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Abstract. It is possible to extend the notion of block gluing for subshifts studied in [PS15] adding
a gap function which gives the distance which allows to concatenate two rectangular blocks of the
language. In this article, we study the interplay between this intensity and computational properties.
In particular, we prove that there exists block gluing SFTs with linear gap which are aperiodic and
that all the non-negative right-recursively enumerable (Π1-computable) numbers can be realized as
entropy of such subshifts of finite type. As block gluing with linear gap implies transitivity, this last
point provides a solution to Problem 9.1 in [HM10] about the characterization of the entropies of
transitive subshift of finite type.

1 Introduction

1.1 Context From the work of M. Hochman and T. Meyerovitch [HM10], who characterized the
possible values of entropy for multidimensional subshifts of finite type, and later developments, it
appeared in the last decade that numerous dynamical properties of these systems can be understood
as soon as one accept the use of classical tools of computability theory. Of these works, one can cite:
a characterization the projective sub-actions [Hoc09, AS10, DRS], a measure of the computationally
simplest configurations with Medvedev degrees [Sim14] and sets of Turing degrees [JV13], and char-
acterization of the possible sets of periods in terms of complexity theory [JV15]. Most of the time,
the realization part of these results is the one which demands most of the efforts, and their common
factor is an implementation of universal Turing computation within these dynamical systems. The
observation that some dynamical restrictions lower the computational complexity of the possible val-
ues of entropy, by preventing embedding universal computing, led to another inflexion of this research
domain. To be more precise, the statement of M. Hochman and T. Meyerovitch [HM10] is that the
possible values of entropy for multidimensional SFT are exactly the non-negative Π1-computable real
numbers. Under strong irreducibility constraint, or block gluing, the entropy becomes computable.
Only some step results towards a characterization are known [PS15] for block gluing SFTs. We in-
terpret this decrease of computational complexity as a reduction of the computational power of the
model under this restriction.

1.2 Statements A subshift is block gluing when there exists a non-negative integer c such that any
pair of square patterns in the language of the subshift having the same size n appear with any relative
position in a configuration of this subshift, provided that the distance between the two patterns is
greater than c. In this text, we propose a quantification of this property which consists in replacing
the integer c by f(n), for a function f : N→ N, with the idea of observing a computational threshold
effect. We thus studied the evolution the existence of periodic orbits and possible values of entropy
when the function f varies. We observed two regimes:

• Sub-logarithmic regime: if f ∈ o(log(n)) and f ≤ id, then the set of periodic orbits of
any f -block gluing SFT is dense (Proposition 19) and its language is decidable. Moreover, the
entropy is computable (Corollary 37).

• Linear regime:
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– There exists an aperiodic f -block gluing bidimensional SFT for some function f ∈ O(n)
(Theorem 22).

– There exists an f -block gluing SFT with non decidable language for some function f ∈
O(n) (Proposition 21).

– The possible values of entropy on the class of f -block gluing SFT with f ∈ O(n) is the
set of the right recursively enumerable non-negative real numbers (Theorem 38).

1.3 Tools The results in the sub-logarithmic regime extend the argumentation of [PS15]. The
arguments used for the results in the linear regime are more original. In order to prove the first
statement, we use a version of the Robinson subshift that includes a synchronisation mechanisms that
allows us to avoid rupture lines. With this transformation, the subshift is linearly net gluing, which
means that for any pair of square patterns having the same size n, there exists a O(n) sub-lattice of Z2

such that any element of this set is a possible relative position of appearance of the two patterns in a
configuration of the subshift. We then introduce an operator on bidimensional subshifts of finite type
that acts by distorting the underlying grid Z2. This operator preserves the aperiodicity and transforms
linear net gluing SFTs into linear block gluing ones. Applied on the Robinson subshift, it thus provides
an aperiodic O(n)-block gluing SFT.

The second statement of the linear regime uses an implementation of a universal Turing machine
in a sea of pseudo-triangular structures whose consecutive rows can be shifted one from the other in
both directions.

The third one is more involved, and relies on the construction of [HM10]. This construction uses
a substitutive subshift similar to Robinson one and an implementation of computing machines in its
hierarchical structures in order to control some structural bits in {0, 1} that are identified in columns,
and adding random bits in {1, 1′} over the 1 symbols, thus generated a controlled entropy. The
main obstacle to the transitivity property in their construction is that the behaviors occurring in
infinite computation areas can be observed only in these areas. We solve this problem by dividing the
computation areas in four parts, each one supporting a computing machine. Two of them are allowed
to have any possible behavior and the other ones are forced to compute correctly. The simulating
machines help thus to observe the degenerated behaviors of the machine in the infinite areas in any
finite one. This allows to obtain a characterization of the values of entropies for the O(n) net gluing
property. The similar statement for O(n) block gluing ones is obtained by the distortion operator,
which is modified so that the entropy of the image of a subshift is expressed as the sum of the entropy
of this subshift with a uniform computable term that can be chosen as close to 0 as desired.

1.4 Organization of the text The article is organized as follows: we first provide some definition
of the block gluing with gap function, state and prove some elementary properties, provide some simple
examples, and present a O(n) net gluing version of the Robinson subshift [Section 2]. In Section 3 we
prove the statements relative to the existence and density or non-existence of periodic orbits. Until
this point, the article can be read by a broad audience, independently from the remaining of the text.
The Section 4 contains definitions related to entropy and computability theory for real numbers as
well as statements relative to entropy and a long abstract of the proof of the last statement listed in
the linear regime. An understanding of this abstract demands more familiarity with the technique of
embedding Turing computation in subshifts of finite type, as done in [HM10]. The remaining of the
text enters in the details of the proof of this statement and the content of the last sections is explained
in Section 4. These sections are independent from the text before Section 3, except for Section 8,
which relies a lot on the content of Section 3.
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2 First properties of block gluing with gap function

In this section we recall some definitions on symbolic dynamics and we introduce the notion of block
gluing with intensity function. Then we give some examples of subshifts of finite type which are block
gluing for various intensity functions.

2.1 Subshifts as dynamical systems

2.1.1 Subshifts and patterns Let A be a finite set called the alphabet. A configuration x is
an element of AZ2

. In this article we focus on two dimensional configurations but all the following
definitions can be generalized to Zd, d ≥ 2. The space AZ2

is endowed by the product topology derived
from the discrete topology on A. For this topology, AZ2

is a compact metric space on which Z2 acts
continually by translation via the shift map, denoted σ, which is defined for all i ∈ Z2 by:

σi : AZ2 −→ AZ2

x 7−→ σi(x) such that ∀u ∈ Z2, σi(x)u = xi+u

Let U be a finite subset of Z2. Denote xU the restriction of x ∈ AZ2

to U. A pattern p on support
U, denoted supp (p), is an element of AU. Define Un = J0;n− 1K2 the elementary support of size
n ∈ N. A pattern on support Un is an n-block. As well, a pattern with support J0;n− 1K× J0,m− 1K
is an n×m-rectangle. A pattern p having support U appears at position i ∈ Z2 in a configuration
x ∈ AZ2

if for all j ∈ U, pj = xi+j, denote p < x. A pattern p on support U is a sub-pattern of a
pattern q on support V when U ⊂ V and qU = p.

A subshift X is a closed subset of AZ2

which is invariant under the action of the shift, meaning
that for all i ∈ Z2, σi(X) ⊂ X. Let us notice that the pair (X,σ) is a multidimensional dynamical
system, meaning that the dynamics are described by the action (σ) of finite group (Z2). In other
words, there are multiple dimensions of time. Any subshift X can be defined by a set of forbidden
patterns, as the set of configurations where no element of this set appears. Formally there exists F
a set of patterns such that :

X = XF :=
{
x ∈ AZ2

: for all p ∈ F , p 6< x
}
.

If the subshift can be defined by a finite set of forbidden patterns, it is called a subshift of finite
type (SFT for short). The order of an SFT is the smallest r such that it can be defined by forbidden
r-blocks.

A configuration x ∈ AZ2

is periodic if there exists m,n > 0 such that σ(m,0)(x) = σ(0,n)(x) = x.
A subshift is aperiodic when none of its configurations is periodic.

A pattern appears in a subshift X if there is a configuration of X in which it appears. The set
of patterns which appear in X is called the language of X, denoted L(X). Denote Ln(X) the set of
n-blocks that appears in X.

In this article the construction of subshifts is obtained on an alphabet A which is a product of
alphabets A = A1 × ... × Ak. We call informally the ith layer of this subshift the space of the
projections of a configuration written on the ith alphabet Ai.

2.1.2 Morphisms A morphism between two subshifts X and Y on alphabets AX and AY is a
continuous map ϕ : X → Y such that ϕ ◦ σ = σ ◦ ϕ. Equivalently by Hedlund’s Theorem [Hed69], ϕ
can be defined with a local function ϕ : AJ−r,rK2

X → AY of radius r ∈ N by

ϕ(x)i = ϕ(xi+J−r,rK2) for all x ∈ X, and i ∈ Z2.

A factor is a morphism which is onto, and it is a conjugacy if it is invertible, the inverse map
being also a morphism in this case. Two subshifts are conjugated if there exists a conjugacy between
them. In this case we considerate that they have the same dynamical behavior.
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2.2 Block gluing notions

2.2.1 Definitions In this section, X is a subshift on the alphabet A and f : N→ N is a non decreasing
function. We denote ||.||∞ the norm defined by

||i||∞ = max{i1, i2}

for all i ∈ Z2. We denote d∞ the associated distance function.

Definition 1. Let n ∈ N be an integer. The gluing set in the subshift X of some n-block p relative to
some other n-block q is the set of u ∈ Z2 such that there exists a configuration in X where q appears
in position (0, 0) and p appears in position u (see Figure 1). This set is denoted ∆X(p, q). Formally

∆X(p, q) =
{
u ∈ Z2 : ∃x ∈ X such that xJ0,n−1K2 = q and xu+J0,n−1K2 = p

}
When the intersection of the sets ∆X(p, q) for (p, q) couples of n-blocks is non empty, we denote

this intersection ∆X(n). This set is called the gluing set of n-blocks in X.

q

p

u ∈ ∆X(p, q)

Figure 1. Illustration of Definition 1.

Definition 2. A subshift X is said to be f-block transitive if for all n ∈ N one has

∆X(n) ∩
{
u ∈ Z2 : ||u||∞ ≤ n+ f(n)

}
6= ∅.

The function f is called the gap function.

Remark 1. The condition on the vectors u ∈ Z2 is ||u||∞ ≤ n+ f(n) since we consider the distance
between the positions where the patterns appear instead of the space between them.

Definition 3. A subshift X is said to be f net gluing if there exists a function u : L(X)2 → Z2 and
a function f̃ : L(X)2 → N such that for all n ∈ N and for all n-blocks p and q,

u(p, q) + (n+ f̃(p, q))(Z2\{0}) ⊂ ∆X(p, q)

and
max

p,q∈Ln(X)
f̃(p, q) ≤ f(n).

Remark 2. This property is different from quasi-periodicity properties in the sense that the configu-
ration where two patterns appears can depend on the relative position of the two patterns.

Definition 4. A subshift X is f-block gluing when{
u ∈ Z2, ||u||∞ ≥ f(n) + n

}
⊂ ∆X(n).
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q
f(p, q)

p

Figure 2. Illustration of Definition 3. The crosses designate elements of the gluing
set of p relatively to q in X.

For any function f , one has

f -block gluing =⇒ f -net gluing =⇒ f -block transitive

A subshift is said O(f)-block gluing (resp. O(f)-net gluing, O(f)-block transitive) if it is g
(block gluing) (resp. g-net gluing, g-block transitive) for a function g : N → N such that there exists
C > 0 such that g(n) ≤ C f(n) for all n ∈ N. A property verified on the class of O(f) block gluing
(resp. g net gluing, g block transitive) subshifts is said to be sharp if the property is false for all
h ∈ o(f) (this means that for all ε > 0 there exists n0 such that h(n) ≤ εf(n) for all n ≥ n0).

A subshift is linearly block gluing (resp. linearly net gluing, linearly transitive) if it is O(n)
block gluing (resp. O(n) net gluing, O(n) block transitive).

2.2.2 Equivalent definition The following proposition gives an equivalent definition for linear block
gluing and net gluing subshifts using some exceptional values:

Proposition 5. A subshift X ⊂ AZ2

is linearly block gluing if and only if there exists a function
f ∈ O(n), c ≥ 2 an integer and m ∈ N such that

{u ∈ Z2, ||u||∞ ≥ f(cl +m) + cl +m} ⊂ ∆X(cl +m) ∀l ≥ 0.

A similar assertion is true for net gluing.

Proof. Clearly a linear-block gluing subshift verifies this property. Reciprocally, let p and q be two
n-blocks, and consider l(n) = dlogc(n−m)e, where for all real number x, dxe designates the smallest
integer greater than x. Consider p′ and q′ some cl(n) +m-blocks whose restrictions on J0, n− 1Kk are
respectively p and q. The set ∆X(p′, q′) contains {u ∈ Z2, ||u||∞ ≥ f(cl(n) + m) + cl(n) + m}. As a
consequence, ∆X(p, q) contains {u ∈ Z2, ||u||∞ ≥ g(n) +n}, where g(n) = f(cl(n) +m) + cl(n)−n+m.
Since cl(n) ≤ c · (n+ |m|), the function g is in O(n), hence X is O(n)-block gluing. �

For subshifts constructed based on the Robinson subshift, the proof of block gluing and net gluing
properties rely on this proposition: given two square patterns, we complete them into patterns over a
super-tile of the Robinson subshift and then prove that they can appear with relative positions in a
certain set.

2.2.3 Gluing and morphisms The following proposition shows that a factor of a block gluing (resp.
net gluing) subshift is also block gluing (resp. net gluing) and gives a precise gap function.

Proposition 6. Let ϕ : X → Y be some onto r-block map between two Z2-subshifts, and f : N → N
a non decreasing function. If the subshift X is f -block gluing (resp. f - net gluing), then Y is g-block
gluing (resp. g-net gluing) where g : n 7−→ f(n+ 2r) + 2r.

Proof. Denote ϕ : AJ−r,rK2
X → AY the local rule of ϕ.

Let p′, q′ be two n-blocks in the language of Y . There exist p and q two (n + 2r)-blocks in the
language of X such that p′ and q′ are respectively the image of p and q by ϕ. Let u ∈ ∆X(p, q). There
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exists x ∈ X such that xJ0,n+2r−1K2 = p, and xu+J0,n+2r−1K2 = q. Applying ϕ to σr(1,1)(x), we obtain
some y ∈ Y such that yJ0,n−1Kk = p′, and yu+J0,n−1Kk = q′. We deduce that

∆X(p, q) ⊂ ∆Y (p′, q′) so ∆X(n+ 2r) ⊂ ∆Y (n).

Thus if X is f -block gluing then Y is g-block gluing where g : n 7−→ f(n+ 2r) + 2r.
If X is f -net gluing, then the gluing set of two (2n+ r)-blocks p, q contains

u(p, q) + (n+ 2r + f̃(p, q))(Z2\{(0, 0)}),

such that f̃(p, q) ≤ f(n+ 2r). Hence the gluing set of p′, image of p by ϕ, relative to q′, image of q by
ϕ, in Z contains this set. One deduces that Y is g-net gluing where g : n 7−→ f(n+ 2r) + 2r.

�

We deduce that the classes of subshifts defined by these properties are invariant of conjugacy under
some assumption on f . The set functions that verify this assumption includes all the possible gap
functions we already know:

Corollary 7. Let f be some non decreasing function. If for all r ∈ N, there is a constant C such that
for all n ≥ 0, Cf(n) ≥ f(n+ 2r) then the following classes of subshifts are invariant under conjugacy:
O(f)-block transitive, O(f)-net gluing, O(f)-block gluing, sharp O(f)-net gluing and sharp O(f)-block
gluing subshifts.

In particular it is verified when f is constant or n 7→ nk with k > 0 or n 7→ en or n 7→ log(n).

2.3 Some examples We say that two blocks p, q having respective supports U,V are spaced by
distance k when

max
u∈U

min
v∈V
||u− v||∞ ≥ k.

Since the subshifts that we consider in this text are bi-dimensional, this means that there are at least
k column or at least k lines between the two blocks.

2.3.1 First examples We present here some examples of block gluing SFT.

Example 8. Consider the SFT XChess defined by the following set of forbidden patterns:

This subshift has two configurations (see Figure 3 for an example) and both of them are periodic. It
is 1-net gluing, but not block gluing. Indeed, the gluing set of the pattern � relatively to itself is

∆XChess(�,�) = 2Z2 \ {(0, 0)} ∪
(
2Z2 + (1, 1)

)

Figure 3. An example of configuration of XChess.

Example 9. Consider the SFT XEven defined by the following set of forbidden patterns:
6



An example of configuration in this subshift is given in Figure 4. This subshift is 1-block gluing
since two blocks in its language can be glued with distance 1, filling the configuration with � symbols.

Figure 4. An example of configuration of XEven.

Example 10. Consider the SFT XLinear defined by the following set of forbidden patterns:

The local rules imply that if a configuration contains the pattern ��n� then it contains ∗��n−2�∗
just above, where ∗ ∈ {�,�}. Thus a configuration of XLinear can be seen as a layout of triangles of
made of symbols � on a background of � symbols (an example of configuration is given on Figure 5).

This subshift is sharp linearly block gluing. Indeed, consider two n-blocks in its language separated
horizontally or vertically by 2n cells. They contain pieces of triangles that we complete with the smallest
triangle possible, the other symbols of the configuration being all � symbols. The worst case for gluing
two n-blocks is when the blocks are filled with the symbol �. In this case we can complete each of
the two blocks by a triangle which base is constituted by �3n. Hence every couple of blocks can be
glued horizontally and vertically with linear distance. To prove that XLinear is not f -block gluing with
f(n) ∈ o(n), we consider the rectangle

��n�

that we would like to glue above itself. To do that we need to separate the two copies of this pattern by
about dn2 e cells.

Figure 5. An example of configuration of XLinear.
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Figure 6. A part of a configuration of Xs.

2.3.2 Linearly net gluing subshifts given by substitutions Let A be a finite alphabet. A substitution
rule is a map s : A → AUm , for some m ≥ 1. This function can be extended naturally on blocks in
view to iterate it. The subshift Xs associated to this substitution is the set of configurations such that
any pattern appearing in it appears as a sub-pattern of some sn(a) with n ≥ 0 and a ∈ A.

Consider the following substitution s defined by

where an exemple of configuration is given in Figure 6. Since � appears on position (0, 0) in s(�)
and s(�), we deduce that for any configuration x, there exists i1 ∈ J0, 1K2 such that xi1+2Z2 = �. By
induction, for all n ≥ 1, there exists in ∈ J0, 2n − 1K2 such that xin+2nZ2 = sn(�). Since every pattern
of Xs appears in sn(�) for some n ∈ N, we deduce that Xs has the linear net-gluing property, using
Proposition 5.

This argument can be easily generalized for substitution s for which there exists i ∈ N, a subset
Z ⊂ J0,mi− 1K2 and an invertible map ν : A → Z such that a ∈ A appears on the same position ν(a)
in any pattern of the patterns si(d) with d ∈ A.

2.3.3 Intermediate intensities Here we present an example of block gluing SFT whose gap function
is strictly between linear and constant classes.

Consider the SFT XLog having two layers, with the following characteristics:
Symbols:

The first layer has symbols and , and the second one the symbols:

0 0
0

0
0 0
1

1
1 0
0

1
1 1
1

0

The first four of these symbols are thought as coding for the adding machine. Each one contains four
symbols: the west one is the initial state of the machine, the east one the forward state, the south one
the input letter, and the last symbol is the output.
Local rules:

• First layer:
The following patterns are forbidden in the first layer:

These local rules imply that if a configuration contains the pattern ��n� in the first layer,
then it contains ��n�, ��n+1, or �n+2 just above. Thus a configuration of the first layer
of XLog can be seen as triangular shapes of symbols � on a background of � symbols (an
example of configuration is given in Figure 7).
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• Second layer:
– the adding machine symbols are superimposed on black squares, the other ones on blank

squares.
– for two adjacent machine symbols, the symbols on the sides have to match.
– on a pattern ��, on the machine symbol over the black square, the east symbol have to

be 0.

– on a pattern , the machine have a south symbol being 0 on the north east black square.

Figure 7. An example of configuration that respects the rules of the first layer of XLog.

This subshift is sharp O(log(n))-block gluing. Indeed, any two n-blocks in its language can be glued
vertically with distance 1. For the horizontal gluing, the worst case for gluing two n-blocks is when
the two blocks are filled with black squares and the adding machine symbols on the leftmost column
of the blocks are only 1 (thus maximizing the number of lines where the rectangular shape into which
we complete the block have to be greater in length than the one just below). In this case, we can
complete the block such that each line (from the bottom to the top) is extended from the one below
with one � symbol on the right when the machine symbol have a 1 on its west side, and adding blank
squares to obtain a rectangle. The number of columns added is smaller than the maximal number of
bits added by the adding machine to a length n string of 0, 1 symbols in n steps, which is O(log(n)).
This means that two n-blocks can be glued horizontally with distance O(log(n)). To see that this
property is sharp, consider the horizontal gluing of two 1× n rectangles of black squares, similarly as
in the linear case.

Remark 3. The set of possible tight gap functions of block gluing SFT seems restricted. We don’t
know for instance if, when f is the square root function, there exist subshifts for which the f block
gluing property is tight.

2.4 A linearly net gluing version of the Robinson subshift The Robinson subshift was con-
structed by R. Robinson [Rob71] in order to prove undecidability results. It has been used by in other
constructions of subshifts of finite type as a structure layer to implement computation. We recall some
properties and refer to [Rob71] for the proofs.

We present here a version of this subshift which is adapted to constructions under the dynamical
constraints that we consider. Let us denote XadR this subshift, which is constructed as the product of
two layers. We present the first layer in Subsection 2.4.1, then we describe some hierarchical structures
appearing in this layer in Subsection 2.4.2. In Subsection 2.4.3, we describe the second layer. The
subshift XadR obtained is linearly net gluing.

2.4.1 Robinson layer The first layer has the following symbols, and their transformation by rotations
by π

2 , π or 3π
2 :
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i
j

i
j

i
j

i
j i

j
i

j 0 0 1

The symbols i and j can have value 0, 1 and are attached respectively to vertical and horizontal
arrows. In the text, we refer to this value as the value of the 0, 1-counter. In order to simplify the
representations, these values will often be omitted on the figures.

In the text we will often designate as corners the two last symbols. The other ones are called
arrows symbols and are specified by the number of arrows in the symbol. For instance a six arrows
symbols are the images by rotation of the fifth and sixth symbols.

The rules are the following ones:
(1) the outgoing arrows and incoming ones correspond for two adjacent symbols.
(2) in every 2 × 2 square there is a blue symbol and the presence of a blue symbol in position

u ∈ Z2 forces the presence of a blue symbol in the positions u+ (0, 2),u− (0, 2),u+ (2, 0) and
u− (2, 0).

(3) on a position having mark (i, j), the first coordinate is transmitted to the horizontally adjacent
positions and the second one is transmitted to the vertically adjacent positions.

(4) on a six arrows symbol, like , or a five arrow symbol, like , the marks i and j are
different.

The Figure 8 shows some pattern in the language of this layer. The subshift on this alphabet and
generated by these rules is denoted XR: this is the Robinson subshift.

Theorem 11 ([Rob71]). The subshift XR is non-empty and aperiodic.

2.4.2 Hierarchical structures In this section we describe some observable hierarchical structures in
the elements of the Robinson subshift. Recall that Uk = J0, k − 1K2.
Finite super-tiles Let us define by induction the south west (resp. south east, north west, north east)
supertile of order n ∈ N. For n = 0, one has

Stsw(0) = , Stse(0) = , Stnw(0) = , Stne(0) = .

For n ∈ N, the support of the supertile Stsw(n+ 1) (resp. Stse(n+ 1), Stnw(n+ 1), Stne(n+ 1)) is
U(2)

2n+2−1. On position u = (2n+1 − 1, 2n+1 − 1) write

Stsw(n+ 1)u = , Stse(n+ 1)u = , Stnw(n+ 1)u = , Stne(n+ 1)u = .

Then complete the supertile such that the restriction to U(2)
2n+1−1 (resp. (2n+1, 0) + U(2)

2n+1−1,

(0, 2n+1) + U(2)
2n+1−1, (2n+1, 2n+1) + U(2)

2n+1−1) is Stsw(n) (resp. Stse(n), Stnw(n), Stne(n)).

Then complete the cross with the symbol or with the symbol in the south vertical arm
with the first symbol when there is one incoming arrow, and the second when there are two. The other
arms are completed in a similar way. For instance, Figure 8 shows the south west supertile of order
two.

Proposition 12 ([Rob71]). For all configuration x, if an order n supertile appears in this configuration,
then there is an order n + 1 supertile, having this order n supertile as sub-pattern, which appears in
the same configuration.

Infinite supertiles Let x be a configuration in the first layer and consider the equivalence relation ∼x
on Z2 defined by i ∼x j if there is a finite supertile in x which contains i and j. An infinite order
supertile is an infinite pattern over an equivalence class of this relation. Each configuration is amongst
the following types (with types corresponding with types numbers on Figure 9):
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Figure 8. The south west order 2 supertile denoted Stsw(2) and petals intersecting it.

(ii), (1)

(iii), (2)

(iii), (1)

(iii), (3)

(ii), (2)

Figure 9. Correspondence between infinite supertiles and sub-patterns of order n
supertiles. The whole picture represents a schema of some finite order supertile.

(i) A unique infinite order supertile which covers Z2.
(ii) Two infinite order supertiles separated by a line or a column with only three-arrows symbols

(1) or only four arrows symbols (2). In such a configuration, the order n finite supertiles
appearing in the two infinite supertiles are not necessary aligned, whereas this is the case in a
type (i) or (iii) configuration.

(iii) Four infinite order supertiles, separated by a cross, whose center is superimposed with:
– a red symbol, and arms are filled with arrows symbols induced by the red one. (1)
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– a six arrows symbol, and arms are filled with double arrow symbols induced by this one.
(2)

– a five arrow symbol, and arms are filled with double arrow symbols and simple arrow
symbols induced by this one. (3)

Informally, the types of infinite supertiles correspond to configurations that are limits (for type
(ii) infinite supertiles this will be true after alignment [Section 2.4.3]) of a sequence of configurations
centered on particular sub-patterns of finite supertiles of order n. This correspondence is illustrated
on Figure 9. We notice this fact so that it helps to understand how patterns in configurations having
multiple infinite supertiles are sub-patterns of finite supertiles.

We say that a pattern p on support U appears periodically in the horizontal (resp. vertical) direction
in a configuration x of a subshift X when there exists some T > 0 and u0 ∈ Z2 such that for all k ∈ Z,

xu0+U+kT (1,0) = p

(resp. xu0+U+kT (0,1) = p). The number T is called the period of this periodic appearance.

Lemma 13 ([Rob71]). For all n and m integers such that n ≥ m, any order m supertile appears
periodically, horizontally and vertically, in any supertile of order n ≥ m with period 2m+2. This is also
true inside any infinite supertile.

Petals For a configuration x of the Robinson subshift some finite subset of Z2 which has the following
properties is called a petal.

• this set is minimal with respect to the inclusion,
• it contains some symbol with more than three arrows,
• if a position is in the petal, the next position in the direction, or the opposite one, of the double

arrows, is also in it,
• and in the case of a six arrows symbol, the previous property is true only for one couple of

arrows.
These sets are represented on the figures as squares joining four corners when these corners have

the right orientations.
Petals containing blue symbols are called order 0 petals. Each one intersect a unique greater order

petal. The other ones intersect four smaller petals and a greater one: if the intermediate petal is of
order n ≥ 1, then the four smaller are of order n− 1 and the greatest one is of order n+ 1. Hence they
form a hierarchy, and we refer to this in the text as the petal hierarchy (or hierarchy).

We usually call the petals valued with 1 support petals, and the other ones are called transmis-
sion petals.

Lemma 14 ([Rob71]). For all n, an order n petal has size 2n+1 + 1.

We call order n two dimensional cell the part of Z2 which is enclosed in an order 2n + 1 petal,
for n ≥ 0. We also sometimes refer to the order 2n+ 1 petals as the cells borders. In particular, order
n ≥ 0 two-dimensional cells have size 4n+1 +1 and repeat periodically with period 4n+2, vertically and
horizontally, in every cell or supertile having greater order. See an illustration on Figure 8.

2.4.3 Alignment positioning If a configuration of the first layer has two infinite order supertiles,
then the two sides of the column or line which separates them are non dependent. The two infinite
order supertiles of this configuration can be shifted vertically (resp. horizontally) one from each other,
while the configuration obtained stays an element of the subshift. This is an obstacle to dynamical
properties such as minimality or transitivity, since a pattern which crosses the separating line can not
appear in the other configurations. In this section, we describe additional layers that allow aligning
all the supertiles having the same order and eliminate this phenomenon.

Here is a description of the second layer:
Symbols: nw, ne, sw, se, and a blank symbol.

12



The rules are the following ones:
• Localization: the symbols nw, ne ,sw and se are superimposed only on three arrows and five

arrows symbols in the Robinson layer.
• Induction of the orientation: on a position with a three arrows symbol such that the long

arrow originate in a corner is superimposed a symbol corresponding to the orientation of the
corner.

• Transmission rule: on a three or five arrows symbol position, the symbol in this layer is
transmitted to the position in the direction pointed by the long arrow when the Robinson
symbol is a three or five arrows symbol with long arrow pointing in the same direction.

• Synchronization rule: On the pattern

or

in the Robinson layer, if the symbol on the left side is ne (resp. se), then the symbol on the
right side is nw (resp. sw). On the images by rotation of these patterns, we impose similar
rules.

• Coherence rule: the other couples of symbols are forbidden on these patterns.
Global behavior: the symbols ne, nw, sw, se designate orientations: north east, north west, south

west and south east. We will re-use this symbolisation in the following. The localization rule implies
that these symbols are superimposed on and only on straight paths connecting the corners of adjacent
order n cells for some integer n.

The effect of transmission and synchronization rules is stated by the following lemma:

Lemma 15. In any configuration x of the subshift XadR, any order n supertile appears periodically in
the whole configuration, with period 2n+2, horizontally and vertically.

Proof. • This property is true in an infinite supertile: this is the statement of Lemma 13. Hence
the statement is true in a type (i) configuration. This is also true in a type (iii) configuration,
since the infinite supertiles are aligned, and that the positions where the order n supertiles
appear are the same in any infinite supertile. This statement uses the property that an order
n supertile forces the presence of an order n+ 1 one.

• Consider a configuration of the subshift XadR which is of type (ii). Let us assume that the
separating line is vertical, the other case being similar. In order to simplify the exposition we
assume that this column intersects (0, 0).
(1) Positions of the supertiles along the infinite line:

From Lemma 13, there exists a sequence of numbers 0 ≤ zn < 2n+2 − 1 and 0 ≤ z′n <
2n+2 − 1 such that for all k ∈ Z, the orientation symbol on positions (−1, zn + k · 2n+2)
(in the column on the left of the separating one) is se and the orientation symbols on
positions (1, z′n + k · 2n+2) is sw. The symbol on positions (−1, zn + k · 2n+2 + 2n+1) is
then ne and is nw on positions on positions (1, z′n + k · 2n+2 + 2n+1): this comes from the
fact that an order n petal has size 2n+1 + 1.
Let us prove that for all n, zn = z′n. This means that the supertiles of order n on the two
sides of the separating line are aligned.

(2) Periodicity of these positions:
Since for all n, there is a space of 2n columns between the rightmost or leftmost order
n supertile in a greater order supertile and the border of this supertile (by a recurrence
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argument), this means that the space between the rightmost order n supertiles of the left
infinite supertile and the leftmost order n supertile of the right infinite supertile is 2n+1+1.
Since two adjacent of these supertiles have opposite orientations, this implies that each
supertile appears periodically in the horizontal direction (and hence both horizontal and
vertical directions) with period 2n+2.

z′m + k′2m+2

2n+1

Figure 10. Schema of the proof. The separating line is colored gray.

(3) The orientation symbols force alignment:
Assume that there exists some n such that zn 6= z′n. Since {zn+k ·2n+2, (n, k) ∈ N×Z} =
Z, this implies that there exist some m 6= n and some k, k′ such that

zn + k · 2n+2 = z′m + k′ · 2m+2.

One can assume without loss of generality that m < n, exchanging m and n if necessary.
Then the position (−1, zn + k · 2n+2 + 2n+1) has orientation symbol equal to ne. As a
consequence, the position (1, z′m+k′·2m+2+2n−m−1·2m+2) has the same symbol. However,
by definition, this position has symbol se: there is a contradiction. This situation is
illustrated on Figure 10.

�

2.4.4 Completing blocks Let us denote N∗ = {1, 2, ...} the set of positive integers.
Let χ : N∗ → N∗ be such that for all n ≥ 1,

χ(n) =
⌈
log2(n)

⌉
+ 4.

Let us also denote χ′ the function such that for all n ≥ 1,

χ′(n) =
⌈⌈log2(n)

⌉
2

⌉
+ 2.
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The following lemma will be extensively used in the following of this text, in order to prove dynamical
properties of the constructed subshifts:

Lemma 16. For all n ≥ 1, any n-block in the language of XadR is sub-pattern of some order χ(n)
supertile, and is sub-pattern of some order χ′(n) cell.

Proof. (1) Completing into an order 2dlog2(n)e+1 − 1 block:
Consider some n-block p that appears in some configuration x of the SFT XadR. We can

complete it into a 2dlog2(n)e+1 − 1 block, since 2dlog2(n)e+1 − 1 ≥ 2n− 1 ≥ n for all n ≥ 1.
(2) Intersection with four order dlog2(n)e supertiles:

From the periodic appearance property of the order dlog2(n)e supertiles in each configura-
tion, this last block intersects at most four supertiles having this order. Let us complete p into
the block whose support is the union of the supports of the supertiles and the cross separating
them.

(3) Possible patterns after this completion according to the center symbol:
Since this pattern is determined by the symbol at the center of the cross and the orientations

of the supertiles, the possibilities for this pattern are listed on Figure 11. Indeed, when the
orientations of the supertiles are like 1. on Figure 11, each of the supertiles forcing the presence
of an order blog2(n)c + 1 supertile, the center is a red corner. When the orientations of the
supertiles are like 2, 3, 4,5 on Figure 11, the center of the block can not be superimposed with
a red corner since the two west supertiles force an order blog2(n)c+ 1 supertile, as well as the
two east supertiles. This forces a non-corner symbol on the position considered.

For type 4, 5, 9, 10 patterns, there are two possibilities: the values of the two arms of the
central cross are equal or not. Hence the notation 4, 4′, where 4′ designates the case where the
two values are different.

One completes the alignment layer on p according to the restriction of the configuration x.
On these patterns, the value of symbols on the cross is opposed to the value of the symbols

on the crosses of the four supertiles composing it.
(4) Localization of these patterns as part of a greater cell:

The way to complete the obtained pattern is described as follows:
(a) When the pattern is 1. on Figure 11, this is an order blog2(n)c + 1 supertile and the

statement is proved. Indeed, any order dlog2(n)e + 1 supertile is a sub-pattern of any
order blog2(n)c+ 4 one.

(b) One can see the other patterns on Figure 11 in an order blog2(n)c + 1, blog2(n)c + 2,
blog2(n)c + 3, or blog2(n)c + 4 supertile, depending on how was completed the initial
pattern thus far (this correspondance is shown on Figure 12), hence a sub-pattern of an
order blog2(n)c+ 4 supertile.

The orientation of the greater order supertiles implied in this completion are chosen accord-
ing to the symbols of the alignment layer. This layer is then completed.

(5) This implies that any n-block is the sub-pattern of an order 2(
⌈

1
2dlog2(n)e

⌉
+ 2) + 1 supertile,

which is included into an order
⌈

1
2dlog2(n)e

⌉
+ 2 cell.

�

2.4.5 Linear net gluing property of XadR Let us denote id : N→ N the function defined by id(n) = n
for all n.

Proposition 17. The subshift XadR is 32id-net gluing, hence linearly net gluing.

Proof. Let p, q be two n-blocks in the language of XadR with n ≥ 1. There exists m ∈ N such that
2m+1−1 < n ≤ 2m+2−1. Hence, there is a supertile S of order m+5 (this comes from the completion
result on this subshift) where p appears. Consider a configuration x ∈ XadR in which the pattern q
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1. 2. 3. 4,4’.

5,5’. 6. 7. 8.

9,9’. 10,10’.

Figure 11. Possible orientations of four neighbor supertiles having the same order.

appears in position (0, 0). The supertile S appears periodically in x with period 2m+6 = 32·2m+1 ≤ 32n.
Thus the gluing set of p relatively to q in XadR contains a set u+ 2m+6(Z2\{(0, 0)}) for some u ∈ Z2.
Thus XadR is 32id net gluing. �

3 Existence of periodic points for f-block gluing SFT

In this section we study the existence of a periodic point in f -block gluing SFT according to the
gap function f .

3.1 Under some threshold for the gap function, there exist periodic points In [PS15], the
authors show that any constant block gluing SFT admits a periodic point. Using a similar argument,
we obtain a lower bound on the gap functions forcing the existence of periodic points.

Proposition 18. Let X ⊂ AZ2

be some SFT having rank r ≥ 2 which is f -block gluing for some
function f . If this function verifies that there exists n ∈ N such that

f(n) <
log|A|(n− r + 2)

r − 1
− r + 2,

then X admits a periodic point.

Proof. Let w be a n× (r − 1) pattern in the language of X.
(1) Gluing the pattern w over itself:

By the f -block gluing property, there exists x ∈ X such that

xJ0,n−1K×J0,r−2K = w = xJ0,n−1K×Jf(n)+r−1,f(n)+2r−3K.
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3.

7.

2.
4.4′.

5.5′.

6. 8.

9.
9′.

10.
10′.

Figure 12. Illustration of the correspondance between patterns of Figure 11 and
parts of a supertile.

(2) Taking w long enough, two of the columns in the obtained pattern are equal:
Consider the sub-patterns of xJ0,n−1K×J0,f(n)+r−2K over supports Jk, k+ r− 2K× J0, (f(n) +

r − 2)K. There are n − (r − 2) of them and the number of possibilities is |A|(r−1)(f(n)+r−2).
Since we have

f(n) <
log|A|(n− r + 2)

r − 1
− r + 2,

by the pigeon hole principle, there exists k ∈ J0, n− r + 1K and l ≥ 1 such that

xJk,k+r−2K×J0,f(n)+r−2K = xJk+l,k+l+r−2K×J0,f(n)+r−2K

(see Figure 13).
(3) Construction of a periodic configuration:

Consider the configuration defined by

z(il,j(f(n)+r−2))+J0,l−1K×J0,f(n)+r−2K = xJk,k+l−1K×J0,f(n)+r−2K

for all (i, j) ∈ Z2. It consists in covering Z2 with the pattern xJk,k+l−1K×J0,f(n)+r−2K. This
configuration is periodic by definition. Moreover, it satisfies the local rules of X. We deduce
that z ∈ X. Thus X admits a periodic point.

�

3.2 Under some smaller threshold, the set of periodic points is dense and the language is
decidable Using a similar argument as in [PS15], we obtain also an upper bound on the gap functions
that force the density of periodic points, and as a consequence the decidability of the language.

Proposition 19. Let X be some f -block gluing Z2-SFT, where f is a function such that

f ∈ o(log(n))
17



w

r − 1

r − 1

w

n

f(n)x{k}×J0,f(n)+r−2K x{k+l}×J0,f(n)+r−2K

r − 1 r − 1

Figure 13. If n− r + 2 > |A|(r−1)(f(n)+r−2), it is possible to find a pattern of x for
which the horizontal and vertical borders are similar.

and f ≤ id. Then X has a dense set of periodic points.

Idea of the proof: it consists in extending any square pattern in the language of X by a pattern
that generate, by concatenation, a periodic configuration. For this purpose, we follow the line of the
similar statement in [PS15] and glue horizontally multiple copies of a square pattern and then glue a
row pattern on the top and bottom, and use the pigeon hole principle to find the pattern generating
a periodic configuration. In our proof, instead of gluing the copies of the initial pattern with equal
large distance one from the other, we need to minimize the total distance between the copies, thus the
distance with the row patterns, and thus the minimal distance of repetition forced by the pigeon hole
principle. Without this optimization, the gap functions that would make the construction work would
be much more constrained.

Proof. (1) Gluing multiple times the same block P horizontally: let us fix some integer n
and some integer k that will be specified later. Consider some n-block P in the language of X,
and take 2k copies of it. We group them by two and glue the couples horizontally, at distance
f(n). Then glue the obtained patterns after grouping them by two, at distance f(2n+ f(n)),
and repeat this operation until having one rectangular block Q. The size of this block is equal
to (2id+ f)◦k(n).

(2) Glue the same rectangular pattern over and under the obtained one:
Then consider some (2id + f)◦k(n) × (r − 1) pattern R (which has the same width as the

pattern constructed in the first point), where r is the rank of the SFT X. Glue it on the top of
Q with f(max((2id+ f)◦k(n), n, r)) lines between the two rectangles. Then glue the rectangle
R under the obtained pattern with

f(max(f(max((2id+ f)◦k(n), n, r)) + r + n, (2id+ f)◦k(n)))

lines between them. For k great enough (depending on n), these two last distances are equal
to f((2id + f)◦k(n)), and f(f((2id + f)◦k(n)) + n + r) respectively. By the gluing property,
the obtained pattern is in the language of X (see Figure 14).

(3) Pigeon hole principle on the columns of the obtained pattern:
Consider the (r−1)× (r+n+f((2id+f)◦k(n)) +f(f((2id+f)◦k(n) +n+ r)) sub-patterns

that appear on the bottom of the columns just on the right of each occurrence of the pattern
P . There are 2k of them, and there are at most (|A|)r+n+f((2id+f)◦k(n)+f(f((2id+f)◦k(n)+n+r))

different possibilities. From the fact that f ≤ id, it follows that

(|A|)r+n+f((2id+f)◦k(n)+f(f((2id+f)◦k(n)+n+r)) ≤ (|A|)2(r+n)+2f(3kn) ≤ 2k
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R

R

f(n)

P P P

f(2n+ f(n))

Figure 14. An illustration of the proof of Proposition 19. The result of the procedure
is the colored rectangle.

for k great enough.
By the pigeon hole principle, two of these patterns are equal. Consider the rectangle between

these two occurrences (including the second one).
(4) Construction of a periodic configuration containing P :

This rectangle can be repeated on the whole plane to get a periodic configuration which is
in X.

The set of periodic configurations obtained by this method is dense in X (for every pattern
in its language appear in such a configuration).

�

Remark 4. It is also possible to just copy the block P without group them in pair but the recurrence
formula is not so easy and the method proposed here allows to obtain a better bound if we want a more
precise condition than f ∈ o(log(n)).

Corollary 20. A subshift X verifying the conditions of Proposition 19 has decidable language.

Proof. The complementary of the language of an SFT can be enumerated. Since it is possible to
enumerate periodic configurations of an SFT and that under the conditions of Proposition 19 this set
is dense, we conclude that it is also possible to enumerate the language. We conclude that the subshift
has a decidable language. �

3.3 An example of linearly block gluing SFT with non decidable language The property
obtained in Proposition 20 is no longer true considering linearly block gluing subshifts of finite type. In
this section we provide an example of linearly block gluing subshift of finite type having non decidable
language.

To construct such example we need to introduce the notion of Turing machine. A Turing machine
is an automaton with a finite number of internal states which reads and writes letters on an one-
sided infinite tape. The computation begins with the machine in a special initial state and the head
located over the leftmost symbol. Initially, the tape contains some data which is the input of the
computation. The state of the data tape along with the location and internal state of the machine
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are called a configuration of the Turing machines. A configuration uniquely determines all the future
configurations by a discrete time computation process. At each iteration the machine is located over
some symbol of the tape, reads it and based on this data and on its internal state, performs the following
actions : it replaces the current data symbol by a new one, updates its internal state and moves to the
the left or right. The computation may halt after a finite number of steps if the machine either moves
off the tape or enters a halting state. A machine is formally some M = (Q, q0, qh,AM,#, δ) where
Q refers to the set of internal states of the machine, q0 the initial state, qh the halting state, AM the
tape alphabet with a blank symbol # and δ : Q × AM → Q × AM × {L,R} the transition function
(where L means left and R means right, and qh the halting state).

The set of possible space-time diagrams of a machine (subset of (A × Q × {↔} ∪ A × {←,→})Z2

where line n is the image of the line n − 1 after one step of computation, and the arrows symbols
are used so that there is a unique machine head in a line) is of finite type, with constraints on 3 × 2
patterns as follows :

(1) If the first line of the pattern contains no head, it has to be as follows :

u
u

v
v

w
w

(2) Else, if for instance the machine head is in the (1, 3) position with state q1 and data w and
δ(q1, w) = (q2, x, L), we forbid another pattern than :

u
u

v
(q2, v)

(q1, w)
x

with similar rules for other local configurations.
(3) Moreover, the incoming/outgoing arrows have to match (this guarantees that there is a unique

machine working in a configuration).

Proposition 21. There exists some O(n)-block gluing Z2-SFT with non decidable language.

Idea of the proof. We construct a structure subshift which consists of infinite and constantly growing
areas for the computations of machines. These areas can be distorted by shifting its adjacent lines one
with respect to the other. This can be done in any of the two possible directions. This allows the linear
block gluing. Then we implement a universal Turing machine, and forbid it to stop. This implies the
non decidability.

Proof. Let Xundec be a subshift, product of two layers. Here is a description of these layers:
(1) Computation areas layer:

This layer has the following symbols:

, , , , ,

Its local rules are the following ones:
• two horizontally adjacent non blank symbols have the same color.
• two vertically adjacent non blank symbols verify the following rules:

(a) if the bottom symbol is , the top symbol is or .
(b) if the bottom symbol is , the top symbol is .
(c) if the bottom symbol is , the top symbol is .
(d) if the bottom symbol is or , the top symbol is .

These rules allow to shift a row of the area from the one under, choosing the direction.
Moreover the shifts happen each time by groups of two, so that the shift counterbalances
the growth of the area.
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• the patterns

are forbidden, where the gray symbol stands for any non blank symbol.
• the patterns

are forbidden, where the gray symbol stands for any non blank symbol. Similar rules are
imposed, replacing the red symbol with a green one.
• the patterns

are forbidden, where the gray symbol stands for any non blank symbol. Similar rules
replacing the red symbol with an orange one. These rules allow to control the shape of
the areas.

These rules imply that:
• above

n
there is

n
, or

n
.

• above
n

there is
n

.
• above

n
there is

n
.

• above
n

there is
n

.
• above

n
there is

n
.

The computation areas consist of colored areas. They lie on a background of symbols.
These areas are distorted infinite triangles: in two adjacent rows, the intersection of the area
with the top row is larger than in the bottom row by one position on the right and one position
on the left. Then this row is shifted or not, horizontally in one of the two directions, depending
on the colors of the rows. See Figure 15 for an illustration.

Figure 15. An example of configuration that respects the rules of the first layer of XUndec.

(2) Machines layer:
The second layer consists in the implementation of a Turing machine over these areas.
The symbols are the elements of Q×A×{→,←}, and the local rules are the following ones:

(a) the blank symbols are superimposed with a blank symbol, and the Turing machine symbols
are superimposed over non blank symbols.

(b) Moreover, considering a 3× 2 pattern whose projection on the first layer is fully colored
and the bottom row is black, the rules of the space-time diagram of the machine apply.
When the bottom row is not black, the symbols of this row are copied on the top row, on
the shifted position according to the color of the bottom row. There rules of the space
time diagram are adapted when on the border of the area.
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(c) Any halting state is forbidden.
These rules imply that for two adjacent rows of an area:
• if the bottom row is colored black, then the top row is the image of the bottom row by

the machine process.
• in the other cases, the top row is just the image of the bottom row by the shift in the

direction corresponding to the color of the bottom row.
We use a universal Turing machine, which has the following behavior when the initial tape

is written with w#∞ for w a word on {0, 1}: it reads the word w which codes for the number
of a Turing machine, and then simulates this machine on empty tape.

(3) Properties of this subshift:
(a) The language of this subshift is not decidable: if it was, we would be able to decide

which of the words w#n can be written on the bottom of an area. This is impossible
since the halting problem is not decidable.

(b) This subshift is sharp linearly block gluing: the worst case for gluing two blocks is
when these blocks are filled with colored symbols in the first layer. In order to glue them,
we complete the projection of the two blocks in the first layer, as in example 10, into
the bottom of a computation area, surrounding it with blank symbols except on the top.
Then we complete the trajectory of the machine head if there is one. The two extended
patterns can be glued horizontally without constraint on the distance, because lines can
be shifted towards opposite directions. For vertical gluing, we extend one of this patterns
shifting the area in one direction so that the columns above this patterns are blank. The
number of rows and columns depends linearly on the size of this pattern. Then we glue
the second pattern on the top, shifting the area in the opposite direction and filling all
the positions of Z2 left undefined by blank symbols.

�

3.4 Existence of aperiodic linearly block gluing subshifts In this section, we give a proof of
the following theorem:

Theorem 22. There exists a linearly block gluing aperiodic Z2-SFT.

Idea of the proof. This proof uses an operator on subshifts which transforms linearly net gluing
subshifts of finite type into linearly block gluing subshifts of finite type. Moreover, it preserves the
aperiodicity. The principle of this transformation is to distort Z2, as illustrated on Figure 16, multiple
times and in different directions.

We then apply this transformation on the Robinson subshift which is known to be aperiodic and that
we proved to be linearly net gluing (Proposition 17).

3.4.1 A subshift inducing pseudo-coverings by curves
Definition Let us denote ∆ the Z2 SFT on alphabet {→, ↓}, defined by the following forbidden patterns:

↓
↓ ,
→ ↓
→ → .

Pseudo-coverings by curves Let us introduce some words in order to talk about the global behavior
induced by these rules:

• An (infinite) curve in Z2 is a set C = ϕ(Z) for some application ϕ : Z→ Z2 such that for all
k ∈ Z, ϕ(k + 1) = ϕ(k) + (1, 0) or ϕ(k + 1) = ϕ(k) + (1,−1).

• We say that a curve is shifted downwards at position j ∈ Z2 when there exists some k ∈ Z
such that ϕ(k) = j and ϕ(k + 1) = j + (1,−1).

• A pseudo-covering of Z2 by curves is a sequence of curves (Ck)k∈Z such that for every
j ∈ Z2, there exists some k ∈ Z such that {j, j + (0, 1)}

⋂
Ck 6= ∅ (meaning that every element
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Figure 16. Illustration of the misshaping principle of the transformation for the
proof of Theorem 22.

of Z2 is in a curve or the vector just above is), and for every k 6= k′, Ck
⋂
Ck′ = ∅ (the curves

do not intersect). We say that two curves in this pseudo-covering are contiguous when the
area delimited by these two curves does not contain any third curve. The gap between two
contiguous curves in some column is the distance between the intersection of these two curves
with the column. This gap is 0 or 1 between two contiguous curves in a pseudo-covering.

A configuration in ∆ induces a pseudo-covering by curves Let δ ∈ ∆. Let us consider the pseudo-
covering of Z2 by curves (Ck(δ))k∈Z, such that Ck(δ) = ϕδ,k(Z) and where ϕδ,k is as follows.

If δ(0,0) =→, then (0, 0) = ϕδ,0(0). Else (0, 1) = ϕδ,0(0). In addition, for m the biinfinite sequence
of integers such that δ(mk,0) is the kth → in the column 0, counting from the previous considered one,
then (mk, 0) = ϕδ,k(0).

For every i ∈ Z2 such that i = ϕδ,k(n) for some k ∈ Z, n ∈ Z:
• if δi =→, and δi+(1,0) =↓, then ϕδ,k(n + 1) = i + (1,−1) (the curve is shifted downwards in

this column).
• else δi =→ and δi+(1,0) =→, then ϕδ,k(n+ 1) = i + (1, 0).

The first rule implies that all the curves of this pseudo-covering can not be shifted downwards
multiple times in the same column. The second one implies that if a curve is shifted downwards at
position i ∈ Z2, then there is no curve going through position i− (1, 1).

3.4.2 Distortion operators on subshifts of finite type Let A be some alphabet. Denote SA the set of
SFT over A. We introduce operators dA : SA → SÃ, with Ã = (A ∪ {�})× {→, ↓}.
Pseudo-projection Consider the subshift ∆A ⊂ (A ∪ {�})Z

2

×∆, where the forbidden patterns are the
ones defining ∆ and the patterns where a symbol in A is superimposed to a ↓ symbol or where � is
superimposed to a → symbol.

Define a pseudo-projection P : ∆A → AZ2

, as follows: for (y, δ) ∈ ∆A,

(P(y, δ))i,j = yϕδ,j(i).

Notice that the function P is continuous but not shift invariant.
We denote π1 the projection on the first layer (π1(y, δ) = y), and π2 the projection on the second

layer.
Definition of the operators Let X be some SFT on the alphabet A, and define dA(X) = P−1(X).
Denoting r the rank of the SFT X, dA(X) can be defined by imposing that, considering the intersection
of a set of r contiguous curves with r consecutive columns, the corresponding r-block is not a forbidden
pattern in X. Since the gap between two contiguous curves is bounded, dA(X) is defined by a finite
set of forbidden patterns. Then this is an SFT.
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One can think to dA(X) as having two layers. The first one has alphabet (A ∪ {�}) and called
the X layer. The second one has alphabet {→, ↓} and is called the ∆ layer. For X is the subshift
XR or XadR, Figure 17 shows an example of pattern in the X layer of the subshift dA(X) whose
pseudo-projection is the supertile south west order two supertile.

P

Figure 17. Example of a pattern which is sent to the south west two order supertile
by pseudo-projection.

Properties of the operators dA We use the following properties of the operators dA in order to prove
Theorem 22.

Proposition 23. For an aperiodic SFT X on the alphabet A, dA(X) is also aperiodic.

Idea of the proof. The main argument of this proof is that if a configuration in dA(X) is periodic,
then the projection on the ∆ layer is periodic. This means that although there is a distortion of the
configuration in X, the distortion is done in a periodic way. From this, we deduce that the pseudo-
projection on X of this configuration is periodic.

ω0
i

ω0
j

ωci

ωcj

c

Figure 18. Schema of the proof of Proposition 23.
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Proof. Assume that there exists a configuration z ∈ dA(X) which is periodic: there exists n > 0 such
that for all i, j, zi+n,j = zi,j+n = zi,j . We will prove that the pseudo-projection of z on X, x = P(z)
is periodic.

(1) Coding the positions of intersections of the curves with a column:
To each column k in z we associate the bi-infinite word ωk in (Z/nZ)Z such that for all

i ∈ Z, ωki is the element mi of Z/nZ, class modulo n of mi where (0,mi) is the intersection
position of the ith curve of π2(z) with the column k.

(2) Function relating the codings of two columns:
Following a curve (see Figure 18) from the column 0 to the column n, we get an application

ψ from the set of possible mi into itself. This comes from the vertical periodicity of the
projection of z on the second layer. The word ωn is obtained from ω0 applying ψ to all the
letters in ωn.

(3) Coding of the intersections and periodicity:
Since ψ is an invertible function from a finite set into itself (indeed, we have an inverse

map following the curve backwards), there exists some c > 0 integer such that ψc = Id. As a
consequence, ωnc+j = ωj for all integers j. That means that the column cn+ j is obtained by
shifting kn times downwards the column j, for some k ≥ 0. Using the horizontal periodicity
of y, we then have that

(xj,l)l∈Z = (xcn+j,l+kn)l∈Z.

Using the vertical periodicity, that (xj,l)l∈Z = (xcn+j,l)l∈Z, hence the configuration x ∈ X is
periodic, which can not be true.

As a consequence, no configuration in dA(X) can be periodic. Thus this subshift is aperiodic. �

The following proposition will be a useful tool in order to prove that the operators dA transform
linearly net gluing subshifts into block gluing ones.

Proposition 24 (Completing blocks). There exists an algorithm T that, taking as input some locally
admissible n-block p of ∆, outputs a rectangular pattern T (p) which has p as a sub-pattern and such
that:

• the number of curves in T (p) is equal to the number of its columns,
• the dimensions of T (p) are smaller than 5n,
• the top and bottom rows of T (p) have only → symbols- this means that all the curves crossing
T (p) comes from its left side and go to the right side.

Remark 5. The properties of the pattern T (p) ensure that this is a globally admissible pattern. Hence
every locally admissible pattern of the subshift ∆ is globally admissible.

Idea of the proof. The proof consists in extending the curves that cross a pattern from above and
below. Then we add curves on the top and bottom that are straighter and straighter.

Proof. If p is a 1-block, and p is a single →, then the result is direct. If p is a single ↓, then it can be
extended in

→ → →
→ ↓ ↓
↓ → →
→ → →

,

which verifies the previous assertion.
If p is an n-block with n ≥ 2:
First step. Extending the curves that enter in the block upside/downside:
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(1) If in the top row of the block p there is the pattern ↓→ - this means that there is an incoming
curve (the position of the→ is in this curve) - then we add symbols in the row just above. We
extend each of the incoming curves, considering the curves from left to right, in this row. For
this purpose we add a ↓ over the → for each of the patterns ↓→. Then we add → symbols on
the left of this one until meeting another ↓ or the left side of the block. If in the added row
there are ↓→ patterns, then return to the beginning of this step. Else, stop.

(2) Do similar operations on the bottom of the block.
Since the number of ↓→ patterns in the top row is strictly decreasing, this series of operations stops

at some point.

Example 25. If we take p the following 4-block

→ → ↓ →
→ ↓ → →
↓ → → →
→ → → →

at this point, we obtain:

→ → → ↓
→ → ↓ →
→ ↓ → →
↓ → → →
→ → → →

Second step. Completing the pattern on the top and bottom until the top row and
bottom row are straight:

While the top curve of the pattern is not straight, apply the following procedure:
(1) On the top of the last column, add a ↓ and keep adding ↓ on the left until meeting on the left

an already defined symbol (there can be such symbols, introduced in the first step) or the left
extremity.

(2) Add another curve above by the following procedure. Add a → on the top of the last column,
and then add→ symbols on the left until meeting an already defined symbol on the left. When
that happens, add a ↓ above and then add →’s on the left until reaching a defined symbol.
Repeat this operation until reaching the first column.

Since the number of times that the top curve is shifted downwards decreases at each step, this series
of operations stops.

Do similar operations on the bottom.

Example 26. At this point, we obtain:

→ → → →
→ → → ↓
→ → ↓ →
→ ↓ → →
↓ → → →
→ → → →

Third step. Equalization of the number of curves and the number of columns:
If the number of columns is smaller than the number of curves, then add a number of columns equal

to the difference, by adding copies of the last column on its right side. If the number of curves is
smaller, then add lines of → symbols on the top.
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Example 27. After this last step we obtain:

→ → → → →
→ → → ↓ ↓
→ → ↓ → →
→ ↓ → → →
↓ → → → →
→ → → → →

For p some n-block, the dimensions of T (p) are smaller than the sum of:

(1) the dimension of p (equal to n)
(2) two times the number of entering curves by the top and outgoing by the bottom (one for

completing the curves (first step)
(3) and one for reducing the shifts (second step)).

Each one of these numbers is smaller than n. The third step does not make this bound greater, since
in this pattern the number of curves is smaller than the number of lines. As a consequence, the
dimensions of T (p) are smaller than 5n. �

Proposition 28. Let X be some linearly net gluing subshift on alphabet A. There exists some vector
function u′ and a function g that:

(1) take as arguments two n-blocks p, q for some n,
(2) respectively associates to these blocks an element of Z2 and an element of N

These functions verify that for any couple of n-blocks p, q in the language of dA(X), the gluing set of p
relative to q contains infinite columns regularly displayed. Moreover, the gluing set contains regularly
displayed positions in a central column:

g(p, q)(Z\{0})e2 + u′(p, q) ⊂ ∆dA(X)(p, q),

g(p, q)(Z\{−3, ..., 3})e1 + Ze2 + u′(p, q) ⊂ ∆dA(X)(p, q),

where function g verifies that
max
p,q

g(p, q) = O(n),

where the maximum is over the n-blocks.

Idea of the proof. This proof consists in analyzing how the operator acts on the gluing set of an
n-block p relative to another pattern q. The operator allows perturbations to be introduced on these
sets.

Proof. Let X be some f net gluing subshift on alphabet A, where f(n) = O(n).
Formulation of the linear net gluing of X: This means that there exist two function u : Ln(X)2 → Z2

and f̃ : Ln(X)2 → N such that for all n > 0 and every couple of n-blocks r, s in the language of X,
the gluing set of r relative to s in X contains

u(r, s) + (n+ f̃(r, s))(Z2 − (0, 0)),

and for all r, s n-blocks,
f̃(r, s) ≤ f(n).

We consider in this proof that u = 0, since this proof can be adapted to a general function u without
difficulty.
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Sufficient conditions to verify: It is sufficient to prove the statement of the proposition for patterns
whose projection on ∆ are T (π2(p)) and T (π2(q)). Indeed, the size of these patterns is bounded by a
linear function of the size of the patterns p, q ∈ dA(X).

Let p, q two n-blocks in the language of the subshift dA(X). Without loss of generality, we can
consider that the patterns T (π2(q)) and T (π2(p)) have the same number of curves crossing them.
We denote p̃ and q̃ some admissible patterns whose projections of ∆ are respectively T (π2(p)) and
T (π2(q)). The pseudo-projections of these patterns on X are m-block of X, where m is the number
of curves in T (π2(p)) and T (π2(q)). This is due to the fact that the top and bottom rows of these
patterns are straight. These pseudo-projections are denoted P(p̃) and P(q̃), according to previous
notations.

We place the pattern P(q̃) on position (0, 0).
The gluing sets of dA(X) contain infinite columns periodically displayed: Let us show that the gluing
set of p̃ relative to q̃ contains infinite columns periodically displayed.

Let k ≥ 4 and l integers such that l 6= 0, and consider some vector

u = (m+ f̃(P(p̃),P(q̃))(k, l).

We will prove the following:
• When l ≥ 2 and t is any integer such that

0 ≤ t ≤ f̃(P(p̃),P(q̃)) +m,

the position u + t.e2 is in the gluing set in dA(X) of the pattern p̃ relative to q̃.
• When l ≤ −2, this set contains the position u− t.e2, for the same integers t.
• When l = 1 or l = −1, then this set contains u− t.e2, for all t such that

0 ≤ t ≤ 2(f̃(P(p̃),P(q̃)) +m).

As a consequence, this gluing set contains the whole infinite column that contains

(m+ f̃(P(p̃),P(q̃))(k, 0)

for all k ≥ 8. Indeed, it contains an infinity of segments which overlap only on their border. We have
the same property for k ≤ −4, by reversing p and q.

(1) When |l| ≥ 2:
Let t be some integer such that

0 ≤ t ≤ f̃(P(p̃),P(q̃)) +m.

In the case l ≥ 2, we do the following operations. See a schema on Figure 19.
(a) We extend the curves crossing the pattern q̃ in a straight way until infinity.
(b) In the case l ≥ 2, we add straight curves below the obtained pattern. We do that in such

a way that these curves have gap 0 between them. On the top, we introduce t times a
straight infinite curve with gap 1 with the curve below. Then we add

l(f̃(P(p̃),P(q̃)) +m)− t−m
straight infinite curves with gap 0 with the curve below.

(c) Then we add the pattern p̃ on position u + t.e2.
(d) We extend the curves crossing this pattern in a straight way until infinity.
(e) We add straight lines on the top, without gaps between them.
(f) Then we color the curves with elements of the curves with elements of A such that the

configuration is admissible. This is possible from the net gluing property of the subshift
X. Indeed, the position of the pattern P(p̃) relatively to P(q̃) in the pseudo-projection
of this configuration is u. Moreover, this vector is in the gluing set of the first pattern
relatively to the second one.

The case l ≤ −2 is similar. The difference is that the pattern p̃ appears on position u− t.e2.
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u + t.e2

straight curves, gap 0

straight curves, gap 1

q̃

p̃

(0, 0)

Figure 19. Illustration of the construction for the proof of Theorem 33 when l ≥ 2.

(2) When l = 1 or −1:
Here we prove that the pattern p̃ can be glued relatively to q̃ on position u− t.e2.
The steps of a construction of a configuration that supports this gluing are as follows:

(a) Compactification of the outgoing curves:
We extend T (π2(q)) using the following procedure. While in the last column of the pattern

there is some sub-pattern →↓ (meaning that there is a gap between two outgoing curves),

do the following: on the right of the patterns →↓ , write ↓
→ and write a copy of the

other → symbols on their right side.

Example 29. Taking the same example as in the proof of Proposition 24, the result is:

→ → → → → → ↓
→ → → ↓ ↓ ↓ →
→ → ↓ → → → →
→ ↓ → → → → →
↓ → → → → → →
→ → → → → → →

Since there are m curves the number of additional columns on the right for this step is
smaller than m. Indeed, one column is sufficient to reduce the gap between a curve and
the curve just below.

(b) Making the curves shift:
We add columns on the right of the extension of T (π2(q)). We follow the following
procedure, in order to make all the curves in it shift t times:

(i) Consider the right part of the pattern constituted with→ symbols and add a triangle
made of → symbols except on the diagonal part. On this part we write ↓ symbols
(this is the first shift).
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Example 30. Taking the same example as previously, the result is:

→ → → → → → ↓
→ → → ↓ ↓ ↓ → → → → → ↓
→ → ↓ → → → → → → → ↓
→ ↓ → → → → → → → ↓
↓ → → → → → → → ↓
→ → → → → → → ↓

(ii) Then repeat t− 1 times the following operation: add under each ↓ on the right side
a → under, and after that a ↓ on the right of the →.

Example 31. Taking the same example as previously, with t = 3, the result is:

→ → → → → → ↓
→ → → ↓ ↓ ↓ → → → → → ↓
→ → ↓ → → → → → → → ↓ → ↓
→ ↓ → → → → → → → ↓ → ↓ → ↓
↓ → → → → → → → ↓ → ↓ → ↓ →
→ → → → → → → ↓ → ↓ → ↓ →

→ ↓ → ↓ →
→ ↓ →
→

There are at most 2(m + f̃(P(p̃, q̃))) additional columns for this step. Indeed, t is
smaller than this number and only t columns are needed to shift a compact set of
curves.

(iii) Complete the curves with → symbols so that they end in the last column added.

Example 32. Taking the same example as previously, with t = 3, the result is:

→ → → → → → ↓
→ → → ↓ ↓ ↓ → → → → → ↓
→ → ↓ → → → → → → → ↓ → ↓
→ ↓ → → → → → → → ↓ → ↓ → ↓
↓ → → → → → → → ↓ → ↓ → ↓ →
→ → → → → → → ↓ → ↓ → ↓ → →

→ ↓ → ↓ → → →
→ ↓ → → → →
→ → → → →

Here, no column is added.
(iv) Then extend the curves straightly on a number of columns so that the total number

of additional columns is equal to u1−m. This is possible since the number of added
columns at this point is smaller than m+ 2(m+ f̃(P(p̃),P(q̃)) ≤ u1, since k ≥ 4.

(c) Extension:
Then, we extend these curves straightly until infinity on the east side and on the west
side.

(d) Additional curves:
We add f̃(P(p̃),P(q̃)) curves on the top when l = 1 (resp. on the bottom when l = −1)
of the obtained pattern at this point, without gap between them. This means that, from
left to right, when the curve just below is shifted downwards the curve is also shifted
immediately after.

(e) Positioning the pattern T (π2(p)):
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(i) In the last columns where symbols were added in the last step, we position the
pattern T (π2(p)). We place it on the top when l = 1 (resp. on the bottom when
l = −1) of the last added curves.

(ii) After this we extend the curves on the west side straightly until infinity.
(iii) On the east side, we extend the curve without introducing gaps. This step is possible

since the minimal value of k is taken sufficiently large. This means that the shifts
of the outgoing curves of q̃ do not affect the area where the pattern p̃ is supposed
to be glued.

(iv) On the top and bottom of the obtained pattern we add curves without introducing
any gap in such a way that we fill Z2.

(v) In the end we add A symbols over the curves, when not already determined. This is
possible from the linear net gluing property of X. Indeed, there are f̃(P(p̃),P(q̃))
added between the patterns p̃ and q̃ and the pattern p̃ is on a position in the column
containing u.

See Figure 20 for an illustration of this case, when l = 1.

q̃

p̃

u− t.e2

(0, 0)

straight curves, gap 0

compactification

t shifts

≤ m
≤ 2(m+ f̃(P(p̃),P(q̃)))

f̃(P(p̃),P(q̃))

space taken by the shift of additional curves
≤ f̃(P(p̃),P(q̃))

≥ 2(m+ f̃(P(p̃),P(q̃)))

Figure 20. schema of the construction for the proof of Theorem 33 when l = 1.

From this construction we deduce that{
w ∈ Z2 | w1 = v1(g(p, q)), |v1| ≥ 4

}
⊂ ∆dA(X)(p, q),

where
g(p, q) = m+ f̃(P(p̃),P(q̃)).

Thus,
max
p,q

g(p, q) = O(n).

Indeed, because m ≤ 5n and f is non decreasing, this number is smaller than 4(f(5n) + 5n) = O(n).
This comes from the fact that f(n) = O(n).
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The gluing sets of dA(X) contain periodic positions in the central column: Consider some u = (m +

f̃(P(p̃),P(q̃)))v with v = (v1,v2), v2 6= 0, and v1 = 0. The pattern p can be glued relatively to q in
dA(X) in position u in a configuration xu.

Indeed, the pattern T (π2(q)) can be glued relatively to T (π2(p)) in ∆ with relative position u.
In order to prove that one can glue the two patterns with this relative position. Then one completes
straightly the curves that go through the two patterns and fulfill Z2 with straight curves. One shifts the
configuration in such a way that π2(q) appears in position (0, 0). Then one completes this configuration
with letters in A so that the pseudo-projection is xu.

This means that{
w ∈ Z2 | w2 ∈ (m+ f̃(P(p̃),P(q̃)))(Z\{0}), w1 = 0

}
⊂ ∆dA(X)(p, q).

The Figure 21 shows the set of positions that we proved to be in the gluing set of the pattern p
relatively to q.

q

p

O(n)

O(n)

Figure 21. Schematic representation of a set of positions included in the gluing set
of some couple of n-blocks in dA(X).

�

Let us denote ρ the transformation on subshifts that acts as a rotation by an angle π/2. Let X be
a subshift on an alphabet A and defined by a set F of forbidden patterns. Then ρ(X) is the subshift
on alphabet A defined by the set of patterns that are image by rotation of the patterns in F . Thus ρ
transforms SFT into SFT.

Theorem 33. The operator dÃ ◦ ρ ◦ dA transforms linear net-gluing subshifts of finite type into linear
block gluing ones.

Idea of the proof. The idea is to see how this operator acts on the gluing sets of n-blocks p relative
to another q and see that it fulfills the part of Z2 outside of a box containing q whose size is O(n).

Proof. Since ρ acts as a π/2 rotation over patterns (and thus on configurations), the gluing set of some
n-block p in the language of ρ ◦ dA(X) relatively to another one q contains the positions shown by
Figure 22. Using the same procedure as in the proof of Proposition 28, we get that the gluing set of
two n-blocks in the language of dÃ ◦ ρ ◦ dA(X) contains some set of positions as in Figure 23. Indeed,
this procedure introduced a vertical perturbation in the positions of the gluing sets. From the form of
the sets included in the gluing sets on Figure 22, this perturbation transforms the gluing sets of the
subshift dÃ ◦ ρ ◦ dA(X) by fulfilling the plane outside the box having size O(n).

This means that the subshift dÃ ◦ ρ ◦ dA(X) is linearly block gluing.
�
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q
p

O(n)

O(n)

Figure 22. Schematic representation of a set of positions included in the gluing set
of some couple of n-blocks in ρ ◦ dA(X).

q

O(n)

Figure 23. Schematic representation of a set of positions included in the gluing set
of some couple of n-blocks in dÃ ◦ ρ ◦ dA(X).

Proof. of Theorem 22: We know that XR is linearly net gluing. As a consequence, the subshift
dÃ ◦ ρ ◦ dA(XR) is linearly block gluing. It is also aperiodic, since XR is aperiodic. �

4 Entropy of block gluing Z2-SFTs

In this section we present some results about the computability of entropy of block gluing Z2-SFT.
The reader will find the proof of the main theorem in the next section.

4.1 Notion of computability of the entropy Given an SFT defined by a finite set of forbidden
patterns F , a pattern p is locally admissible if no pattern of F appears in p and a pattern p is
globally admissible if it appears in XF .

Let us recall that Nn(X) = |Ln(X)| denotes the number of n-blocks in the language of a subshift
X. The function n 7→ Nn(X) is called the complexity function of X. Its entropy is defined as:

h(X) = inf
n

log2(Nn(X))

n2

Definition 34. A real number x is computable when there exists an algorithm which given as input
some integer n outputs some rational number rn such that

|x− rn| ≤ 2−n.

A real number x is right-recursively enumerable or Π1-computable when there exists an algo-
rithm which given as input some integer n outputs some rational number rn such that

x = inf
n
rn.
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Under using this notion of computability (more notion of this subject can be founded in [WZ01]),
it possible to characterize the class of numbers which are entropy of a multidimensional SFT :

Theorem 35 ([HM10]). The possible entropies of multidimensional subshifts of finite type are exactly
the non-negative Π1-computable numbers.

4.2 Computability of the entropy for the sub-logarithmic regime In this section we show
that the entropy of block gluing SFT with a sub-logarithmic gap function is computable. This gener-
alizes Proposition 3.3 in [PS15] which states that a multidimensional SFT which is block gluing with
a constant gap function is computable.

Proposition 36. Let X be some f -block gluing Z2-SFT on some alphabet A, with f a non decreasing
function that verifies for some ε > 0 :

∀n ∈ N, f(n) ≤ n1/ log2(5)

log(n)1+ε
.

If the complexity function (Nn(X))n is computable, then the entropy of X is computable.

Proof. : Consider k ≥ 1, n ≥ 1, and a number 4k of 4n-blocks in the language of X. We group them
by two and glue the two elements of each group horizontally, at distance f(4n) (which is possible, from
the block gluing property). Then make groups of two new formed patterns (see Figure 24) and glue
them vertically with distance f(2.4n + f(4n)) (completing them into blocks before gluing). Repeat
these two operations until there is a unique block left. Denote lk(n) and hk(n) its length and height,
which verify :

l0 = 4n

h0 = 4n

lk+1 = 2lk + f(hk)
hk+1 = 2hk + f(lk+1)

This comes from the fact that lk+1 ≥ hk and hk ≥ lk, for all k ≥ 0. This fact is true for k = 0 and if
true for k, then hk+1 ≥ 2lk + f(hk) = lk+1 (for f is non decreasing), and lk+2 = 2lk+1 + f(hk+1) ≥
2hk + f(lk+1) = hk+1.

This construction leads to Nhk(n) ≥ (N4n)4k (we can choose the 4k blocks independently).

Moreover, because hk ≥ lk, and f is non decreasing, hk+1 ≤ (2id + f ◦ (2id + f))(hk), hence
hk ≤ (2id+ f ◦ (2id+ f))◦k(4n). Let us denote dk(n) this last number. We have

log2(Nhk(n))

(hk(n))2
≥ 4k

log2(N4n)

(hk(n))2
≥ 42n22k

(dk(n))2

log2(N4n)

42n
(1)

Let us denote g the function defined for all integer n by g(n) = f(2n + f(n)). Hence, dk(n) =
(2id+ g)◦k(n), and by induction, using (2id+ g)◦k = g ◦ (2id+ g)◦k−1 + 2(2id+ g)◦k−1 :

dk(n) = 2k4n +

k−1∑
j=0

2k−1−jg((2id+ g)j(4n))

Using the second condition of the statement, f ≤ id so g ≤ f ◦ (3id) ≤ 3id. As a consequence we get :

dk(n)

2k4n
≤ 1 +

k−1∑
j=0

2−(j+1) g(5j4n)

4n
.
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As a consequence (the first inequality coming from the definition of the entropy), the last sum converges
and taking k → +∞ we get :

log2(N4n)

(4n)2
≥ h(X) ≥ log2(N4n)

(4n)2
∗ 1

(1 +
∑∞
j=0 2−(j+1) g(5

j4n)
4n )

Using g ≤ f(3id) we have :

g(5j4n)

4n
≤ 31/ log2(5)2j

(log2(3) + j log2(5) + 2n)1+ε4n(1−1/ log2(5))

log2(N4n)

(4n)2
≥ h(X) ≥ log2(N4n)

(4n)2
∗ 1

(1 + 2 ∗ 4n(1−1/ log2(5))
∑∞
j=1

1
j(1+ε)

)

Thus, if (Nn(X))n is a computable sequence, the entropy is a computable number. �

f(4n) [2id+ f(2id+ f)](4n)

f((2id+ f))(4n)

Figure 24. An illustration of the proof of Proposition 36. First three steps of the
gluing process of 4n-blocks.

Since the language of a o(log(n)) block gluing SFT is computable, we deduce the following property.

Corollary 37. For X an SFT which is o(log(n)) block gluing, the entropy h(X) is computable.

Remark 6. This corollary can be also obtained as a consequence of [GH17].

4.3 Characterization of the entropies of linearly block gluing Z2-SFT There is a gap be-
tween two behaviors for the entropy regarding the gluing property (low and strong block gluing).
We prove here a theorem of realization which characterize the possible entropies of sufficiently low
(meaning linearly) block gluing subshifts of finite type.

Theorem 38. The possible entropies of linearly block gluing Z2-SFT are exactly the non-negative
Π1-computable numbers.

In [HM10], M. Hochman and T. Meyerovitch used the type of construction we make in this part
to prove that every Π1-computable number is the entropy of a Z2-SFT. They expressed the question
about the realization of every Π1-computable number as the entropy of a Z2-SFT that would be
transitive (Problem 9.1 of [HM10]). Like linearly block gluing imply transitivity, we answer here to
this question.

Corollary 39. The possible entropies of transitive Z2-SFT are exactly the non-negative Π1-computable
numbers.
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4.3.1 Outline of the proof of Theorem 38 The steps list of the proof of Theorem 38 is the following:
(1) We first prove that any Π1-computable number h is the entropy of a linearly net gluing Z2-

SFT. It is sufficient to realize the numbers in [0, 1]. Indeed, in order to realize the numbers in
]1,+∞[ one can take the product of a linearly net gluing SFT having entropy in [0, 1] with a
full shift. When h is in {0, 1/4, 1/2, 3/4, 1}, this is easy to find a linearly net gluing Z2-SFT
whose entropy is h. Indeed, this can be done by allowing random bits on a regularly displayed
set of positions in Z2. Hence we only have to realize the numbers in [0, 1]\{0, 1/4, 1/2, 3/4, 1}.

The steps of the realization for these numbers are as follows:
(a) First, for any Π1-computable sequence s ∈ {0, 1}N and any N > 0, we construct in

Section 5 a linearly net gluing Z2-SFT Xs,N . The integer N corresponds to a threshold
and the sequence s corresponds to a control on the entropy of the subshift.
This part is an adaptation of the construction in [HM10]. This construction uses an
implementation of Turing machines whose work is to control the frequency of apparition
of some random bits. These bits generate the entropy through frequency bits specifying
if a random bit can be present or not. In this construction, the obstacles for transitivity
(and thus linear net gluing) are the following ones:

(i) the identification of frequency bits over areas that are not closely related to the
structures

(ii) and the possibility of degenerated behaviors of the Turing machines dynamics in
infinite areas.

The first obstacle is solved by a modification of the identification areas (this mechanism
is described in Section 5.3 and abstracted on Figure 25) corresponding to the insides of
Robinson’s structures defining computation units (they will be defined in a more precise
way in the following). The second one is solved by the simulation of degenerated behaviors
in all the computation units aside the intended behaviors. This ensures that the results
of this simulation is not taken into account - this means that the frequency bits are not
affected, using error signals propagating through the border of Robinson’s structures (this
is described in Section 5.4 and Section 5.7, and abstracted on Figure 26). The subshift
is net gluing since any pattern can be completed, with control on the size, into a pattern
over a simulation area.

(b) In Section 6 we prove an explicit formula for the entropy of the subshifts Xs,N which
depends on the parameters s,N . Afterwards, for any h ∈ [0, 1]\{0, 1/4, 1/2, 3/4, 1}, we
associate some Z2-SFT Xh by choosing some parameters s,N so that the entropy of Xh

is h. Then we prove in Section 7 that this subshift is linearly net gluing.
(2) We present in Section 8 adaptations d(r)

A of the operator dA presented in Section 3.4.1. These
operators verify the equalities

h(d
(r)
A (Z)) =

log2(1 + r)

r
+ h(Z)

for any subshift Z. Since the additional entropy log2(1+r)
r induced by the operator is computable

and that the operator d(r)
A ◦ ρ ◦ d

(r)
A ◦ ρ ◦ d

(r)
A transforms linearly net gluing SFTs into linearly

block gluing ones, this allows any Π1-computable number in ]0, 1] to be realized as the entropy
of a block gluing SFT. Since the entropy zero is trivial to realize, this means that any Π1-
computable number in [0, 1] is the entropy of a linearly block gluing SFT.

4.3.2 Description of the layers in the construction of the subshifts Xs,N Here is a more precise
description of the construction of Xs,N for a given h ∈ [0, 1].

First, we fix some parameters s and N , where s is a Π1-computable sequence of {0, 1}N, and N > 0
is an integer.
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The construction of the subshift Xs,N involves a hierarchy of computing units that we call cells.
Each cell is divided into four parts and in each of these parts a machine works. The center (called
nucleus) of each cell contains an information which codes for the behavior of the machines. Two of
these machines compute and the other two simulate degenerated behaviors. This means in particular
that the initial tape of the machine is left free and that machine heads can enter at any time and
in any state on the two sides of the machine area. The aim of the computing machines is to control
some random bits that generate the entropy, through frequency. These bits are grouped in infinite
sets having frequency given by a formula. This allows the entropy to be expressed as the sum of three
entropies hint, hcomp(s) and hsim(N). The first one is generated by random bits, and serve to place the
entropy of the subshift in one of the quarters of the segment [0, 1]. Each of the two other entropies
is the sum of a series. The first one involves the sequence s and is the entropy due to random bits.
The second one is generated by the symbols left free in the simulation area. We choose N so that the
sum of hint and hsim(N) is smaller than hcomp(s). By the choice of the sequence s we control the series
whose sum is hcomp(s). We choose this entropy so that the total entropy is h.

Here is a detailed description of the layers in this construction.
• Structure layer [Section 5.1]: This layer consists in the subshift XR. Recall that any config-

uration of this subshift exhibits a cell hierarchy. In this setting, for all n the order n cells
appear periodically in the vertical and horizontal directions. Some additional marks allow the
decomposition of the cells into sub-structures that we describe in this section. In each of these
sub-structures specific behaviors occur. In particular, each cell is decomposed into four parts
called quarters.

• Basis layer [Section 5.2] The blue corners in the structure layer will be superimposed with
random bits in {0, 1}. This allows to an entropy in [0, 1/4] to be generated. Turing machines
will control the frequency of positions where the random bits can be 1 through the use of
frequency bits. This generates an entropy equal to the Π1-computable number

h′ = h− b4hc
4
∈ [0, 1/4[.

In order to generate the entropy h, we consider i = b4hc. We impose that the other positions
are superimposed with random bits such that the positions where the random bit is equal to
1 have with frequency i/3 in this set. Hence the total frequency of the positions where the
random bit can be 1 in Z2 is

i

3

3

4
+ h′ = h.

• Frequency bits layer [Section 5.3]
Each quarter is superimposed with a frequency bit. On positions with blue corners in the

structure layer having frequency bit equal to 0, the random bit is equal to 0.
• Cells coding layer [Section 5.4]

In this layer we superimpose to the center of the cells (that we call nuclei) of each cell a
symbol which specifies two adjacent quarters of the cell when n > N . It represents all the
quarters when n ≤ N . This symbol is called the DNA of the cell.

The quarters represented in the DNA are called computation quarters. The other ones
are called simulation quarters. In these ones the function of the machines is to simulate any
degenerated behavior of the computing machines.

Since simulation induces parasitic entropy, we choose after the construction some N such
that this entropy is smaller than h. This allows programming the machines in such a way that
the entropy generated by the random bits in the other quarters complements this entropy so
that the total entropy is h.

• Synchronization layer [Section 5.5] In this section, we synchronize the frequency bits of the
computation quarters of all the cells having the same order.
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synchr.

simulation quarterscomputation quarters

Figure 25. Illustration of the frequency bits identification areas (colored purple) in
our construction. The squares designate some petal structures of the Robinson sub-
shift.

• Computation areas layer [Section 5.6] In this layer are specified the areas supporting the
computations of the machines. The function of each position in this area amongst the following
ones are also specified:
(1) transfer of information, vertical or horizontal,
(2) or the execution of one step of computation.
This is done using signals that detect the rows and columns in a cell that do not encounter
a smaller cell. The intersections of such line and column are the positions where a machine
executes one step of its computation. The other positions of these lines and columns are used
to transmit information.

Since the construction of these areas can have degenerated behaviors in infinite cells, these
behaviors are also simulated in simulation quarters. We use error signals in order to impose
that the computation areas are well constructed in computation quarters.

• Machines layer [Section 5.7]:
Consider (s

(n)
k )n,k ∈ {0, 1}N

2

some sequence such that for all k,

sk = inf
n
s

(n)
k .

This layer supports the computations of the machines in all the quarters of each cell. Each
quarter of a cell has its proper direction of time and space. The machine is programmed so
that when well initialized, it writes successively for all n the bits s(n)

k , k = 0...n on the 2kth
position of its tape corresponding to a column that is just one the left of order k cells. The
sequence is chosen afterwards so that the total entropy of Xs,N is h.

The frequency bits of order k cells corresponding to the computation quarters is transported
in the column just on the right of these cells. This is done in order for the machine to have
access to this information.

If at some point one of the frequency bits is greater than a bit written by the machine in
this column, then the machine enters in halting state.

We allow the machine heads to enter in error state. However, when this happens it transmits
a signal through its trajectory back in time until initialization. We forbid the coexistence of this
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signal with the representation of this quarter in the DNA. As a consequence, the computations
of a machine are taken into account if and only if in a computation quarter where these
computations have some meaning.

DNA
starting position

error signal
to the DNA location

machine
trajectory

Figure 26. Illustration of the machines mechanisms in our construction. The gray
square designates a computing unit splitted in four parts. In each of this parts evolves
a computing machine departing from the center of the cell. If the machine reaches the
border in error state, it triggers an error signal.

The directions of time and space depend on the orientation of the quarter in the cell. In
each quarter, these directions are given on Figure 27.

space

space

time

time time

space

time

space

Figure 27. Schema of time and space directions in the four different quarters of a cell.

The next sections are devoted to make the proof of Theorem 38 more precise.

5 Construction of the subshifts Xs,N

5.1 Structure layer In this section, we present the structure layer and the structures observable
in this layer that will be used in the following.

This layer has three sub-layers, as follows.

5.1.1 Specialized sub-structures of the cells The first sublayer of the structure layer is the subshift
XR.

Here we list some structures that appear in this layer and the designation that we use for them.
Let x be a configuration in this layer.
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• Recall that an order n cell is the part of Z2 enclosed in an order 2n+ 1 petal.
• The center of a cell is a red corner which is valued with 0. The position where this symbol

appears is called the nucleus of the cell.
• In a cell the union of the column and the line containing the nucleus is called the reticle of

the cell. In particular, the nucleus is the intersection of the reticle’s arms.
• We call the set of positions in the border of a cell (defined as the position which has a neighbor

outside of the cell) the wall.
• The set of positions in a cell that are not in the wall, in the reticle, or in another (smaller) cell

included to the considered one is called the cytoplasm.
• We call any of the four connected parts included in the cytoplasm and delimited by the reticle

and the wall a quarter of the cell.
Figure 28 gives an example of pattern that can be superimposed over an order 1 cell in the structure

layer. We illustrate on this figure the structures that we listed above.

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

Nucleus

Walls
Cytoplasm

Reticle

Figure 28. Example of the projection over the structure (first picture) and the
synchronization (second one) layers of a pattern over an order 1 cell. This cell contains
properly 4 order 0 cells, and 4.12 blue corners.

Recall that cells have the following properties:
• For all m ≥ 0, and i ∈ {1, ...,m}, any order m cell contains properly 4 · 12i−1 order m− i cells

(meaning that these cells are not included in an order < m cell). As a consequence, each order
m cell contains properly 4 · 12m blue corners.

• Moreover, in any configuration each order m cell (and in particular the nuclei) repeats period-
ically, in the horizontal and vertical directions, with period 4m+2.

5.1.2 Coloring In this section, we present the representation of the sub-structures of cells presented
in Section 5.1.1. In particular, we color differently the four quarters of a cell, in order for the machines
to have access to the direction of time and space in their quarter.
Symbols:

Each symbol corresponds to a part of the cell:
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• corresponds to the reticle.
• corresponds to the walls.
• corresponds to the north east quarter.
• corresponds to the north west synchronization area.
• corresponds to the south east quarter.
• corresponds to the south west quarter.

Local rules:

(1) Localization:
• A position is colored with if and only if it lies in the walls of a cell.
• the symbol can be superimposed only on red corners valued 0 or arrows symbols valued

0 for the direction of the long arrows.
• the positions that are not amongst the type of positions specified by the two last rules

are colored with else , , or .
(2) Transmission rules:

• Consider two vertically adjacent positions with vertical outgoing arrows (or two horizon-
tally adjacent positions with horizontal ougoing arrows) such that the value corresponding
to this direction in the two symbols is 0. Then if one of these positions is colored , then
the other one is also colored .
• Consider two adjacent positions which are not colored or . Then these two positions

have the same color.
(3) Determination of the colors:

The idea of these rules is to determine the colors that appear in the neighborhood of par-
ticular positions in a cell. Together with the transmission rules, these rules will determine the
color of any position in any configuration.

In order to describe them, we use the vocabulary introduced in this text. However, one can
translate these terms into symbols of the Robinson subshift (we do this for the second rule as
an example).

The rules are the following ones:
• A south west (resp south east, north east, south west) corner of a cell induces the position

on its north east (resp north west, south west, south east) to be colored (resp. , ,
).

• A position inside the west part of the north wall of a cell (meaning a four or six arrows
symbol whose long arrows are horizontal, directed to the right, and valued 1 for the
horizontal direction) (resp. east part) has its south neighbor position colored with
(resp. ). Its neighbor position on north is colored with the same color as the north east
position and the north west position. We impose similar rules for positions in the other
walls of cells.
• A nucleus has respectively on its north west, north east, south east, south west positions

the colors , , and , and this position is colored .
• A position at the center of the south wall of a cell has its north west, north and north

west neighbor positions colored with , and . Similar rules are imposed for the
centers of the other walls.
• On the west and east neighbor positions of a position colored , the possible couples of

colors are:
– on the west and on the east,
– on the west and on the east.

Similar rules are imposed for the vertical direction.

Global behavior:
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The localization rules impose directly that the walls of the finite cells are colored . With the
transmission rules combined with the rules determining colors, the reticle is colored . Moreover, for
any cell the positions in the same quarter are colored with else , , or . The color is determined
according to the orientation of the quarter in the cell: the first (resp. second, third, fourth) color is
for the south west quarter (resp. south east, north east, north west).

These rules allow the same coloration for infinite cells.
Figure 29 shows an example of coloration of an order 2 cell.

Figure 29. An example of pattern in the synchronization layer over an order 2 cell.

5.1.3 Synchronization net In this section, we specify a network connecting the nuclei of order n cells
for all n. This allows the synchronization of the frequency bits corresponding to computation quarters
of the cells.
Symbols:

The symbols of this third sublayer are the following ones :

, , ,

Local rules:
• The symbol is superimposed on and only on the nuclei, corners, and centers of the walls of

cells. As a consequence, when a line of arrows crosses a column of arrows on another position,
then the symbol superimposed on this position is .

• The symbols and are transmitted in the direction of the arrow: north and south for
the first one, east and west for the second one.

• Consider a position u. If it is superimposed with a vertical (resp. horizontal) arrow, then the
positions u± e1 (resp. u± e2) are not superimposed with a vertical (resp. horizontal) arrow.

Global behavior:
The first two rules build wires of the net, defined to be infinite columns (resp. rows) whose

positions are superimposed with a vertical (resp. horizontal) arrow. These are the columns (resp.
rows) intersecting corners and nuclei of cells. The other columns (resp. rows) are not superimposed
with a vertical (resp. horizontal arrow): this is a consequence of the last rule.
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The intersections of the wires are superimposed with one of the two first symbols of the alphabet
, .

The first symbol is superimposed on nuclei and corners, where the frequency bits will be synchro-
nized. The other intersections have the second symbol. On these positions, the frequency bits won’t
be synchronized. As a consequence, only cells having the same order are synchronized.

See on Figure 30 an example of a net superimposed on an order 1 cell.

Figure 30. Example of a synchronization net in an order 2 cell

5.2 Basis layer The basis layer supports random bits. We recall that i = b4hc (one can find the
definition in Section 4.3.2).
Symbols:

The symbols of this layer are 0 and 1.
Local rules:

• if i = 0, then on any position u superimposed with a blue corner, the positions u+ e1, u+ e1

and u + e1 + e2 are superimposed with the bit 0.
• if i = 1, the positions u+e1 and u+e1 +e2 are superimposed with 0, and there is no constraint

on the bit on position u + e2.
• if i = 2, the position u + e1 is superimposed with 0.
• if i = 3, there is no constraint.

Global behavior:
In this layer are superimposed random bits in {0, 1} on any position. According to the value of

i, we impose constraints on positions that are not superimposed with a blue corner in the structure
layer. We dot this in such a way that the entropy produced by these bits is the maximal possible value
smaller than h.

The positions with a blue corner are the ones where the random bits will be regulated by frequency
bits. These bits are themselves controlled by the machines in order to complete the entropy generated
by the random bits on the other positions.
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5.3 Frequency bits layer Symbols:
The symbols of this layer are 0, 1 and a blank symbol.

Local rules:
• Localization: The non-blank symbols are superimposed to the cytoplasm positions.
• Synchronization on quarters: two adjacent positions in the cytoplasm have the same

frequency bit.
Global behavior:

The bits 0, 1 are called frequency bits. In a quarter, these bits are equal. Hence each quarter is
attached with a unique frequency bit.

5.4 Cells coding layer Symbols: {
, , , ,

}
,

and a blank symbol.
Local rules:

• The non-blank symbols are superimposed to the nuclei, the blank symbols to other positions.
• The DNA symbol is and can only be over a nucleus of an order ≤ N cell.
• The others DNA symbols are over > N order cells.

Global behavior:
On the nucleus of every cell is superimposed a symbol called the DNA. It rules the behavior of

each of the machines working in the cytoplasm, telling which ones of the machines execute simulation
and which ones compute.

When the order of the cell is smaller or equal to N , then all the machines compute. When the order
is greater than N , two of the machines compute and the other two execute simulation.

5.5 Synchronization layer This layer serves for the synchronization of the frequency bits corre-
sponding to computation quarters.
Symbols:

Elements of {0, 1} and {0, 1}2, and a blank symbol.
Local rules:

(1) Localization:
• The non-blank symbols are superimposed on and only on positions having a non-blank

symbol in the synchronization net sublayer.
• Positions superimposed with , , or are superimposed in the present layer

with an element of {0, 1}. The positions superimposed with are superimposed with
an element of {0, 1}2.

(2) Synchronization:
• On a nucleus, if the DNA symbol is , then the bit in this layer is equal to the frequency

bit on north east, south east, south west and north west positions.
• When the DNA symbol is not , then the bit in this layer is equal to the frequency bits

corresponding to the colors represented in the DNA symbol.
(3) Information transfer rules:

• Considering two adjacent positions with , or , the bits superimposed on these two
positions are equal.
• On a position with symbol, the first bit of the couple is equal to the bit of positions

on north and south. The second one to the bit of positions on west and east.
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• On a position superimposed with , the bit is equal to the bit on south, west, east and
north positions.

Global behavior:
Using the information contained in the nucleus (the DNA), we synchronize the two frequency bits

of the computation quarters. These bits are transmitted through the wires of the synchronization net.
They are synchronized on the positions having the symbol . As a consequence, when n ≤ N ,
all the frequency bits of order n cells are equal. When n > N , the frequency bits corresponding to
computation quarters are synchronized. The other two are left free and are not synchronized between
cells.

Figure 31. Example of a computation area in a computation quarter in an order 2 cell.

5.6 Computation areas layer This layer specifies the function of each position of the cytoplasm
relatively to the Turing machines: information transfer (vertical or horizontal) or execution of one
computation step. This is done as in [Rob71]. However, the constitution of the computation areas
in infinite cells is not well controlled. That is the reason why, in order to ensure the linear net
gluing property, we simulate degenerated behaviors for the constitution of computation areas in the
simulation quarters. We use error signals to ensure that the computation areas are well constituted in
the computation quarters.
Symbols:

Elements of {in, out}2 × {in, out}2, elements of{
, , , , , , ,

}
,

elements of {
, , , , , , , , , , ,

}
,

and a blank symbol.
The first set corresponds to signals that propagate horizontally and vertically in the cytoplasm. The

second set corresponds to error signals propagating on the reticle and to the nucleus. The last ones
correspond to the propagation of the error signals through the walls.
Local rules:

• Localization:
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– The elements of {in, out}2×{in, out}2 are superimposed on and only on positions in the
cytoplasm. The first two coordinates are associated to the horizontal direction, and the
second two to the vertical direction.

– The elements of
{

, , , , , , ,
}

can be superimposed only on reticle posi-
tions.

– All the other positions are superimposed with the blank symbol.
• Transmission of the cytoplasm signals: on a cytoplasm position u, the two first coordi-

nates of the symbol are transmitted to the positions u±e1 and the second two are transmitted
to the positions u± e2, when these positions are in the cytoplasm.

In a computation quarter, these are signals allowing the lines and columns of the cells which
do not intersect a smaller cell to be specified. In the first (resp. second) couple, the symbol in
for the first coordinate corresponds to the fact that the position is in a segment of row (resp.
column) originating from the inside of the cell wall. The symbol out corresponds to the fact
that the position is in a segment of row (resp. column) originating from the outside of the cell
wall. For the second coordinate, these symbols have the same signification concerning the end
of the segment instead. The next rules impose that when near the pertinent parts of a cell and
inside it, if a symbol in − out does not correspond to the nature of the origin or end at this
position, this triggers an error signal. When outside the cell, the origin or end is imposed -
thus not triggering an error signal. These rules are presented for positions in the red quarter:
similar rules are imposed for the other ones.

• Triggering error signals (inside the wall and reticle): On a position u in the horizontal
arm of the reticle (specified by having a reticle symbol different from the nucleus and having a
reticle position on the right and on the left), if the position u−e2 has its second couple having
second coordinate equal to out, then the red quarter is represented in the symbol superimposed
on position u.

For instance, the pattern

(∗, out)
,

where ∗ means any symbol, and the couple represented in {in, out}2 is the second one, implies
the following:

(∗, out)
.

On a position u in the vertical arm of the reticle (specified by having a reticle symbol
different from the nucleus and having a reticle position on the top and bottom), if the position
u−e1 has its first couple having second coordinate equal to out, the red quarter is represented
in the symbol superimposed on position u.

• On a position u in the horizontal part of the wall (specified by having a wall symbol different
from the corner, and having a wall position on left and right), if the position u + e2 has its
second couple having first coordinate equal to out, then the symbol on the position u is an
arrow symbol

or .
46



On a position u in the vertical part of the wall (specified by having a wall symbol different
from the corner, and having a wall position on top and bottom), if the position u+ e1 has its
second couple having first coordinate equal to out, then the symbol on the position u is an
arrow symbol

or .

• Enforcing cytoplasm signals (outside the wall):
Considering a wall position u which is on the west (resp. east, north, south) wall of a cell,

the position u−e1 (resp. u+e1, u+e2, u−e2 has the second coordinate of its second couple
(resp. first coordinate and second couple, first coordinate first couple, second coordinate first
couple) equal to out.

• Propagation of error signals. An arrow symbol propagates in the direction pointed by the
arrow on the wall, while the next position in this direction is not near a reticle position, as in
the following pattern:

implies the following one:

• On a position u of the north (resp. east, south, west) arm of the reticle, specified by the colors
on the sides, if the position u− e1 (resp. u− e1, u + e2, u + e1) is not the nucleus, then the
symbol on this position contains the symbol on position u.

• Connection between error signals: when on a position u on the wall which is near a
position on the reticle, if one of the wall symbols aside contains an error symbol, then the
reticle position has an error symbol where the corresponding quarter is represented. For
instance, the pattern

implies the following:

.

• Forbidding wrong error signals. On any of the four reticle positions around the nucleus,
there can not be a symbol that contains a color which is in the DNA. For instance, the following
pattern is forbidden:

Global behavior:
In any quarter of a cell, the segments of rows and columns are colored with a couple of symbols in

{in, out}. One for the origin of the segment, the other one for the end of it. If it originates from, or
ends at, the outside of a cell, then the corresponding symbol is forced to be out.
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Moreover, when near the walls or the reticle and inside the corresponding cell, if the correspond-
ing symbol is out then an error signal is triggered and propagates to the nucleus. On the walls, a
propagation direction is chosen. In the reticle, the error signals contain the information about the
quarter where the error was detected. Around the nucleus, we forbid an error signal to come from a
computation quarter.

In a computation quarter of a cell, each row which does not intersect a smaller cell has first couple
equal to (in, in), since it originates inside the cell, and ends inside, on the reticle. Each column which
does not intersect a smaller cell has second couple equal to (in, in). The couples on other segments of
rows or columns are determined in a similar way, according to their origin and end. This is enforced
by the propagation of error signals to the nucleus.

The positions marked with ((in, in), (in, in)) are called computation positions. The ones that
have first (resp. second) couple equal to (in, in) and second (resp. first) not equal to (in, in) are
horizontal transfer positions (resp. vertical transfer positions). See Figure 31 for a representation
of a computation area in the red quarter of an order two cell. On this figure, computation positions
are represented by a blue square. Vertical and horizontal transfer positions by arrows in this direction.

Remark 7. These mechanisms can not be easily simplified, since an infinite row or a column can not
”know” if it is a free row or column of its infinite cell. Moreover, from the division of the cells it is
difficult to code this with a hierarchical process.

Remark 8. In the literature, most of the constructions using substitutions include the construction
of the computation areas [HM10] with substitution rules. However, in order to get the net gluing
property, and furthermore the block gluing property, we need a more flexible construction of the com-
putation areas. The method presented above was used initially in the construction of Robinson for his
undecidability result [Rob71].

5.7 The machines (RNA) In this section, we present the implementation of Turing machines that
will check that the frequency bit of level n cells are equal to sn, for all n.

In order to have the linear block gluing property, we have to adapt the Turing machine model in
order to simulate each possible degenerated behavior of the machines. This is done as follows: in each
of the quarters of a cell, a machine is implemented. For this machine, the directions of space and
time are as on Figure 32: the rules of the machine will depend on the color of the quarter. Moreover,
for each of the quarters, we initialize the tape with elements of A × Q. The set Q is the state set of
the machine and A its alphabet. Machine heads can enter on the two sides of the computation area.
Signals will be used to verify that in the computation quarters the machine is well initialized. This
means that no head enters on the sides, and on the initial row there is a unique machine head on the
position near the nucleus in initial state. Moreover, all the letters in A are blank.

As usually in this type of constructions, the tape is not connected. Between two computation
positions, the information is transported. In our model, each computation position takes as input up
to four symbols coming from bottom and the sides. It outputs up to two symbols to the top and sides.
Moreover, we add special states to the definition of Turing machine. We do this in order to manage
the presence of multiple machine heads. We describe this model in Section 5.7.1, and then show how
to implement it with local rules in Section 5.7.2.

If a machine head enters an error state, this triggers an error signal that propagates through the
trajectory of the machine. This signal is taken into account only for computation quarters.

5.7.1 Adaptation of computing machines model to linear block gluing property In this section we
present the way computing machines work in our construction. The model that we use is adapted in
order to have the linear block gluing property, and is defined as follows:
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space

Figure 32. Schema of time and space direction in the four different quarters of a cell.

Definition 40. A computing machine M is some tuple = (Q,A, δ, q0, qe, qs,#). The set Q is the
state set, A the alphabet, q0 the initial state, and # is the blank symbol, and

δ : A×Q → A×Q× {←,→, ↑}.

The other elements qe, qs are states in Q. They are such that for all q ∈ {qe, qs} and for all a in A,
δ(a, q) = (a, q, ↑).

The special states qe, qs in this definition have the following meaning:
• error state qe: a machine head enters this state when it detects an error or when it collides

with another machine head.
This state is not forbidden in the subshift, but this is replaced by the sending of an error

signal. We forbid the coexistence of the error signal with a well initialized tape. The machine
stops moving when it enters this state.

• shadow state qs: this state corresponds to the absence of head. We need to introduce this
state so that the number of possible space-time diagrams in finite cells has a closed form.

Any Turing machine can be transformed in such a machine by adding some state qs verifying the
properties listed above.

When the machine is well initialized, none of these states and letters will be reached. Hence this
machine behave as the initial one. As a consequence, one can consider that the machine we used has
these properties.

In this section, we use a machine which successively for all n ≥ 0 writes the bits s(n)
k , k = 1...n, on

positions pn = 2n (which is a computable function). This position corresponds to the number of the
first active column from left to right which is just on the right of an order n two dimensional cell on a
face amongst active columns

Recall that s is the Π1-computable sequence defined at the beginning of the construction. The
sequence (s

(n)
k ) is a computable sequence such that for all k, sn = infk s

(n)
k .

5.7.2 Implementation of the machines In this section, we describe the second sublayer of this layer.
Symbols:

The symbols are elements of the sets A×Q, A, Q2, Q, (A×Q)
2, and a blank symbol.

Local rules:
• Localization: the non-blank symbols are superimposed on information transfer rows and

columns, as well as positions corresponding to information transfer rows and columns on the
arms of the reticle and the east and west walls. More precisely:
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Q (A×Q)
2

A ∪A×Q

Q2A×Q

Figure 33. Localization of the machine symbols in the red quarter of an order two cell.

1. 2.

face 2
3.

Outputs
Inputs

4. 5. 6.

Figure 34. Schema of the inputs and outputs directions when inside the area (1)
and on the border of the area (2,3,4,5,6).

– the possible symbols for information transfer columns are elements of the sets A and
A×Q. The elements of A×Q are on computation positions. The other ones on the other
positions of these lines and columns.

– the positions on the vertical (resp. horizontal) arms of the reticle corresponding to an
information transfer line are colored with an element of Q2 (resp. (A×Q)

2). The first
coordinate corresponds to the machine heads entering in the west quarter. The second
one corresponds to machine heads entering in the east one (resp. machine head and letter
entering in the north and south ones).

– on the west and east walls, the symbols are in Q. They correspond to machine heads
entering in the adjacent quarter. See an illustration on Figure 33.

• Transmission:
Along the rows and columns, the symbol is transmitted while not on computation positions.
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q

a

(a, q)

Figure 35. Illustration of the standard rules (1) for the yellow quarter.

δ2(a, q)

(a, q)

δ1(a, q)

δ3(a, q) =←

δ2(a, q)

(a, q)

δ1(a, q)

δ3(a, q) =→

(δ1(a, q), δ2(a, q))

(a, q)

δ3(a, q) =↑

Figure 36. Illustration of the standard rules (2) for the yellow quarter.

q

a

(a, q)

Figure 37. Illustration of the standard rules (1) for the red quarter.

• Computation positions rules:
Consider some computation position. These rules depend on the orientation of the quarter

in the cell. We describe them in the north east quarter. The rules in the other quarters are
obtained by symmetry, respecting the orientation of time and space given on Figure 32.

For such a position, the inputs include:
(1) the symbols written on the south position,
(2) the first symbol written on the west position (except in the leftmost column, where the

input is the second symbol of the west position),
(3) and the second symbol on the east position (except when in the rightmost column, where

the input is the unique symbol written on east position).
The outputs include:
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δ2(a, q)

(a, q)

δ1(a, q)

δ3(a, q) =←

δ2(a, q)

(a, q)

δ1(a, q)

δ3(a, q) =→

(δ1(a, q), δ2(a, q)

(a, q)

δ3(a, q) =↑

Figure 38. Illustration of the standard rules (2) for the red quarter.

(1) the symbols written on the north position when not in the topmost row,
(2) the second symbol of the west position (when not in the leftmost column),
(3) and the first symbol on the east position (when not on the rightmost column).
Moreover, on the row near the reticle, the inputs from inside the area are always the shadow

state qs. The input from the bottom is free. As a consequence the couple written on the the
position is also free. This is also true for the elements of Q on the computation positions in
the leftmost and rightmost columns and the triple of symbols written on the position near the
nucleus.

See Figure 34 for an illustration.
On the first row, all the inputs are determined by the counter and by the above rule. Then

each row is determined from the adjacent one on the bottom and the inputs on the sides. This
is due to the following rules, which on each computation position determine the outputs from
the inputs:
(1) Collision between machine heads: if there are at least two elements of Q\{qs} in the

inputs, then the computation position is superimposed with (a, qe). The output on the
top (when this exists) is (a, qe), where a is the letter input below. The outputs on the
sides are qs. When there is a unique symbol in Q\{qs} in the inputs, this symbol is called
the machine head state (the symbol qs is not considered as representing a machine head).

(2) Standard rule:
(a) when the head input comes from a side, then the functional position is superimposed

with (a, q). It outputs the couple (a, q) above, where a is the letter input under,
and q the head input. The other outputs are qs. See Figure 35 for an illustration
of this rule.

(b) when the head input comes from under, the output is δ1(a, q) above when the
δ3(a, q) is in {→,←} and (δ1(a, q), δ2(a, q)) when δ3(a, q) =↑. The head output is
in the direction of δ3(a, q) when this output direction exists, and equal to δ2(a, q)
when this direction is in {→,←}. The other output is qs. See Figure 36 for an
illustration.
The computation positions rules in the other quarters are similar. These rules in a
purple quarter are obtained by reversing west and east, in the red one by reversing
west and east and moreover north and south, and in the yellow one by reversing
north and south. For instance the previous schemata are changed to the following
one in the red quarter.
This corresponds to changing the direction of time and space of evolution of the
Turing machine, as abstracted on Figure 32.
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(3) Collision with border: When the output direction does not exist, the output is (a, qe)
on the top. The output on the side is qs. The computation position is superimposed with
(a, q).

(4) No machine head: when all the inputs in Q are qs, then the output above is in A and
equal to a.

Global behavior:
In each of the quarters of any cell is implemented a computing machine according to our model,

with multiple machine heads on the initial tape and entering in each row. In the next section, we will
impose that in the computation quarters there are no machine heads entering on the sides. We also
impose that the tape is well initialized. This is done using signals. As a consequence, in these quarters
the computations are as intended. This means that a Turing machine writes successively the bits s(n)

k

on the pk = 2kth column of its tape (in order to impose the value of the frequency bits). It enters
in the error state qe when it detects an error - meaning that the corresponding frequency bit in the
column just on the right is greater than the written bit.

When this is not the case, the computations are determined by the rules giving the outputs on
computation positions from the inputs. When there is a collision of a machine head with the border
it enters into state qe and when heads collide, they fusion into a unique head in state qe.

5.7.3 Empty tape and sides signals This sublayer serves for the propagation of a signal which detects
if the initial tape of a machine is well initialized, and if a machine head enters on a side.
Symbols:

Elements of { , }2, elements of { , } and a blank symbol.
Local rules:

• Localization: the non-blank symbols are superimposed on and only on the arms of the reticle,
and the west and east walls. The east and west walls are colored with elements of { , },
and the reticle with element of { , }2.

• Triggering the signal: the topmost and bottommost positions of the two walls are super-
imposed with .

• Transmission rules:
(1) In the walls:

– On the north (resp. south) part of one of the walls, the symbol propagates
upwards while in the wall. It propagates downwards (resp. upwards) while not
encountering a symbol in Q\{qs}. When this is is the case, the color becomes .

– The symbol propagates downwards (resp. upwards) in the north (resp. south)
part of the wall, and upwards (resp. downwards) while not encountering a symbol
in Q\{qs}.

– The center of the wall is colored with a couple of colors. The first one is equal to
the color of the north position. The second one is equal to the color of the south
position.

With words, a signal propagates through the north (resp. south) part of the wall. This
signal is triggered in state . When it detects the first symbol in Q\{qs}, it changes its
state which becomes . This information is transmitted to the center of the wall.

(2) In the reticle: The rules for the reticle are similar, except that:
– there are two signals for each arm, one for each adjacent quarter.
– the propagation direction is to the east for the west arm, and to the west for the

east arm. The case of vertical arms is similar as the case of walls.
– when the signal starts in state : on the west arm (resp. east one) each signal

detects the first symbol from left to right (resp right to left) different from (#, qs)
when not on the rightmost position (resp. leftmost one), and different from (#, q0)
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when on this position. These symbols correspond to the quarter associated with
this signal.

– when it starts in state , the arm just transmits this information to the nucleus.
– In the vertical arms, the signals detect the first symbol different from qs, from south

to north for the south arm, and from north to south for the north arm.
• Computation quarters are initialized with empty tape and sides: considering a nu-

cleus u, the symbol on position u + e1 has first (resp. second) coordinate equal to if the
orange (resp. yellow) quarter is represented in the DNA.

• the symbol on position u − e1 has first (resp. second) coordinate equal to if the purple
(resp. red) quarter is represented in the DNA.

• There are similar conditions for the symbols on positions u± e2.

Global behavior:
These rules induce the propagation of a signal triggered in state which detects, for each of the

quarter, if the sides and the tape are well initialized: if this is not the case, then the signal detects
an error. It sends this information, which corresponds to state , to the nucleus through the reticle.
We forbid this signal to come from a quarter which is represented in the DNA. As a consequence, the
computation quarters are well initialized. The simulation quarters are left free.

Figure 39. Schema of a possible trajectory of a machine in a simulation quarter.
The empty tape and sides signals represented correspond to the south west quarter.
The dashed arrows represent the propagation direction of these signals.

5.7.4 Error signals Symbols:
This sub-layer has the following symbols: and .

Local rules:

• Localization: the symbol can be superimposed only on positions having in its machine
symbol a part in Q\{qs}.

• Transmission: for two adjacent vertical transfer or horizontal transfer positions, the symbols
in this sublayer are the same.

• when on a computation position u, if two of the positions u ± e1 and u ± e2 have a part in
Q\{qs}, these two positions have the same symbol in this layer.

• Triggering the error signal when on halting state: a position with a symbol having a
part equal to qh is superimposed with .
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• Machine heads can not enter in error state: if u is a nucleus position and the red quarter
(resp. yellow, orange, purple ones) is represented in the DNA, then the position u − e2 − e1

(resp. u− e2 + e1, u + e2 + e1, u + e2 − e1) can not be superimposed with
Global behavior:

When a machine enters in error state, then it sends through its trajectory an error signal (represented
by the symbol ). See Figure 39 for a schematic example of a possible trajectory of a machine. In
a computation quarter, since the tape is well initialized and the error signal is forbidden, this means
that the machines in such a quarter effectively forbid the frequency bits fn to be different from sn.

6 Entropy formula for the entropy of Xs,N and choices of the parameters.

In this section, we prove a formula for the entropy of the subshifts Xs,N . Using this formula, we
describe how to choose N so that the entropy generated by simulation is small enough. Then s is
chosen in order to complete this entropy so that the entropy of Xs,N is equal to h.

The formula relies on the density of the observable structures in the subshift XR.

6.1 Density properties of the subshift XR In this section we define the density of a subset of
Z2 and compute the density of some subsets related to the subshift XR.

Definition 41. Let Λ be a subset of Z2. Denote for n ≥ 1:

µn(Λ) =
∣∣Λ ∩ J−n, nK2

∣∣ .
The upper and lower densities of Λ in Z2 are defined as respectively

µ(Λ) = lim sup
n

µn(Λ)

(2n+ 1)2

and

µ(Λ) = lim inf
n

µn(Λ)

(2n+ 1)2
.

When the limit exists, it is called the density of Λ, and denoted µ(Λ).

Lemma 42. (1) Let Λ be a subset of Z2 having a density. Then Λc = Z2\Λ has a density and

µ(Λc) = 1− µ(Λ).

(2) Let (Λk)k=1..m be a finite sequence of subsets of Z2 such that for all j 6= k, Λj ∩Λk = ∅. Then
the set

⋃m
k=1 Λk has density equal to

µ

(
m⋃
k=1

Λk

)
=

m∑
k=1

µ(Λk).

Proof. (1) For all n, the number of elements of Λc in J−n, nK2 is (2n+1)2−|(Λ∩ J−n, nK2|. Hence
we have that

µn(Λc) = 1− µn(Λ).

This means that Λc has a density equal to 1− µ(Λ).
(2) For all n, the number of elements of

⋃m
k=1 Λk in J−n, nK2 is the sum of the numbers of elements

in Λk, k = 1...m. An immediate consequence is that

µn

(
m⋃
k=1

Λk

)
=

m∑
k=1

µn(Λk).

Hence the density of the set
⋃m
k=1 Λk is indeed the sum of the densities of the sets Λk, k = 1..m.
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Let x be some configuration in the subshift XR. For all k ≥ 0, Λk(x) denotes the set of positions
that are included in an order k cell, not included in any smaller cell, and on which a blue corner is
superimposed. Moreover, denote the set of positions on which is not superimposed a blue corner Λ∗(x).

Lemma 43. For all x in the subshift XR, we have the following:
(1) the density µ(Λk(x)) exists for all k ≥ 0 and

µ(Λk(x)) =
3k

4k+2

and the convergence of the functions x 7→ µn(Λk(x)) is uniform.
(2) the set Λ∗(x) has a density equal to

µ(Λ∗(x)) =
3

4

and the convergence of the functions x 7→ µn(Λ∗(x)) is uniform.
(3) for all m ≥ 0, the set (

⋃m
k=0 Λk(x))

c has a density equal to

µ

((
m⋃
k=0

Λk(x)

)c)
=

1

4

3m+1

4m+1
.

Proof. (1) From the form of the subshift XR, for any configuration x and for all n the set J−n, nK2

can be covered with a number smaller than (d 2n+1
2.4k+1 e + 1)2 of 2 · 4k+1-blocks centered on an

order k cell in the configuration x. In each of these blocks there are exactly 4 · 12k positions
in Λk (see the properties listed in Section 5.1.1). Moreover, such a pattern contains a number
of translates of J0, 2.4k+1K2 which is at least (b 2n+1

2·4k+1+1
c − 1)2. As a consequence, for all n, k,

4 · 12k ·
(b 2n+1

2·4k+1 c − 1)2

(2n+ 1)2
≤ µn(Λk)

(2n+ 1)2
≤ 4 · 12k

(d 2n+1
2·4k+1 e+ 1)2

(2n+ 1)2
.

This implies that
µn(Λk(x))

(2n+ 1)2
→ 12k

16k+1
=

3k

4k+2
.

(2) Moreover, the set J−n, nK2 is covered by at most (d 2n+1
2 e+ 1)2 blocks on J0, 1K2 such that the

symbol on position (0, 0) is a blue corner. This set contains at least a number (b 2n+1
2 c − 1)2

of translates of J0, 1K2. In each of these squares the number of positions in Λ∗(x) is 3. This
implies that

3
(b 2n+1

2 c − 1)2

(2n+ 1)2
≤ µn(Λ∗(x))

n
≤ 3

(b 2n+1
2 c − 1)2

(2n+ 1)2
,

and we deduce that
µ(Λ∗(x)) =

3

4
.

(3) From the second point of Lemma 42,

µ

((
m⋃
k=0

Λk(x)

)c)
+ µ

((
m⋃
k=0

Λk(x)

)c)
+ µ (Λ∗(x)) = 1.

As a consequence, using the two first points in the statement of the lemma and the second
point of Lemma 42,

µ

((
m⋃
k=0

Λk(x)

)c)
=

1

4
−

m∑
k=0

3k

4k+2
=

+∞∑
k=0

3k

4k+2
−

m∑
k=0

3k

4k+2
=

+∞∑
k=m+1

3k

4k+2
=

3m+1

4m+2
.
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6.2 A formula for the entropy depending on the parameters In this section we prove a
formula for the entropy depending on s and N .

Definition 44. Let (an)n be a sequence of non-negative numbers. The series
∑
an converges at a

computable rate when there is a computable function n : N→ N (the rate) such that for all t ∈ N,∣∣∣∣∣∣
∑

n≥n(t)

an

∣∣∣∣∣∣ ≤ 2−t

Remark 9. Let (an)n and (bn)n be two sequence of non-negative numbers such that for all n, an ≤ bn.
If the series

∑
bn converges at a computable rate, then the series

∑
an also converges at computable

rate.

Remark 10. Let (an)n be some sequence of real numbers. If the series
∑
an converges at computable

rate, then
∑+∞
n=0 is a computable number.

Lemma 45. There exists a sequence (κk)k≥0 of non-negative real numbers such that the series
∑
k κk

converges at computable rate, and the entropy of the subshift Xs,N is

h(Xs,N ) =
b4hc

4
+

N∑
k=0

3k

4k+2
sk +

1

2

+∞∑
k=N+1

3k

4k+2
sk +

+∞∑
k=N+1

κk.

Proof. Let us prove that

h(Xs,N ) =
∑+∞
k=N+1

(
1

32·16k
+ 1

32·8k log2(|A|) + 3
32·8k log2(|Q|) + 1

8.4k
+

log2(κ∗k)
4·16k+1

)
+ 1

2

∑+∞
k=N+1

3k

4k+2 (1 + sk)

+
∑N
k=0

3k

4k+2 sk
+ b4hc4

,

where (κ∗k)k is a computable sequence of integers.
Number of pattern on the proper blue corners positions in a cell:
For all k > N , the number of globally admissible patterns on the set of proper positions of an order

k cell is equal to
4 · |A|2·2

k

|Q|6·2
k

· (212k + 1)2 · 22·12ksk · 22·4·(4k−1) · κ∗(k).

Indeed:
(1) The factor 4 corresponds to the number of possibilities for the DNA symbol on the nucleus of

this cell [See Section 5.4].
(2) The factor |A|2·2k |Q|6·2k corresponds to the number of possibilities for filling the initial tapes

of the two simulation quarters and the set of states of the machine heads entering on the two
sides. Let us recall that the number of columns (resp. lines) in of quarter, that do not intersect
a smaller cell, is equal to 2k [See Section 5.7].

(3) The factor (212k + 1)2 corresponds to the possibilities for the random bits on blue corner
positions in these two quarters. Let us recall that the number of such positions in a quarter is
equal to 12k. Thus 212k is the number of possibilities for the random bits when the frequency
bit is 1, and 1 is the number of possibilities when the frequency bit is 0. [ See Section 5.2 and
Section 5.7].

(4) The factor 22·12ksk corresponds to the possibilities for random bits in the computation quarters,
since the frequency bit is determined to be sk [ See Section 5.2 and Section 5.7].

(5) The last factor 22·4·(4k−1) corresponds to the number of possibilities for the undetermined
in, out symbols in the two simulation quarters. Let us recall that 4k−1 is the number of lines
(resp. columns) intersecting a quarter of an order k cell (since the number of non determined
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symbols correspond the the number of possible contacts a segment can have with the reticle
or the walls of the cell). [See Section 5.6].

(6) The factor 4 is the number of sides of a quarter and 2 is the number of simulation quarters.
(7) κ∗k denotes the number of possibilities for the set of symbols in the error signals sublayer.

This number is not simple to express, since it depends on the states of machine heads on the
sides of the area after computation. However, for this reason it can be computed. We have
κ∗k ≤ 46·(4k+1+1) for the reason that the possible sets of error symbols correspond to the choices
of at most four symbols on every position of the walls and the reticle. [See Section 5.7].

When k ≤ N , this number is

24·12ksk ,

which corresponds to the number of possible sets of random bits.
Upper and lower bounds:
Let m > N . We shall give an upper bound and a lower bound on the number of (2n+ 1)-blocks in

the language of Xs,N , for all n. This depends on the integer m.
The lower bound is obtained as follows:

(1) we give a lower bound on the number of blue corners in an order k ≤ m cells, included in some
translate of J−n, nK2.

(2) we give a lower bound on the number of non-blue corners in this set.
(3) taking the product of the possible patterns over the union of these cells, we get a lower bound.

Consider some configuration x. The set J−n, nK2 contains at least
(
b 2n+1

2·4m+1 c − 1
)2 translates of

J1, 2 · 4m+1K2 centered on an order m cell. Moreover, there are at least a number
(
b 2n+1

2 c − 1
)2 of

translates of J0, 1K2 such that the (0, 0) symbol is a blue corner. On each of these squares, the number
of possible patterns on the set J0, 1K2\(0, 0) is 2b4hc.

N2n+1(Xs,N ) ≥
∏m
k=N+1

(
4 · |A|2·2k |Q|6·2k · (212k + 1)2 · 22·12ksk · 22·4·(4k−1) · κ∗k

)(b 2n+1

2·4k+1 c−1)
2

·
∏N
k=1

(
2(b 2n+1

2·4k+1 c−1)
2·4·12ksk

)
· 2(b 2n+1

2 c−1)
2b4hc

.

As a consequence,

log2(N2n+1(Xs,N ))
(2n+1)2 ≥ 1

(2n+1)2

∑m
k=N+1

(
b 2n+1

2·4k+1 c − 1
)2

(2 + 2 · 2k · log2(|A|) + 6 · 2k · log2(|Q|) + 8 · (4k − 1)

+ log2(κ∗k)) + 1
(2n+1)2

∑m
k=N+1

(
b 2n+1

2·4k+1 c − 1
)2 (

2 · 12k(1 + sk)
)

+ 1
(2n+1)2

∑N
k=1

(
b 2n+1

2·4k+1 c − 1
)2 · 4 · 12ksk

+ 1
(2n+1)2 ·

(
b 2n+1

2 c − 1
)2 b4hc

.

Taking n tending towards infinity, we obtain:

h(Xs,N ) ≥
∑m
k=N+1

(
1

32.16k
+ 1

32.8k
log2(|A|) + 3

32.8k
log2(|Q|) + 1

8.4k
+

log2(κ∗k)
4.16k+1

)
+ 1

2

∑m
k=N+1

3k

4k+2 (1 + sk)

+
∑N
k=0

3k

4k+2 sk
+ b4hc4

.

Indeed, from the upper bound on κ′(k), k > N the series corresponding to this sequence in the
formula above converges.

As this is true for all m > N , taking m→ +∞, we obtain
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h(Xs,N ) ≥
∑+∞
k=N+1

(
1

32·16k
+ 1

32·8k log2(|A|) + 3
32·8k log2(|Q|) + 1

8·4k +
log2(κ∗k)
4·16k+1

)
+ 1

2

∑+∞
k=N+1

3k

4k+2 (1 + sk)

+
∑N
k=0

3k

4k+2 sk
+ b4hc4

.

On the other hand, the upper bound is obtained as follows:
(1) Since any n-block of XR can be extended into an order dlog2(n)e + 4 supertile, there exists

some K > 0 such that for all n the number of n-blocks in the structure layer is smaller than
(2K(dlog2(n)e+4))2 ≤ 29Kn2K .

(2) For all m ≤ n and x, the set J−n, nK2 is covered by at most
(
d 2n+1

2·4m+1 e+ 1
)2 translates of

J1, 2 · 4m+1K2 centered on an order m cell.
(3) The set J−n, nK2 is covered by at most a number

(
d 2n+1

2 e+ 1
)2 of translates of J0, 1K2 such that

the (0, 0) symbol is a blue corner. On each of these squares, the number of possible patterns
on the set J0, 1K2\(0, 0) is 2b4hc.

(4) Λ′m(x) denotes the set of positions that are not in an order ≤ m cell in x. Then the number
of possibilities for these positions in J−n, nK2 is smaller than c|Λ

′
n(x)∩J−n,nK2|, where c is the

cardinality of the alphabet of the subshift Xs,N .
Hence we have the following inequality:

N2n+1(Xs,N ) ≤ 29Kn2K ·
∏m
k=N+1

(
4 · |A|2.2k |Q|6·2k · (212k + 1)2 · 22·12ksk · 22·4·(4k−1) · κ∗k

)(d 2n+1

2·4k+1 e+1)
2

·
∏N
k=0

(
2(d 2n+1

2·4k+1 e+1)
2·4·12ksk

)
· 2(d 2n+1

2 e+1)
2b4hc · c|Λ′m(x)∩J−n,nK2|

.

This implies, as for the lower bound, and since log2(29Kn2K)/(2n+1)2 → 0 when n tends to infinity,
and from the third point of Lemma 43, that

h(Xs,N ) ≤
∑+∞
k=N+1

(
1

32·16k
+ 1

32·8k log2(|A|) + 3
32·8k log2(|Q|) + 1

8·4k +
log2(κ∗k)
4·16k+1

)
+ 1

2

∑+∞
k=N+1

3k

4k+2 (1 + sk)

+
∑N
k=0

3k

4k+2 sk
+ b4hc4 + log2(c) 3m+1

4m+2

.

Taking m→ +∞, as 3m/4m → 0, we have the upper bound:

h(Xs,N ) ≤
∑+∞
k=N+1

(
1

32·16k
+ 1

32·8k log2(|A|) + 3
32·8k log2(|Q|) + 1

8·4k +
log2(κ∗k)
4·16k+1

)
+ 1

2

∑+∞
k=N+1

3k

4k+2 (1 + sk)

+
∑N
k=0

3k

4k+2 sk
+ b4hc4

.

�

6.3 Choosing the parameters values In this section we explain how to choose s, N and M such
that the entropy of Xs,N is equal to h and there exists someM such that for all k ≥ 1 integer, s2kM = 1
and s(2k+1)M = 0. This constraint on the sequence s will serve for the linear net gluing property. Here
is the process that we follow for these choices:

(1) we choose N > 0 and M > 0 such that

h >
∑+∞
k=N+1

(
1

32·16k
+ 1

32·8k log2(|A|) + 3
32·8k log2(|Q|) + 1

8·4k
)

+ 1
2

∑+∞
k=N+1

3k

4k+2

+
∑+∞
k=1

32kM

42(kM+1) + b4hc
4

.
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This is possible since b4hc4 < h. The other terms of the sum in the left member of this inequality
tends to 0 when N,M tends to +∞. For this value of M , we impose the constraint on s that
for all k ≥ 1 integer, s2kM = 1 and s(2k+1)M = 0.

(2) Since ∑
k=0

3k

4k+2
+
b4hc

4
=

1

4
+
b4hc

4
> h,

the maximal value for the entropy h(Xs,N ) for s verifying the constraint is greater than h.
Moreover, the minimal value is smaller than h. The number

z′ =
∑+∞
k=N+1

(
1

32·16k
+ 1

32·8k log2(|A|) + 3
32·8k log2(|Q|) + 1

8·4k
)

+ 1
2

∑+∞
k=N+1

3k

4k+2 +
∑+∞
k=1

32kM

42(kM+1) + b4hc
4

is computable, and as a consequence the number

z = h− z′

is a Π1-computable number. Hence we now have to choose s a Π1-computable sequence in
{0, 1}N such that the number

1

2

+∞∑
k=N+1

3k

4k+2
sk +

N∑
k=0

3k

4k+2
sk

is equal to z. This is possible since z is a Π1-computable number.
For these values of s and N and given the choice of M , the subshift Xs,N is denoted Xh.

7 Linear net gluing of Xh

In this section we prove that the subshift Xh is linearly net gluing. This proof consists of two steps:
first proving that any block can be extended into a cell, with control over the size of this cell. Then we
prove the gluing property on cells having the same order. For reading this section, the reader should
have some familiarity with the construction of the Robinson subshift [Rob71].

7.1 Completing blocks The point of this section is to prove the following lemma:

Lemma 46. Let n ≥ 0 an integer, and P some 2n+1− 1-block. This pattern can be completed into an
admissible pattern in Xh over an order(

2

(⌈ n+ 1

2 · 2M

⌉
+ 1

)
+ 3

)
M

cell.

Proof. Let n ≥ 0 an integer and P some 2n+1 − 1-block which appears in some configuration x of the
subshift Xh.

(1) Intersecting four order 2n supertiles:
This part of the proof is similar to the beginning of the proof of Lemma 16. The pattern

P can be extended in the configuration x into a pattern over some pattern over one of the
structure layer patterns on Figure 47, composed with four 2n order supertiles with a cross
separating them.

(2) Completing the structure, frequency bits and basis:
All these patterns intersect non-trivially at most two different cells in the configuration x,

one included into the other. The intersection with the small one is included into the union of
two quarters of the cell with the separating segment. The intersection with the great one is
included into a quarter of this cell. Similarly as in the proof of Lemma 16, the new formed
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pattern can be completed into an order
⌈⌈log2(2n+1−1)

⌉
2

⌉
+ 2 + k cell, for any k ≥ 0 in the

Robinson sub-layer. However, in the present proof, we have to take care about the frequency
bits of these two cells. Indeed, the order of the cell into which the pattern is completed has to
be coherent with the frequency bit.

That is why we slightly modify the way we complete the structure layer. In the cases when
the pattern intersects non-trivially two cells (the schemata corresponding to the case of an
intersecting with two cells are illustrated on Figure 47: they are the ones marked with 1, 2, 3,
the second one (from top to bottom and right to left) marked 5′, the ones marked with 6, 7,
the third one marked with 8, and the first one marked 9), we first complete the smallest cell

into a cell having minimal order greater than
⌈⌈log2(2n+1−1)

⌉
2

⌉
+ 2. This is done in such a way

that the corresponding bit is imposed to be equal to the actual bit attached to the part of the
cell intersecting the pattern at this point. This means that we extend this part into an order
k ·M cell, with k equal to

2

⌈
⌈
log2(2n+1 − 1)

⌉
2 · 2M

⌉
+ 1


or

2

⌈
⌈
log2(2n+1 − 1)

⌉
2 · 2M

⌉
+ 1

+ 1

Then the part of the second cell is completed into an order k′M cell, with k′ equal to

2

⌈
⌈
log2(2n+1 − 1)

⌉
2 · 2M

⌉
+ 1

+ 2

or

2

⌈
⌈
log2(2n+1 − 1)

⌉
2 · 2M

⌉
+ 1

+ 3.

Thus, in any case, the initial pattern can be completed into an order(
2

(⌈ n+ 1

2 · 2M

⌉
+ 1

)
+ 3

)
M

cell.
The case when the pattern intersects non-trivially only one cell, this completion is done

similarly.
After this, one can complete the frequency bits layer according to the values in the initial

pattern. One can also complete the synchronization net sublayer and the synchronization layer,
since these are determined by the Robinson sublayer and the frequency bits. Then the random
bits are chosen according to the frequency bits.

(3) Completing the computation areas, machines trajectories, and error signals:
In this paragraph, we describe how to complete the other layers (computation areas and

machines layers) over this completed pattern.
For each of the two non-trivially intersected cells, the lines and columns that do not intersect

the initial pattern and that are between this pattern and the nucleus are colored (out, out).
This allows the extension of the pattern in the machine layer simply by transport information
between the nucleus and this part of the area. Indeed, there is no computation position
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outside the initial pattern. This is illustrated on Figure 41. When completing the machine’s
trajectories in the direction of time, we simply apply the computation rules of the machine.

Error signals for the computation areas are triggered by these choices. We choose the
propagation direction according to the presence or the absence of an error signal in the initial
pattern. This is illustrated on Figure 40. The empty tape and sides signals and error signals
of the machines are completed in a similar way.

If the nucleus was in the initial pattern, then all these layers can be completed according to
the configuration x. If this was not the case, then we choose the DNA such that the quarters
present in the initial pattern - there are at most two since the nucleus is not in the initial
pattern - are not represented in the DNA.

Figure 40. Illustration of the completion of the arrows according to the error signal
in the known part of the area, designated by a dashed rectangle. The yellow color
designates some (out, out) column.

Transport of information Computations

Figure 41. Illustration of the completion of the in, out signals and the space-time
diagram of the machine. The known part of the cell is surrounded by a black square.
The yellow lines and columns are colored with a symbol different from (in, in) in the
computation areas layer, while the blue columns and lines are.

�
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7.2 Linear net gluing of Xh

Theorem 47. The subshift Xh is linearly net gluing.

Proof. Let P and Q be two (2n+1 − 1)-blocks in the language of Xh. These two patterns can be
completed into admissible patterns over order(

2

(⌈n+ 1

2.2M

⌉
+ 1

)
+ 3

)
M

cells. The gluing set of these two cells is

4

(
2

(⌈
n+1
2.2M

⌉
+1

)
+3

)
M+2

· Z2\(0, 0).

This means that there exists some vector u such that the gluing set of the pattern P contains

u + (2n+1 − 1 + f(2n+1 − 1)) · Z2\(0, 0),

where

f(2n+1 − 1) = 4

(
2

(⌈
n+1
2·2M

⌉
+1

)
+3

)
M+2

− 2n+1 + 1 = O(2n+1 − 1).

As a consequence of Proposition 5, the subshift Xh is linearly net gluing. �

8 Transformation of Xh into a linearly block gluing SFT

In this section, we prove that every Π1-computable non-negative real number is the entropy of some
linearly block gluing Z2-SFT.

In order to prove this assertion, we use modified versions of the operator dA, depending on an integer
parameter r ≥ 1, that we denote d(r)

A . The definition of the operators d(r)
A consists in imposing that

the curves appearing in the definition of dA are composed by length r straight segments, as illustrated
on Figure 42.

→ → → ↓ ↓ ↓ → → →
↓ ↓ ↓ → → → → → →

Figure 42. Making the curves more rigid. In this example, r = 3.

Each of these segments can be superimposed with random colors defined to be a length r word
amongst the words 0r, 10r−1, ..., 1r. This sequence is imposed to be 0r when the segment is not
surrounded with other segments, as illustrated on Figure 43.

The idea behind this definition is that with these random colors, the patterns crossed only by
straight curves are the most numerous ones, and thus the entropy is easier to compute, with the cost
of a parasitic entropy. The parameter r serves to control the parasitic entropy.

→ → → → → → → → →
→ → → → → → → → →
→ → → → → → → → →

Figure 43. Segment (colored red) surrounded by other ones. In this example, r = 3.

Ãr denotes the alphabet of d(r)
A . The operators d(r)

Ãr
◦ ρ ◦ d(r)

A still transform linearly net gluing

subshifts into linearly block gluing ones, and the entropy of d(r)
A (Z) for a subshift Z is a function of

h(Z):
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Theorem 48. For any Z on Z2 and on alphabet A, the entropy of d(r)
A (Z) is

h(d
(r)
A (Z)) = h(Z) +

log2(1 + r)

r
.

Since any non-negative Π1-computable number is the entropy of a linearly net gluing SFT, for all
r ≥ 1, all the numbers in

[
2 log2(1+r)

r ,+∞
[
(the factor 2 here comes from the fact that we apply two

operators) are entropy of a linearly block gluing SFT. As a consequence, since 0 is the entropy of the
full shift on alphabet {0}, which is linearly block gluing, all the non-negative Π1-computable numbers
are entropy of a linearly block gluing SFT.

Remark 11. It is natural to think that Theorem 48 is much more stronger than needed in the context
of this article, and that we only need to prove that the difference

h(d
(r)
A (Z))− h(Z)

is always a computable number. However, this statement would be as difficult to prove as Theorem 48.
The reason is that is in order to express the entropy h(d

(r)
A (Z)) in relation with h(Z), we need tight

bounds on the number of size n square patterns in the product of the first, third and fourth layers in the
definition of the image d(r)

A (Z) (see below), without which the natural bounds on the number of size n
square patterns of d(r)

A (Z) would not lead to sufficient information on h(d
(r)
A (Z)). From these bounds,

it is not a great effort to deduce the exact value of

h(d
(r)
A (Z))− h(Z).

Question 1. In this proof, the entropy 0 is obtained in a different way than other Π1-computable
numbers. Is there some non-trivial SFT which is linearly block and have entropy 0 ?

8.1 Definition of the operators d(r)
A (Z) Let Z be a Z2-SFT on alphabet A, and r ≥ 1. The

subshift d(r)
A (Z) is defined as a product of four layers:

(1) the first layer is ∆,
(2) the second one is Z, with similar rules with respect to ∆ as in the definition of dA.
(3) the counter layer [Section 8.1.1]: in this layer we impose, using a counter, the curves to be

composed of length r segments.
(4) the random colors layer [Section 8.1.2]: here we superimpose random colors to the length r

segments of curves.

8.1.1 Counter layer Symbols:
The elements of Z/rZ and a blank symbol.

Local rules:

• Localization: the non blank-symbols are superimposed on and only on the positions having
a → symbol in the ∆ layer.

• Incrementing the counter: over a pattern

→→

or
→ ↓
↓ →

in the ∆ layer, if the value of the counter on the left position with → is i, then the value on
the right position is i+ 1.
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• The curves can shift downwards only on position with maximal counter value: on
the pattern

→ ↓
↓ → ,

the left position with → has counter value equal to r − 1.
Global behavior:

On each curve induced by the restriction to the ∆ layer we superimpose independent counters that
are incremented along the curves. A curve can shift downwards only when the counter has maximal
value. This implies that the curves are composed of length r segments. A segment is defined to be a
part of the curve between two consecutive positions where the counter has value 0 and r − 1.

8.1.2 Random colors layer Symbols:
The symbols of this layer are 0, 1 and a blank symbol.

Local rules:
• Localization: the bits 0, 1 are superimposed on and only on positions with symbol →.
• Restriction of the possible colors: Along a length r segment of curve, the symbol 1

propagates to the left. The symbol 0 propagates to the right.
• Isolation rule: if a segment is not surrounded by other segments, its color is 0r.

Global behavior:
Each length r segment is attached with a word in {0r, 10r−1, ..., 1r}. Moreover, if the segment is

not surrounded by other segments, its color is 0r.

8.2 Transformation of linearly net gluing subshifts into linearly block gluing ones We
have a result similar to Theorem 33 for the operators d(r)

A :

Theorem 49. For all r ≥ 0, the operator d(r)

Ãr
◦ ρ ◦ d(r)

A transforms linear net-gluing subshifts of finite
type into linear block gluing ones.

Proof. The steps of the proof of this theorem are exactly the same ones as for the proof of Theorem 33.
However, the gap function of the image subshift is r times the gap function of the image subshift
obtained when applying dÃ ◦ ρ ◦ dA. The presence of the counters do not have any impact since when
we proved that two patterns can be glued we don’t connect the curves of the two patterns. �

∆′r denotes the subshift that consists in the product of the ∆ layer with the counter layer and
random colors layer, with rules relating these layers. Moreover, ∆r denotes the product of the ∆ layer
with the counter layer, with rules relating these layers.

The following sections are devoted to the proof of Theorem 48.

8.3 Lower bound

Lemma 50. For any subshift Z on alphabet A, we have the following lower bound on the entropy of
d

(r)
A (Z):

h(d
(r)
A (Z)) ≥ h(Z) +

log2(1 + r)

r
.

Proof. The language of d(r)
A (Z) contains all the kr-blocks whose symbols in the ∆ layer are all equal

to → and such that in the first column, the value of the counter is 0 in each line.
The number of such patterns is Nkr(Z) · (r + 1)rk

2

(the first factor is the number of choices in the
Z layer and the other one is the number of choices in the random colors layer). Hence

Nkr(d
(r)
A (Z)) ≥ (r + 1)rk

2

·Nkr(Z).
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Which implies
log2(Nkr(d

(r)
A (Z)))

kr · kr
≥ log2(1 + r)

r
+

log2(Nkr(Z))

kr · kr
.

We deduce, taking k → +∞, that

h(d
(r)
A (Z)) ≥ log2(1 + r)

r
+ h(Z).

�

8.4 Upper bound We prove an upper bound for h(d
(r)
A (Z)) in two steps:

(1) In Section 8.4.1, we prove a bound on the number of possible pseudo-projections of a kr-block
onto the subshift Z. This is done ussing an upper bound on the number of curves crossing a
n-block.

(2) In Section 8.4.2, we give an upper bound on the number of kr-blocks in ∆′r. We do this
by analyzing the possible ways to extend a kr-block in the language of this subshift into a
(k + 1)r-block which stays admissible.

8.4.1 Upper bound on the number of pseudo-projections

Lemma 51. Let n ≥ 1 and P be some n-block in the language of ∆r. The number of curves crossing
P is equal to kn + k′n, where kn is the number of → symbols on the south west - north east diagonal
and k′n is the number of patterns

→ ↓
→

such that the ↓ symbol is on the south west - north east diagonal.

Proof. Each curve crossing P crosses the diagonal. This is due to the fact that in each column, the
curve goes straightly onto the right or is shifted downwards. When it crosses the diagonal, there are
two possibilities: either it is shifted downwards, and it corresponds to the pattern

→ ↓
→ ,

or it is not and this corresponds to the symbol → on the diagonal. Hence counting this patterns gives
the number of curves crossing P . On Figure 44, the pattern has three times the symbol → on the
diagonal and once the pattern

→ ↓
→ .

One can see that the total is equal to the number of curves crossing this pattern.

→ → → → → →
→ → → → ↓ ↓
→ ↓ ↓ ↓ → →
↓ → → → ↓ ↓
→ → → ↓ → →
↓ ↓ ↓ → → →

Figure 44. Example of pattern P in the ∆ layer. The patterns on the diagonal
allow the number of curves to be counted. In this example, r = 3.

�
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Lemma 52. The number of pseudo-projections of a kr-block pattern in the language of d(r)
A (Z)) is

smaller or equal to Nkr(Z).

Proof. A consequence of Lemma 51, a kr-block contains at most kr curves and the number of positions
of a curve in a kr block is smaller than kr. Hence the number of pseudo-projections of a kr-block on
Z is smaller than Nkr(Z). �

8.4.2 Upper bound on the number of colored curves patterns In this section, we give an upper bound
on the number of kr-block in the language of ∆′r, for k ≥ 1. It relies on an upper bound on the number
of patterns in specific sets, defined as follows.

Consider some kr-block P in the language of ∆r. Define UP to be the minimal set containing
J0, kr − 1K2 such that there exists some pattern P ′ - which is unique - on support UP :

• whose restriction on J0, kr − 1K2 is P ,
• and such that the leftmost (resp. rightmost) position in any curve in P ′ crossing the left (resp.

right) side of P has counter 0 (resp. r − 1).
On Figure 45, one can find some example of such completion of a block P into the pattern P ′.

→ → → → → → ↓ ↓
→ → → ↓ ↓ → → →

↓ ↓ → → → ↓
→ → → → → → ↓ → → →

↓ ↓ ↓ ↓ → → →
→ → → → → → ↓

0 1 2 0 1 2
0 1 2 0 1 2

0 1 2
0 1 2 0 1 2 0 1 2

0 1 2
0 1 2 0 1 2

Figure 45. Illustration of the extension of a block by completing the segments,
r = 3. The pattern P is represented by dark symbols, and is completed into the
projection of P ′ by red ones.

Let us denote Tkr the set of patterns in the language of ∆′r whose projection on ∆r is P ′ for some
kr-block P in the language of ∆r.

Lemma 53. For all k ≥ 1, we have the following upper bound on the number of kr-blocks in the
language of ∆′r:

|Nkr(∆′r)| ≤ α(r).2λ(r)·k(r + 1)rk
2

,

where α(r), λ(r) > 0 depend only on r.

Idea of the proof. The idea of the proof is to get an upper bound on the cardinality of Tkr for all
k ≥ 1 considering the possible extensions of a pattern in Tkr into a pattern of T(k+1)r. We derive then
an upper bound for the number of kr-blocks in the language of ∆′r.

Proof. (1) Upper bound on the extensions of patterns in Tkr into patterns of T(k+1)r:
Consider some pattern Q in Tkr. We will first consider the number of possibilities to extend

this pattern on the right side and then on the top, as illustrated on Figure 46.
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1.

2.

Q ∈ Nk

Q′ ∈ Nk+1

C

Figure 46. Illustration of the considered order for completion in order to give an
upper bound on |T(k+1)r|/|Tkr|.

(a) Extensions on the right side:
The restriction C ofQ on the rightmost complete column {kr−1}×J0, kr−1K (colored gray
on Figure 46) is sub-pattern of a pattern C ′ over {kr− 1}× J−1, krK or {kr− 1}× J0, krK
such that this pattern is the (vertical) concatenation of patterns

→
...
→
↓

.

One can see this by adding a symbol → on the top, and a symbol ↓ on the bottom if the
bottommost symbol in this column is → (we do not complete C into C ′, which is just an
artifact allowing an upper bound on the number of ways to extend Q on its right side).
Each of these patterns corresponds to a set of vertically consecutive curves going out of
the pattern Q through its right side.
A completion of Q on the right side is determined by the following choices:
• for each of the outgoing curves, choose if this curve is shifted downwards in the set

of additional positions or not.
• for each of the added segments of curve, choose a color to superimpose over it.

Moreover, for each set of consecutive curves, if one of these curves is shifted downwards,
this forces the curves in this set to be shifted downwards as well in the set additional
positions. This shift is realized in a column on the left of the column where the first curve
is shifted. Since the additional shift positions lie in a set of r consecutive columns, this
means that only the r bottommost curves in this set can be shifted downwards in the
additional columns. The number of possible choices for these shifts is min(j, r) (since the
position of the shift is determined by the counter), where j is the number of curves in this
set.
For this set of curves the number of choices for the colors is (r + 1)j . As a consequence,
for a set of consecutive curves represented by a pattern

→
...
→
↓

,
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with j symbols→, the number of possible extensions on the right of this pattern is smaller
than (r + 1)j+1. Since in this formula, j + 1 is the height of the pattern

→
...
→
↓

,

the number of possible extensions of Q on the right side is smaller than the product of
these numbers. This is equal to

(r + 1)kr+2,

kr being the height of the pattern C.
(b) Extensions on the top:

Let us consider a possible completion Q(1) of Q on the right side. We give an upper bound
on the number of possible ways to complete this pattern on the row J0, (k+1)r−1K×{kr}
just above this pattern. This depends only on the restriction of Q(1) on J0, (k + 1)r −
1K × {kr − 1}. This way, taking the power r of this bound will provide a bound for the
possible completions of Q(1) into a pattern Q(2) of T(k+1)r.
The restriction of Q(1) on its topmost row J0, (k+ 1)r− 1K×{kr− 1} can be decomposed
into a (possibly empty) concatenation of patterns

→ . . .→↓ . . . ↓,
possibly followed on the right by a pattern

→ . . .→,
and possibly preceded on the left by a pattern

↓ . . . ↓ .
For instance, on the following pattern, we represent the decomposition with parentheses:

(↓↓↓) (→→→↓↓↓) (→→→↓↓↓) (→→→) .

According to this decomposition, the possibilities for completing Q′ on the top are as
follows:
• If the pattern on the top row of Q(1) is equal to

→ . . .→,
then the pattern can extended on top with some pattern which consists in the
concatenation of

↓ . . . ↓,
with

→ . . .→
on the right, one of which can be empty. For instance, if the pattern on the top row
is

→ → → → → →
and r = 3, one can extend the pattern in the following ways:

↓ ↓ → → → → → →
→ → → → → → ,

→ → → → → →
→ → → → → → ,
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or
↓ ↓ ↓ ↓ ↓ ↓
→ → → → → → .

– When we extend with the pattern

→ . . .→,

there are r possibilities for the positions of the counter symbols, and at most
(r + 1)k+2 possibilities for the random colors of the added segments (there
are at most (k + 2) ones). As a consequence, in this case there are at most
r(r + 1)k+2 ≤ (r + 1)k+3 possible extensions.

– When we extend with some pattern

↓ . . . ↓→ . . .→,

there are r possibilities for the rightmost position of the row where the counter
has value 0. For each j such that the added curve shifts downwards in a column
between the jrth and the (j + 1)r− 1th one, the number of possible colorings
of this curve is at most (r + 1)k−j+1 (since in this case, the number of added
segments is at most (k− j+ 1)). As a consequence, the number of completions
in this case is at most

r

k+1∑
j=1

(r + 1)j = r(r + 1)
(r + 1)k+1 − 1

r + 1− 1
≤ (r + 1)k+2.

• When the pattern on the top row of Q(1) is

↓ . . . ↓,

the only possibility for completion in the ∆ layer is by

→ . . .→ .

The number of possibilities in the other layers is given by the choice of the counter
position and the colors, and is smaller than (r + 1)k+3.
• Mixed cases: For the same reasons as in the two previous cases, the number of

possible extensions on the top of the → . . .→ pattern in the decomposition of the
top row pattern and the ↓ . . . ↓ pattern, and the leftmost (resp. rightmost) pattern

→ . . .→↓ . . . ↓

when there is no pattern ↓ . . . ↓ (resp. → . . .→) in the decomposition, are at most

(r + 1)

⌈
l
r

⌉
+3
,

where l is the length of this pattern.
The possible extensions over the other patterns

→ . . .→↓ . . . ↓

in the decomposition are as follows:
– the r

⌈
m
r

⌉
rightmost symbols in the extending row are equal to →, where m

is the length of the sub-pattern ↓ . . . ↓: this is imposed by the presence on
the right of → symbols. This corresponds to a shifted curve, which has to go
straight while there are symbols ↓ below it during a number rj of columns, for
some j. In this step, the colors of the added segments is 0r, since they are not
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surrounded by other segments. At this point, the completion over this part of
the top row looks as follows:

→ → →
→ → → → → → ↓ ↓ .

– then we have to choose the position of the shift of this curve in the row that we
are adding. Indeed, the top row pattern is preceded by ↓ symbols on the left.
This means that this is shifted downwards there. The added curve has thus to
be shifted in a column on the right of this one. For these added segments, we
have to choose a color.

For these patterns, the number of possible extensions is thus at most⌊
l
r

⌋
−1∑

k=0

(r + 1)k ≤ (r + 1)

⌊
l
r

⌋
,

where l is the length of this pattern. Indeed, there are at most
⌊
l
r

⌋
added segment

over this part of the top row, and that at least one of them has trivial color 0r.
As a consequence, in these cases, the number of possible extensions over the top row
is at most (r+1)

L
r +8, where L is the total length of the top row. As a consequence,

since L = rk, this number is equal to

(r + 1)k+9.

In any of these cases the number of possible extensions is smaller than (r+ 1)k+9. Hence
the total number of possible extensions of a pattern in Tkr into a pattern in T(k+1)r is at
most 3(r + 1)k+9, since there are three cases.

(2) Upper bound on the cardinality of Tkr:
As a consequence, the number of possible extensions of a pattern in Tkr into a pattern in

T(k+1)r is at most

(r + 1)kr+2
(
3(r + 1)k+9

)r
= 3r(r + 1)2kr+9r+2.

It follows, using inductively this inequality, that the number of pattern in T(k+1)r is smaller
than

|Tr| · (r + 1)k·(2+9r) · 3k·r · (r + 1)2r
∑k
i=1 i = |Tr| · (r + 1)k·(2+9r) · 3kr · (r + 1)rk(k+1).

(3) Upper bound on Nkr(∆
′
r):

As a consequence, the number of kr-blocks in the language of ∆′r is smaller than

|Tr| · (r + 1)k·(2+10r) · 3kr · (r + 1)rk
2

· (r + 1)2(k+1)r,

since any kr-block is sub-pattern of a pattern in T(k+1)r.
�

Proof. of Theorem 48: As a consequence of Lemma 52, and Lemma 53, we get that the number of
kr-blocks in the language of d(r)

A (Z) smaller than

Nkr(Z) · α(r) · 2λ(r).k · (r + 1)rk
2

·

Hence,

h(d
(r)
A (Z)) ≤ h(Z) +

log2(1 + r)

r
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Using Lemma 50, we have the equality:

h(d
(r)
A (Z)) = h(Z) +

log2(1 + r)

r
.

�
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Figure 47. Possible orientations of four neighbor supertiles having the same order.
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