Example 4. Consider the following Rauzy graphs:173

G(H1) G(H2) G(H3)

174

Let us consider a "vertical" Z-SFT V . As long as one can build a single column respecting175

the rules of V , this column can legally be juxtaposed with itself in XH1,V since any element of176

H1 can be horizontally juxtaposed with itself due to the self-loop at each vertex. Conversely,177

if XH1,V contains a configuration, then in particular it contains a single column respecting178

the rules of V . Hence checking if XH1,V is empty is tantamount to checking if V is empty.179

Since DP (Z) is decidable, DPH1 is easily decidable in this case.180

The same reasoning can be applied to the two other cases: for H2 any pair of columns,181

and for H3 any triplet of columns, can be juxtaposed with itself. This finite number of182

columns makes the decidability of our Domino Problem at stake depend on the decidability183

of DP (Z). The extensive proof of this fact is located below Theorem 6.184

With these three examples, we briefly saw how these three kinds of graphs yielded a185

decidable DPH . The rest of this article will produce a proper proof of this and, more186

importantly, will show that these three rather natural categories are in fact the only ones187

where decidability appears.188

I Definition 5. We say that an oriented graph G = (V, ~E) verifies condition D (for "Decid-189

able") if all its SCCs have a type in common among the following list. A SCC S can be of190

none, one or several of these types:191

∀v ∈ S, (v, v) ∈ ~E) (we say that S is of reflexive type);192

∀v 6= w ∈ S s.t. (v, w) ∈ ~E, ē = (w, v) ∈ ~E (we say that S is of symmetric type; note193

that S = {v} a single vertex with a loop is also symmetric);194

S =
⊔
Vi such that ∀v ∈ Vi, [(v, w) ∈ ~E ⇔ w ∈ Vi+1] with i meant modulo the number of195

classes (we say that S is of state-split cycle type in reference to a term used in [16]; note196

that a partition with one unique class V0 causes S to be a single vertex with self-loop).197

I Theorem 6. Let H be a nearest-neighbor Z-SFT.198

DPH is decidable ⇔ G(H) verifies condition D.199

CVIT 2016
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Proof. Proof of ⇐: assume G(H) verifies condition D. Then its SCCs share a common type,200

be it reflexive, symmetric, or state-split cycle. For each of these three cases, we produce an201

algorithm that takes as input a Z-SFT V ⊂ AZ, and that returns YES if XH,V is nonempty,202

and NO otherwise.203

Let M be the maximal size of forbidden patterns in FV (since V is an SFT, such an204

integer exists).205

If G(H) has state-split cycle type SCCs: let L be the LCM of the number of Vis in each206

component. If there is no rectangle of size L×M(|A|LM + 1) (width × height) respecting207

local rules of XH,V and containing no transient element, then answer NO. Indeed, any208

configuration in XH,V contains valid rectangles as large as we want that do not contain209

transient elements. If there is such a rectangle R, then by the pigeonhole principle it210

contains at least twice the same rectangle R′ of size L×M . To simplify the writing, we211

assume that the rectangle that repeats is the one of coordinates [1, L] × [1,M ] inside212

R where [1, L] and [1,M ] are intervals of integers, and that it can be found again with213

coordinates [1, L]× [k, k+M −1]. Else, we simply truncate a part of R so that it becomes214

true.215

Define P := R|[1,L]×[1,k+M−1]. Since V has forbidden patterns of size at mostM , and since216

R respects our local rules and begins and ends with R′, P can be vertically juxtaposed217

with itself (overlapping on R′).218

P can also be horizontally juxtaposed with itself (without overlap). Indeed, one line of219

P uses only elements of one SCC of H (since elements of two different SCCs cannot be220

juxtaposed horizontally, and we banned transient elements). Since L is a multiple of the221

length of all cycle classes, the first element in a given line can follow the last element in222

the same line. Hence all lines of P can be juxtaposed with themselves.223

As a conclusion, P is a valid patch that can tile Z2 periodically. Therefore, XH,V is224

nonempty; return YES.225

If G(H) has symmetric type SCCs the construction is similar, but this time build a226

rectangle R of size 2×M(|A|2M + 1). Either we cannot find one and return NO; or we227

can find one and from it extract a patch that tiles the plane periodically and return YES.228

Finally, if G(H) has reflexive type SCCs, the construction is even simpler than before.229

Build a rectangle R of size 1×M(|A|M + 1); the rest of the reasoning is identical.230

Proof of ⇒ is postponed to Section 3, and is done by contraposition. If G(H) does not verify231

condition D, then for any Wang shift W we can algorithmically build some Z-SFT VW such232

that XH,VW
reproduces all configurations in W . If we were able to solve DPH , then there233

would exist a Turing MachineM able to tell us if XH,V is empty for any Z-SFT V . But234

then we could build a Turing Machine N taking as input any Wang shift W , building the235

corresponding VW after the following construction, and by runningM, N would be able to236

tell us if XH,VW
is empty or not. Then it could answer if W is empty or not; but determining237

the emptiness or nonemptiness of every Wang shift is equivalent to DP (Z2) being decidable,238

which is false. Hence, since DP (Z2) is undecidable, DPH is too.239

J240

3 Encoding a Wang shift under horizontal constraints241

We begin this section by presenting the core idea of our algorithmic construction to prove242

the direct implication by contraposition. Then, we introduce the vertical patterns needed to243

achieve it in a generic case, said generic case being based on a set of conditions C. Finally,244

we show that most graphs that do not verify condition D do verify condition C, and those245
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which don’t only need a slight adaptation of our generic construction.246

3.1 Core idea247

We have a one-dimensional nearest-neighbor SFT H ⊂ AZ ("horizontal") that does not verify248

condition D, and we fix a Wang shift W with a set of N tiles τ = {τ1, ..., τN}.249

The idea is to introduce a well-chosen one-dimensional SFT V ⊂ AZ ("vertical") depending250

on W so that XH,V encodes the full shift on N elements. Then, we refine V by adding251

conditions on forbidden patterns, thus encoding exactly the configurations in W . Such a252

construction is done with the use of two main parts, that we will obtain by some carefully253

chosen forbidden patterns in V .254

First, there are parts of synchronization, also called sync parts, that give some rigidity to255

our tilings. They precise where the actual coding parts can be, which letters of the alphabet256

can be used and where in these coding parts, and they ensure that you cannot glue patches257

together in an unexpected way. They are the frame of our construction. Second comes the258

filling: the coding parts. A given coding part simply codes a number between 1 and N ,259

possibly several times.260

In Figure 1a (our first rough attempt to encode a full shift on an alphabet of size N),261

we suppose that our sync parts properly maintain this global structure. We notice that it262

offers an interesting opportunity to transmit information vertically. Since our coding parts263

are exactly aligned, once we have encoded the full shift over an alphabet of size N , it will264

suffice to add vertical conditions to our V to precise whether a coding part can be above265

another one.266

However, horizontally Figure 1a overlooks two problems:267

Since we must respect the horizontal conditions given by H, we cannot put any coding268

part next to any other one if we do not put some kind of buffer between the two;269

Even with this, we have no control on the horizontal transfer of information. The idea is270

to transmit this horizontal information vertically, since we can add vertical constraints.271

We can fix the first problem by setting a buffer (see Figure 1b) between two coding parts, a272

column that contains no coding and which can be next to any coding part. Of course, we273

must ensure that this buffer cannot be anywhere in a configuration but obediently remains274

between two coding parts. The sync parts will be designed to handle this.275

However, this does not solve our need of horizontal transmission of information. Hence a276

new idea: altering our coding parts so that they transmit information diagonally. We put277

several consecutive lines of them, shifted little by little, as illustrated in Figure 1c. That way,278

we can encode horizontal forbidden patterns vertically, because we can see vertically which279

coding part is on the right of the one we are considering. For instance, by looking vertically280

we can know that the encoding of T1,1 is next to T2,1 and above T1,0, and thus restrict the281

content of these codings.282

In what follows, we will build Figure 1c in details, although some technicalities will be283

needed to preserve the integrity of our sync parts and to ensure that the coding of a tile of284

W is well transmitted. This construction will indeed encode the full shift over τ , the tile set285

of W . Then, it can easily be refined by adding vertical rules so that the local rules of W are286

ensured. Consequently, our newly built XH,V will properly simulate all configurations of W ,287

allowing us to perform the rest of the proof of Theorem 6.288

CVIT 2016
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sync

T0,0

sync

T1,0

sync

T2,0

sync

T3,0

sync

T4,0

sync

T0,1

sync

T1,1

sync

T2,1

sync

T3,1

sync

T4,1

sync

T0,2

sync

T1,2

sync

T2,2

sync

T3,2

sync

T4,2

(a) Basic depiction of sync parts
and coding parts that represent
tiles of W (not to scale; actually
unrealizable).

sync

T0,0

sync

T1,0

sync

T2,0

sync

T3,0

sync

T4,0

sync

T0,1

sync

T1,1

sync

T2,1

sync

T3,1

sync

T4,1

sync

T0,2

sync

T1,2

sync

T2,2

sync

T3,2

sync

T4,2

(b) Same construction adding
"buffers" between codings of tiles
to be realizable.
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T0,0

T0,0

T0,0

T0,0

sync

T1,0

T1,0

T1,0

T1,0

sync

T2,0

T2,0

T2,0

T2,0

sync

T3,0

T3,0

T3,0

T3,0

sync

T4,0

T4,0

T4,0

T4,0

sync

T0,1

T0,1

T0,1

T0,1

sync

T1,1

T1,1

T1,1

T1,1

sync

T2,1

T2,1

T2,1

T2,1

sync

T3,1

T3,1

T3,1

T3,1

sync

T4,1

T4,1

T4,1

T4,1

sync

T0,2

T0,2

T0,2

T0,2

sync

T1,2

T1,2

T1,2

T1,2

sync

T2,2

T2,2

T2,2

T2,2

sync

T3,2

T3,2

T3,2

T3,2

sync

T4,2

T4,2

T4,2

T4,2

(c) Improved construction: we
encode vertically the horizontal
restrictions between tiles of W .
A tile of W (here T2,1) is repres-
ented in bold.

Figure 1 Steps of the core idea to reach the generic construction. Not to scale: the sync part
will be much bigger than the code part.

3.2 Generic construction289

In this section, we describe a set of conditions on a nearest-neighbor SFT H that allows to290

build formally what we described informally in Section 3.1. In all that follows, we denote291

elements of cycles with an index that is written modulo the length of the corresponding cycle.292

I Definition 7. Let C1 and C2 be two cycles in an oriented graph G, with elements denoted293

respectively c1
i and c2

j . Let M := lcm(|C1|, |C2|).294

We say that the cycles C1 and C2 contain a good pair if there is a pair (i, j) and295

an integer 1 < l < M − 1 such that c1
i 6= c2

j , c
1
i+1 6= c2

j+1, . . . , c
1
i+l 6= c2

j+l and c1
i+(l+1) =296

c2
j+(l+1), . . . , c

1
i+(M−1) = c2

j+(M−1).297

I Definition 8. Let H ⊂ AZ be a one-dimensional nearest-neighbor SFT. We say that H298

verifies condition C if G(H) = (V, ~E) contains two cycles C1 and C2, of elements denoted299

respectively c1
i and c2

j , with the following properties:300

(i) C1 and C2 contain a good pair;301

(ii) (there is no uniform shortcut neither in C1 nor in C2) There does not exist any302

k ∈ {0, 2, ..., |C1| − 1} such that for any c1
i ∈ C1, (c1

i , c
1
i+k) ∈ ~E; and there does not303

exist any k ∈ {0, 2, ..., |C2| − 1} such that for any c2
j ∈ C2, (c2

j , c
2
j+k) ∈ ~E;304

(iii) (there is no cross-bridge between C1 and C2) There are no i ∈ {0, ..., |C1| − 1} and305

j ∈ {0, ..., |C2| − 1} with c1
i 6= c2

j and c1
i+1 6= c2

j+1 such that (c1
i , c

2
j+1) ∈ ~E and306

(c2
j , c

1
i+1) ∈ ~E;307

(iv) (there cannot be both an attractive vertex and a repulsive vertex for C1) Either there is308

no r ∈ C1 ∪ C2 such that for all c ∈ C1, (c, r) ∈ ~E, or there is no r ∈ C1 ∪ C2 such309

that for all c ∈ C1, (r, c) ∈ ~E.310

I Proposition 9. If G(H) verifies condition C, then DPH is undecidable.311

The rest of the subsection is devoted to proving this result.312

Let H with G(H) verifying condition C. We focus on encoding a full shift on an alphabet313

τ of cardinality N . Then, the possibility to add vertical rules will allow us to encode any314

Wang shift W using this alphabet, that is, to simulate the configurations of W as described315

in Section 3.1.316
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For the rest of the construction, we will name M := lcm(|C1|, |C2|) and K := 2|C1| +317

|C2| + 3. We suppose that N ≥ 2 and do not focus on the trivial instance of W being a318

monotile Wang shift.319

We refer to Figure 2 in all that follows. We use the term slice as a truncation of a column:320

it is a part of width 1 and of finite height. We use the following more specific denominations321

for the various scales of our construction:322

A macro-slice is of height KMN . Any column is merely made of a succession of some323

specific macro-slices called ordered macro-slices (see below).324

A meso-slice is of height MN . An ordered macro-slice is made of various meso-slices that325

ensure it carries information and is correctly aligned with neighboring ordered macro-slices326

(of neighboring columns).327

A micro-slice is of height N . This subdivision is used inside code meso-slices (see below).328

Although any scale of slice could denote any truncation of column of the right size, we will329

only focus on specific slices that are meaningful because of what they contain, so that we330

can assemble them precisely. They are:331

A (i, j) k-coding micro-slice is a micro-slice composed of N−1 symbols c1
i and one symbol332

c2
j at position k. It encodes the kth tile of alphabet τ .333

A (i0, j0)-code meso-slice is made of M successive coding micro-slices starting with a334

(i0, j0) coding micro-slice (that can encode anything). We add the vertical constraint that335

if c1
i 6= c2

j , then the (i, j) k-coding micro-slice is vertically followed by the (i+ 1, j + 1)336

k-coding micro-slice. If c1
i = c2

j , the (i, j) k-coding micro-slice can be vertically followed337

by any (i+ 1, j+ 1) l-coding micro-slice. Note that there can be at most one such rupture338

in the coding since C1 and C2 contain a good pair; k is then called the main-coded tile,339

and l the side-coded tile.340

A i-border meso-slice is made of M
|C1|N times the vertical repetition of elements of the341

cycle C1, starting at c1
i .342

A c1
i meso-slice is made of NM times the vertical repetition of element c1

i . Same for a c2
j343

meso-slice.344

The succession of a c1
i meso-slice, then a c1

i+1 meso-slice, ..., then a c1
i−1 meso-slice is called345

a i C1-slice (of height MN |C1|). Similarly, we define a j C2-slice (of height MN |C2|).346

Finally, a (i, j)-ordered macro-slice is the succession of a i-border meso-slice, a i C1-slice,347

a second i C1-slice, a j C2-slice, a i-border meso-slice, and finally a (i, j)-code meso-slice.348

Now, the patterns we authorize in V are exactly the cyclic permutations of (i0 + k, j0 + k)-349

ordered macro-slices with some good pair (i, j) and k ∈ {0, . . . ,M − 1}. We prove below350

that it is enough for our resulting XH,V to simulate a full shift on τ .351

We say that two legally adjacent columns are aligned if they are subdivided into ordered352

macro-slices exactly on the same lines. We say that two adjacent and aligned columns are353

synchronized if any (i, j)-ordered macro-slice of the first one is followed by a (i+ 1, j + 1)-354

ordered macro-slice in the second one.355

I Proposition 10. In this construction, two legally adjacent columns are aligned up to a356

vertical translation of size at most 2|C1| − 1 of one of the columns.357

Proof. If two columns, call them K1 and K2, can be legally juxtaposed such that they358

are not aligned even when vertically shifted by 2|C1| − 1 elements, it means that one of359

the border meso-slices of K1 has at least 2|C1| vertically consecutive elements that are360

horizontally followed by something that is not a border meso-slice in K2 (see Figure 3). Since361

2|C1| < MN , at least |C1| successive elements among the ones of the border meso-slice are362

horizontally followed by elements that are part of the same meso-slice. If this is a code363
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c1
i c1

i+1 . . . c1
i−1 c1

i c1
i+1 . . . c1

i−1 . . . . . . c1
i−1

(i, j)-ordered
macro-slice

border (c1
i )MN (c1

i+1)MN . . . (c1
i−1)MN (c1

i )MN (c1
i+1)MN . . . (c1

i−1)MN (c2
j )MN (c2

j+1)MN . . . (c2
j−1)MN border code

i C1-slice j C2-slice

meso-slices
τk

i

j

τk

i+ 1
j + 1

. . .
τk

i− 4
j − 4

τ`

i− 1
j − 1

(i+ 1, j + 1)
k-coding
micro-slice

c1
i+1 c1

i+1 . . . c1
i+1 c2

j+1 c1
i+1 c1

i+1 . . . c1
i+1

k

V

H

Figure 2 Columns allowed, for (i, j) in the orbit of a good pair. Here c1
i−3 = c2

j−3 and c1
i−2 = c2

j−2,
forming buffers in the code meso-tile.

meso-slice, simply consider the other border meso-slice of K1 (the first you can find, above364

or below, before repeating the pattern cyclically): this one must be in contact with a c1
i365

or c2
j meso-slice instead. Either way, we obtain that a border meso-slice has at least |C1|366

successive elements that are horizontally followed by some t meso-slice made of a single367

element. Hence if we suppose that juxtaposing K1 and K2 this way is legal, it means that368

in H all the elements of C1 lead to t, i.e t is an attractive vertex. Either this is forbidden,369

or the "reverse" reasoning where we focus on the borders of K2 proves that there is also an370

element p used in a Cj slice of K1 that leads to every element of C1; that is, a repulsive371

vertex. We forbade any graph that had both, hence we reach a contradiction here. We obtain372

the proposition we announced. J373

I Proposition 11. In this construction, two legally adjacent columns are always aligned and374

synchronized.375

Proof. Proposition 10 states that two adjacent columns K1 and K2 are always, in some376

sense, approximately aligned (up to a vertical translation of size at most 2|C1|). If the two377

columns are indeed slightly shifted, then any meso-slice of the C1 slice of K1 (consisting only378

of the repetition of some c1
i ) is horizontally followed by two different meso-slices in K2. Being379

different, at least one of them is not c1
i+1 but some c1

i+k, k ∈ {2, ..., |C1|}. This is true with380

the same k for all values of i because all meso-slices representing c1
i are repeated twice so381

that there is no "border effect". We obtain something that contradicts our assumption that382

C1 has no uniform shortcut. Hence there is no vertical shift at all between two consecutive383

columns. Thus our construction ensures that two adjacent columns are always aligned.384

It is easy to see that a meso-slice made only of c1
i in column K1 is horizontally followed,385

because the columns are aligned, by a meso-slice made only of c1
i+k in column K2. This k is386

V
H

border c1
i c1

i+1 ... c1
i−1 c1

i c1
i+1 ... c1

i−1 c2
j c2

j+1 ... c2
j−1 border code border c1

i c1
i+1 ... c1

i−1 c1
i c1

i+1 ... c1
i−1 c2

j c2
j+1 ... c2

j−1 border code

border c1
i c1

i+1 ... c1
i−1 c1

i c1
i+1 ... c1

i−1 c2
j c2

j+1 ... c2
j−1 border code border c1

i c1
i+1 ... c1

i−1 c1
i c1

i+1 ... c1
i−1 c2

j c2
j+1 ... c2

j−1 border code

Figure 3 Faulty alignment of adjacent columns (represented as lines).
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Figure 4 Some Rauzy graph and several associated code meso-slices for |τ | = 3. Here are
horizontally successively encoded τ3, τ1, τ2 and τ2, the number being indicated by the location of the
line of c’s.

once again independent of the i because inside a macro-slice, meso-slices respect the order of387

cycle C1. But because C1 has no uniform shortcut, we must have k = 1. The reasoning is388

the same for the C2 slice, and we use the fact that C2 has no shortcut either. Hence our389

columns are synchronized. J390

With these properties, we have ensured that our structure is rigid: our ordered macro-391

slices are aligned just as we expected. The last fact to check is the transmission of information392

between horizontally aligned code meso-slices (since, by the structure of a code meso-slice,393

the vertical transmission is guaranteed).394

We have to ensure that, every M horizontally aligned coding micro-slices, we have a395

succession of buffer ones (a (i, j)-coding micro-slice that does not encode information because396

c1
i = c2

j ) then of non-buffer ones. Furthermore, we ask that all the buffers follow each other397

so that we get some distinct "coding zone" and "buffer zone". This is actually simply deduced398

from the fact that we only authorized as ordered macro-slices the ones based on the orbit of399

a good pair (see Definition 7).400

Now, in which situation can there be a problem of horizontal transmission of the encoded401

tile between two micro-slices? Suppose we have a (i, j) micro-slice then a (i + 1, j + 1)402

micro-slice. A problem of transmission would mean that c1
i can be followed by c2

j+1, and c2
j403

by c1
i+1. A problem of transmission also assumes that we transmit something, hence we don’t404

consider buffer micro-slices: necessarily c1
i 6= c2

j and c1
i+1 6= c2

j+1. Then we would contradict405

the assumption "no cross-bridge" (which was assumed precisely to prevent this case).406

As a consequence of all this, every M micro-slices starting with a buffer micro-slice,407

horizontally successive coding micro-slices encode exactly one element of τ , since there is one408

single coding zone and the coded tile is correctly transmitted.409

In the end, we proved that if we were able to find such C1 and C2 complying with410

condition C, they would be enough to build the construction we desire: a full shift on N411

elements. Then, to encode only configurations that are valid in W , we forbid the following412

additional vertical patterns:413

the code meso-slices that would contain both the main-coded kth tile and the side-coded414

lth tile if tile k cannot be horizontally followed by tile l in W ;415

and the vertical succession of two ordered macro-slices that would contain code meso-slices416

with two main-coded tiles that cannot be vertically successive in W .417
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With this, we proved Proposition 9.418

3.3 Proof of Theorem 6 for one strongly connected component419

We suppose that H ⊂ AZ is a one-dimensional nearest-neighbor SFT such that its Rauzy420

graph does not verify condition D and is made of only one SCC.421

Note that G(H), since it does not verify condition D, contains at least one loopless vertex,422

and one unidirectional edge.423

The idea is to divide the possible graphs into various cases, see Table 1. This way, one424

has a standard procedure to find convenient C1 and C2 inside any graph to perform the425

generic construction. Of course, for some specific cases, we won’t meet condition C even if426

H does not verify condition D. However, we will punctually adapt the generic construction427

to these specificities.428

The division into cases is presented in a disjunctive fashion:429

Is there a loop on a vertex?430

If YES: Is there a unidirectional edge (v, w) ∈ ~E so that v is loopless and w has a loop431

(or the reverse, which is similar)?432

If YES: This is Case 1.1. We can find C1 and C2 that check condition C with433

the exception of the possible presence of both an attractive and a repulsive vertices.434

However, Proposition 10 is verified anyway because choosing the smallest possible435

cycle containing such v and w, v has in-degree 1, a property that allows for an easy436

synchronization.437

If NO: Do unidirectional edges have loopless vertices?438

∗ If YES: This is Case 1.2. We can find C1 and C2 that check condition C, possibly439

by reducing to a situation encountered in case 2.2.440

∗ If NO: This is Case 1.3. This one generates some exceptional graphs with 4 or 5441

vertices that do not check condition C and must be treated separately. However,442

technical considerations prove that our generic construction still works.443

If NO: Is there a bidirectional edge?444

If YES: Is there a cycle of size at least 3 that contains a bidirectional edge?445

∗ If YES: This is Case 2.1. We can find C1 and C2 that verify condition C rather446

easily.447

∗ If NO: This is Case 2.2, in which checking condition C is also easy.448

If NO: Is there a minimal cycle with a path between two different elements of it, say449

c1
0 and c1

k, that does not belong to the cycle?450

∗ If YES: Can we find such a path of length different from k?451

Table 1 Table of the main cases, each of them illustrated with an example (the C2 on which we
perform the generic construction is in red).

Loops No loop
Bidirectional edges No bidirectional edge

v
w

C1

v

w

u

C1
v

a

u

C1
v

w

u

C1
v

w

C1

C1 C1
C1

Case 1.1 Case 1.2 Case 1.3 Case 2.1 Case 2.2 Case 3.1 Case 3.2 Case 3.3
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· If YES: This is Case 3.1, a rather tedious case, but we can find cycles C1 and C2
452

that verify condition C nonetheless.453

· If NO: This is Case 3.2, which relies heavily on the fact that G(H) is not of454

state-split cycle type to find cycles that verify condition C.455

∗ If NO: This is Case 3.3, an easy case to find cycles that verify condition C.456

3.4 Proof of Theorem 6 for multiple strongly connected components457

The idea if H has several SCCs is to build one, by products of SCCs, that is none of the458

three types that constitute condition D. We can then apply what we did in the previous459

subsections.460

The direct product S1 × S2 of two SCCs S1 and S2 is made of pairs (s1, s2), where an461

edge exists between two pairs if and only if edges exist in both S1 and S2 between the462

corresponding vertices. It can be used in our construction by forcing pairs of elements463

(s1, s2) ∈ S1 × S2 to be vertically one on top of the other.464

Since H does not verify condition D, it has a non-reflexive SCC S1, a non-symmetric465

SCC S2 and a non-state-split SCC S3 (two of them being possibly the same). But then:466

Since S1 is non-reflexive, no SCC of S1 × S2 × S3 is reflexive. Indeed, since S1 is strongly467

connected, all vertices of S1 are represented in any SCC C of that graph product, meaning468

that for any s1 ∈ S1 there is at least one vertex of the form (s1, ∗, ∗) in C. But if C had469

loop on all its vertices, then in particular S1 would be reflexive.470

Similarly, since S2 is non-symmetric, no SCC of S1 × S2 × S3 is symmetric.471

Finally, since S3 is non-state-split, no SCC of S1 × S2 × S3 is a state-split cycle. Indeed,472

suppose S is such a state-split SCC of the direct product. It can be written as a collection473

of classes (Vi)i∈I of elements from S1 × S2 × S3 that we can project onto S3, getting new474

classes (Wi)i∈I with elements of S3 that possibly appear in several of these. Let c be any475

vertex in S3 that appears at least twice with the least difference of indices between two476

classes where it appears; say c ∈ Wi and c ∈ Wi+k. Since S is state-split, all elements477

in Wi+1 are exactly the elements of S3 to which c leads. But it is the same for Wi+k+1.478

Hence Wi+1 = Wi+k+1. From this we deduce that Wi = Wi+k for any i, using the fact479

that indices are modulo |I|. Since k is the smallest possible distance between classes480

having a common element, classes from (Wi)i∈{0,...,k−1} are all disjoint. Now simply481

consider these classes W0 to Wk−1: you get the proof that S3 is state-split.482

Perspectives483

Nearest-neighbor conditions are strong constraints, hence it is
rather coherent that apart from some very simple graphs the
undecidability of DPH is systematic. Investigation has begun
about non-nearest-neighbor constraints, for which there seem to
be more graphs with a decidable Domino Problem, this set of
graphs possibly being non-recursive. For instance, the opposite
graph is of decidable Domino Problem.

aa

ab ba

bb

484

Another perspective would be to generalize these results to Zd: we fix restrictions on a485

Zk-SFT with k < d and look at the consequent decidability for Zd-SFTs. It is immediate486

that if d− k ≥ 2 then we can reduce to DP (Z2) so this new problem is always undecidable.487

However, the d− k = 1 case – that is, fixing a hyperplane – is still open.488
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