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We generalize the classical definition of effectively closed subshift to finitely generated 
groups. We study classical stability properties of this class and then extend this notion 
by allowing the usage of an oracle to the word problem of a group. This new class 
of subshifts forms a conjugacy class that contains all sofic subshifts. Motivated by the 
question of whether there exists a group where the class of sofic subshifts coincides with 
that of effective subshifts, we show that the inclusion is strict for several groups, including 
recursively presented groups with undecidable word problem, amenable groups and groups 
with more than two ends. We also provide an extended model of Turing machine which 
uses the group itself as a tape and characterizes our extended notion of effectiveness. As 
applications of these machines we prove that the origin constrained domino problem is 
undecidable for any group of the form G ×Z subject to a technical condition on G and we 
present a simulation theorem which is valid in any finitely generated group.

© 2016 Elsevier B.V. All rights reserved.

0. Introduction

Symbolic dynamics were originally defined on Z in the highly influential article of Morse and Hedlund [14] in order to 
study discretization of dynamical systems. The main object in this theory is the subshift, that is, a set of colorings of a group 
by a finite alphabet which is defined by a set of forbidden patterns. In the case of the group Zd with d ≥ 2, it turns out 
that subshifts enjoy interesting computational properties, among which is the undecidability of the domino problem [5,22]. 
Said otherwise, there is no general algorithm deciding if there exists a coloring which avoids a finite set of patterns. This 
problem can be naturally generalized to any finitely generated group, nevertheless no characterization of the groups where 
the domino problem is undecidable is yet known, even if some partial results have arisen [21,2,4].

More recently, the use of computability theory has become essential in the study of subshifts of finite type (SFT), those 
defined by a finite set of forbidden patterns. For example, in Zd for d ≥ 2 the possible entropies of SFTs are characterized 
as right recursively enumerable numbers [16]. This type of results comes from the possibility to encode Turing machines 
inside Zd-SFTs. The study of such results led to the introduction of the class of effectively closed Zd-subshifts, defined by a 
recursively enumerable set of forbidden patterns. This class was introduced by Hochman [15] who showed that they admit 
an almost trivial isometric extension which is a subaction of a Zd+2-SFT. The construction was improved with two different 
techniques [3,11] to get a realization in sofic Zd+1-subshifts as projective subdynamics. Thus with an increase of one of the 
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dimension, effectively closed Zd-subshifts are very close to sofic subshifts. Hochman’s result suggests that if we play with 
the structure on which subshifts are defined, some strong links between sofic and effectively closed subshifts may emerge.

In this direction we investigate subshifts defined on infinite finitely generated groups and define a generalized notion of 
effectiveness. The difficulty for this task relies on the possibility, even for a finitely presented group, to have an undecid-
able word problem [19,6] – no algorithm can decide whether a word on the generators and their inverses represents the 
identity element. We study the restrictions of this class with respect to this problem and define an extended definition of 
effectiveness by allowing the usage of oracles to the word problem of the group.

The paper is organized as follows. Section 1 presents notations and basic notions from group theory and symbolic 
dynamics on finitely generated groups. In Section 2 we introduce a general model for effectively closed subshifts based 
on pattern codings and study its properties. We show that this class can be defined either by recursively enumerable or 
decidable sets of pattern codings, that it contains all subshifts of finite type and that it is stable under finite intersections. 
We also show that under the assumption that the underlying group is recursively presented this class can be defined using 
a maximal set of pattern codings, it is stable under factors, finite unions and projective subdynamics. Therefore showing 
that this class contains all sofic subshifts and that the property of being effectively closed is invariant under conjugacy. In 
order to express the limitations of this class even when the group is recursively presented we introduce in Subsection 2.2
the one-or-less-subshift X≤1 which has the property of being effectively closed in recursively presented groups if and only if 
the word problem is decidable. This example, besides illustrating the limitations of the notion of effectively closed subshifts, 
answers an open question posed by Dahmani and Yaman [10,9,24]. In Subsection 2.3 we briefly introduce G-effectively 
closed subshifts as objects which are defined by a Turing machine with access to an oracle of the word problem of the 
group and we proceed to list their properties. We also show that while this is a good theoretical frame in many aspects, it 
does not behave well with respect to projective subactions. We end Section 2 by studying the following question: Is there a 
group G where the class of effectively closed subshifts coincides with the class of sofic subshifts? This question is motivated 
by the novel work in [1] where they show that this property is held for structures resembling subshifts defined in shears 
of the Baumslag–Solitar group B S(1, 2) under the assumption of a technical property. While their result is certainly quite 
specific, it raises the previous question in a natural way. We give a negative answer to that question for three classes of 
groups, namely:

• recursively presented groups with undecidable word problem – Theorem 2.14,
• infinite amenable groups – Theorem 2.16,
• groups which have two or more ends – Theorem 2.17.

In Section 3 we introduce an abstract model of Turing machines which instead of a bi-infinite tape uses a group. These 
objects are quite similar to Turing machines except that they move using a finite set of generators of G and work over 
patterns instead of words. This object allows us to define recursively enumerable and decidable sets of patterns and gives a 
way to construct explicitly Turing machines with oracles. In Theorems 3.3 and 3.4 we make this relationship explicit with 
the aims of concluding in Corollary 3.5 that these machines give an alternative definition of G-effectively closed subshifts 
by G-machines. We end Section 3 by giving two applications of these objects: In Theorem 3.7 we show that if a group 
G satisfies that X≤1 is sofic then the origin constrained domino problem of G × Z is undecidable. We also show that this 
implies that the domino problem for (G ×Z) ∗ H is undecidable for any non-trivial finite group H . In Theorem 3.8 we show 
that for every infinite and finitely generated group G there exists a universal subshift U defined over G × Z such that the 
product of U with a G × Z-full shift can be restricted by a finite amount of forbidden patterns and a factor code to obtain 
any G-effectively closed subshift as a projective subdynamics.

1. Preliminaries and notation

We assume from the reader basic knowledge about group theory and group presentations, two good references are
[7,18]. For a group G we denote by 1G its identity element. In this article we consider only finitely generated groups, and 
we denote by S ⊂ G an arbitrary finite set of generators which is closed by inverses and contains the identity. If two words 
w1, w2 in S∗ represent the same element in G we write w1 =G w2. The undirected right Cayley graph of G given by S , 
denoted by �(G, S), is a vertex transitive graph whose vertices are elements of G and {g, h} ∈ (G

2

)
form an edge if there is 

s ∈ S such that gs = h. For g ∈ G we denote by |g| the length of the shortest path from 1G to g in �(G, S). We also denote 
the ball of size n ≥ 0 in �(G, S) as Bn = {g ∈ G | |g| ≤ n}. Naturally, the definitions above depend on the choice of generating 
set S , nevertheless all the metrics generated by the distances in such a Cayley graph are equivalent.

The word problem of G is defined as the formal language:

WP(G) = {
w ∈ S∗ | w =G 1G

}
.

It can be shown that the decidability of the word problem is independent of the choice of generating set S , thus the 
notation WP(G) is appropriate. A fundamental result of Novikov [19] and Boone [6] exhibits finitely presented groups with 
undecidable word problem.

Let A be a finite alphabet. We say that the set AG = {x : G →A} equipped with the left group action σ : G ×AG →AG

such that (σg(x))h = xg−1h is a full shift. The elements a ∈ A and x ∈ AG are called symbols and configurations respectively. 
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With the discrete topology on A, the product topology in AG is compact. This topology is generated by a clopen subbasis 
given by the cylinders [a]g = {x ∈AG |xg = a ∈A}. Since G is countable, AG is metrizable and an ultrametric which generates 
the product topology is given by d(x, y) = 2− inf{|g| | g∈G: xg �=yg } . A support is a finite subset F ⊂ G . A pattern with support F
is an element p of AF . We denote the set of finite patterns by A∗

G := ⋃
F⊂G,|F |<∞ AF . For p ∈ AF and g ∈ G the cylinder 

generated by p on g is [p]g := ⋂
h∈F [ph]gh .

Definition. A subset X of AG is a subshift if it is σ -invariant – σ(X) ⊂ X – and closed for the cylinder topology. Equivalently, 
X is a subshift if there exists F ⊂A∗

G such that:

X = XF =:
⋂

p∈F,g∈G

AG \ [p]g .

Let X, Y be two subshifts over alphabets AX , AY . We call a continuous G-equivariant – i.e. σ -commuting – function 
φ : X → Y a morphism. A famous theorem by Curtis, Lyndon and Hedlund – see for example [7] – gives a combinatorial 
characterization of morphisms as block codes: namely, φ is a morphism if and only if there exists a finite F ⊂ G and a 
local function � : AF

X → AY such that φ(x)g := �(σg−1 (x)|F ). We say φ is a factor if φ is surjective, and a conjugacy if it 
is bijective. Whenever there is a factor code φ : X → Y we write X � Y and say that Y is a factor of X and that X is 
an extension of Y . Furthermore, if φ is a conjugacy we will write X 
 Y and say they are conjugated. The conjugacy is an 
equivalence relation which preserves most of the topological dynamics of a system.

We say that a subshift X ⊂AG is of finite type – SFT for short – if it can be defined by a finite set of forbidden patterns, 
that is, |F | < ∞ and X = XF . We say that X is sofic if there exists an SFT Y and a factor code φ : Y � X . The class of sofic 
subshifts is the smallest class closed under factor codes that contains every SFT. Both classes are invariant under conjugacy, 
that is, the property of belonging to them is preserved under conjugacy.

2. Effectiveness on finitely generated groups

When G = Z, patterns can be identified as words over a finite alphabet. We say a subshift X ⊂ AZ is effectively closed
if there is a recursively enumerable set of forbidden words that defines it. We intend to generalize this definition to the 
class of finitely generated groups. On Z

d , a finite pattern is no longer a word, but it can be easily coded as a word – via 
any recursive bijection between Zd and Z. Then effective Zd-subshifts correspond to subshifts which can be defined by a 
set of forbidden patterns that admits a recognizable set of codings. In groups with undecidable word problem this recursive 
bijection does not exist.

In this section we first take the previous ideas of codings to the context of finitely generated groups by introducing 
the formalism of pattern codings and explore the limitations of this concept when the word problem of the group is 
not decidable or recursively enumerable. At this point we introduce the subshift X≤1 which consists in all configurations 
containing at most one appearance of a non-zero symbol, and use it to exemplify these previous constraints. Next we extend 
the notion of effectiveness by adding the power of an oracle to WP(G). We remark the stability properties for this extended 
class and compare them with sofic subshifts and SFTs. Finally we exhibit three big classes of groups where this class does 
not coincide with the one of sofic subshifts.

2.1. Classical effectiveness

Let G be a finitely generated group and A an alphabet. A pattern coding c is a finite set of tuples c = (wi, ai)i∈I where 
wi ∈ S∗ and ai ∈ A. We say that a pattern coding is consistent if for every pair of tuples such that wi =G w j then ai = a j . 
For a consistent pattern coding c we define the pattern p(c) ∈ AF where F = ⋃

i∈I wi and p(c)wi = ai .

Example. Let B S(1, 2) ∼= 〈a, b | ab = ba2〉 be a Baumslag–Solitar group and A = {0, 1}. Then the pattern coding

(ε,0) (b,1) (a,1)

(ab,0) (ba2,0) (ba,1)

is consistent, since all the words above on S = {a, b, a−1, b−1} represent different elements in G except for ab and ba2 that 
are assigned the same symbol. The pattern it defines is:

1

0

1 0

1
1G a

b ba ab=ba2
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But the pattern coding

(ε,0) (a2,1) (bab−1a,1)

(a,1) (ba,1) (abab−1,0)

is inconsistent since words abab−1 and bab−1a represent the same element in G but are assigned different symbols.

A set of pattern codings C is said to be recursively enumerable if there is a Turing machine which takes as input a 
pattern coding c and accepts it if and only if c ∈ C .

Definition. A subshift X ⊂AG is effectively closed if there is a recursively enumerable set of pattern codings C such that:

X = XC :=
⋂

g∈G,c∈C

⎛⎝AG \
⋂

(w,a)∈c

[a]g w

⎞⎠ .

The specific choice of the set of generators S is irrelevant as one can easily translate one in terms of the other. Notice 
that if a pattern coding is inconsistent then 

⋂
(w,a)∈c[a]w = ∅ and that if it is consistent then 

⋂
(w,a)∈c[a]w = [p(c)]1G . 

Therefore, the subshift defined by a set of pattern codings C only depends on the set of consistent ones, in the sense that if 
p(C) is the set of patterns defined by the consistent pattern codings of C then XC = Xp(C) .

We could also define this class by the existence of a decidable family rather than a recursively enumerable one. This 
justifies the usage of the word “effectively”. The following proposition is commonly known to hold true in G = Z

d . Here we 
present a general version which works in every finitely generated group.

Proposition 2.1. Let X ⊂AG be an effectively closed subshift. Then there exists a decidable set of pattern codings C such that X = XC .

Proof. Let C′ be a recursively enumerable set of pattern codings such that X = XC′ . If C′ is finite the result is triv-
ial. Otherwise there exists a recursive enumeration C′ = {c0, c1, . . . }. For a pattern coding c we define its length as 
|c| = max(w,a)∈c |w|. For n ∈ N let Ln = maxk≤n |ck| and define Cn as the finite set of all pattern codings c which satisfy 
the following properties:

• Every w ∈ S∗ with |w| ≤ Ln appears in exactly one pair in c.
• (w, a) ∈ c implies that |w| ≤ Ln .
• If (w, a) ∈ cn then (w, a) ∈ c.

That is, Cn is the set of all pattern codings which are completions of cn up to every word of length at most Ln in every 
possible way. Consider C = ⋃

n∈N Cn . Clearly it satisfies that X = XC . We claim it is decidable.
Consider the algorithm which does the following on input c: It initializes n to 0. Then it enters into the following loop: 

First it produces the pattern coding cn . If Ln > |c| it rejects the input. Otherwise it calculates the set Cn . If c ∈ Cn then it 
accepts, otherwise it increases the value of n by 1.

As Ln is increasing and cannot stay in the same value indefinitely this algorithm eventually ends for every input. �
In what follows we will show which are the liberties one can take when choosing a defining set of pattern codings 

and the structural properties of this class. Some of these are related to the following notion in group theory. A group is 
said to be recursively presented if there is a presentation G ∼= 〈S, R〉 where S is a recursive set and R ⊂ S∗ a recursively 
enumerable language. As we only consider finitely generated groups S is always finite and thus recursive, so we take the 
second requirement as the definition.

Proposition 2.2. Let G be a finitely generated group and A be an alphabet with at least two symbols. The following are equivalent:

1. G is recursively presented.
2. WP(G) is recursively enumerable.
3. The set of inconsistent pattern codings is recursively enumerable.

Proof. The equivalence between the two first statements is trivial. Let G have recursively enumerable word problem. As 
u =G v ⇔ uv−1 =G 1G the set of inconsistent pattern codings is recursively enumerable. Indeed, for n ∈ N, a Turing machine 
on input c can simulate iteratively for n steps the machine recognizing WP(G) applied to uv−1 for every pair (u, a), (v, b) ∈ c
with a �= b ∈ A and accept if this procedure accepts for some n. Conversely, given w ∈ S∗ , it suffices to give as input to the 
machine recognizing the inconsistency of the pattern codings c = {(ε, a), (w, b)} with a �= b ∈ A in order to recognize if 
w =G 1G . �
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Lemma 2.3. Let X ⊂AG be an effectively closed subshift. If G is recursively presented then it is possible to choose C to be a recursively 
enumerable and maximal – for inclusion – set of pattern codings such that X = XC .

This lemma is fundamental in the rest of the article. Indeed, every time the statement of a result requires as hypothesis 
that a group G is recursively presented, this is because its proof uses the existence of a recursively enumerable and maximal 
set of pattern codings for some G-subshift.

Proof. A pattern coding c belongs to the maximal set C defining X if and only if X ∩ ⋂
(w,a)∈c[a]w = ∅. Let c ∈ C and C′ be 

a recursively enumerable set such that X = XC′ . Then:⋂
(w,a)∈c

[a]w ⊂
⋃

c′∈C′,g∈G

⋂
(w ′,a′)∈c′

[a′]g w ′ .

By compactness we may extract a finite open cover indexed by c′
i, gi such that:⋂

(w,a)∈c

[a]w ⊂
⋃
i≤n

⋂
(w ′,a′)∈c′

i

[a′]gi w ′ (1)

Note that each of these gi can be seen as a finite word in S∗ . Now let T be the Turing machine which does iteratively 
for n ∈N the following:

• Runs n steps the machine T1 recognizing WP(G) for every word in S∗ of length smaller than n.
• Runs n steps the machine T2 recognizing C′ for every pattern coding defined on a subset of words of S∗ of length 

smaller than n.
• Let ∼n be the equivalence relation for words in S∗ of length smaller than n such that u ∼n v if uv−1 has been already 

accepted by T1. Let Cn be the pattern codings already accepted by T2. If every word in c has length smaller than n
check if the following relation is true under ∼n:⋂

(w,a)∈c

[a]w ⊂
⋃

c′∈Cn,|u|≤n

⋂
(w ′,a′)∈c′

[a′]uw ′

If it is true, accept, otherwise increase n by 1 and continue.

Let m be the max of all |w| such that (w, a) ∈ c, and |w ′| such that (w ′, a′) ∈ c′
i and all |gi |. By definition, there exists an 

N ∈ N such that every c′
i for i ≤ n is accepted and every word representing 1G of length smaller than 2m is accepted. This 

means that at stage N relation (1) is satisfied and T accepts c. If c is not in the maximal set, the machine never accepts. �
Lemma 2.3 is no longer true if G is not recursively presented. Indeed, the maximal set of pattern codings defining the full 

shift is given by the set of all inconsistent pattern codings, which is recursively enumerable if and only if G is recursively 
presented by Proposition 2.2.

Proposition 2.4. The class of SFTs is contained in the class of effectively closed subshifts.

Proof. Let X be an SFT. Then X = XF for a finite set F . For each p ∈ F consider a pattern coding cp such that p(cp) = p
and let C = {cp | p ∈F}. Clearly X = XC and as C is finite it is recursively enumerable. �
Proposition 2.5. The class of effectively closed subshifts is closed by finite intersections.

Proof. Let X = XCX and Y = YCY be effectively closed subshifts. Without loss of generality suppose X, Y ⊂ AG (same 
alphabet) and note that:

X ∩ Y =
⎛⎝AG \

⋃
g∈G,c∈CX

⋂
(w,a)∈c

[a]g w

⎞⎠ ∩
⎛⎝AG \

⋃
g∈G,c∈CY

⋂
(w,a)∈c

[a]g w

⎞⎠
= AG \

⋃
g∈G,c∈CX ∪CY

⋂
(w,a)∈c

[a]g w

= XCX ∪CY

Therefore, it suffices on input c to launch the Turing machines recognizing CX and CY in parallel and accept if either of 
them accepts. �
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The result obviously does not extend to countable intersections. If it were so, since every possible subshift is obtainable 
as an intersection of SFTs (enumerate the forbidden patterns, define Xn = Xp1,...,pn , then X = ⋂

n∈N Xn), we would conclude 
that all subshifts are effectively closed. But there is an uncountable number of subshifts on a fixed alphabet, and effectively 
closed subshifts clearly constitute a countable set, so there must be one that is not effectively closed.

Proposition 2.6. For a recursively presented group the class of effectively closed subshifts is closed by finite unions.

Proof. Let X = XCX and Y = YCY be effectively closed subshifts. As G is recursively presented we can suppose CX and CY

are maximal as in Lemma 2.3. As in the previous proof we can show:

X ∪ Y = AG \
⎛⎝⎛⎝ ⋃

g∈G,c∈CX

⋂
(w,a)∈c

[a]g w

⎞⎠ ∩
⎛⎝ ⋃

g∈G,c∈CY

⋂
(w,a)∈c

[a]g w

⎞⎠⎞⎠
Thus, as these sets are maximal we have X ∪ Y = XCX ∩CY . It suffices therefore to launch both Turing machines and accept 

if both accept. �
Proposition 2.7. For recursively presented groups the class of effectively closed subshifts is closed under factors.

Proof. Let X ⊂AG
X be an effectively closed subshift. As G is recursively presented, the recursively enumerable set of pattern 

codings CX can be chosen to be maximal by Lemma 2.3. Consider a factor code φ : X � Y defined by a local function 
� :AF

X →AY with F = { f1, . . . , f |F |} where f1, . . . , f |F | are words of S∗ .
As φ is surjective, for each a ∈AY then |�−1(a)| > 0. Therefore we can associate to a pair (w, a) a non-empty finite set 

of pattern codings

Cw,a = {(w fi, p fi )i=1,...,|F | | p ∈ �−1(a)}.
That is, Cw,a is a finite set of pattern codings over AX representing every possible preimage of a. For a pattern coding 

c = (wi, ai)i≤n where ai ∈AY we define:

Cc = {
⋃

(w,a)∈c

c̃w,a | c̃w,a ∈ Cw,a}.

That is, Cc is the finite set of pattern codings formed by choosing one possible preimage for each letter. This set has 
the property that if � is applied pointwise then �(p(Cc)) = {p(c)}. Let T be the Turing machine which on input c runs the 
machine recognizing CX on every pattern coding in Cc . If it accepts for every input, then T accepts c. Let CY be the set of 
pattern codings accepted by T . We claim Y = YCY .

Let y ∈ YCY and n ∈ N. For each pattern coding c such that p(c) = y|Bn , there is a pattern coding cn ∈ Cc which does 
not belong to CX . As CX is maximal we have that [p(cn)] ∩ X �= ∅. Extracting a configuration xn from [p(cn)] ∩ X we obtain 
a sequence (xn)n∈N . By compactness there is a converging subsequence with limit ̃x ∈ X . By continuity of φ we have that 
y = φ(̃x) ∈ Y . Conversely if y ∈ Y there exists x ∈ X such that φ(x) = y. Therefore for every finite F ′ ⊂ G and pattern coding 
c with p(c) = y|F ′ there exists a pattern coding ̃c ∈ Cc such that p(̃c) = x|F ′ F . Therefore, c /∈ Cy and thus y ∈ YCY . �
Corollary 2.8. For a recursively presented group the following are true:

• The class of effectively closed subshifts is invariant under conjugacy.
• The class of effectively closed subshifts contains all sofic subshifts.

We do not know if the previous results extend to the general case where G is not recursively presented. The main 
obstruction is that without that hypothesis there is no control on the representations of the finite set F which defines the 
local rule of the factor. As an example, suppose F = {1G }, that is � : AX → AY . In order to detect forbidden patterns by 
using the recursively enumerable set defining X we would need to touch all possible representations of F , which is exactly 
the set WP(G).

Let H ≤ G be a subgroup of G . Given a subshift X ⊂AG the H-projective subdynamics of X is the subshift πH (X) ⊂AH

defined as:

πH (X) = {x ∈ AH | ∃y ∈ X,∀h ∈ H, xh = yh}

Proposition 2.9. Let G be a recursively presented group and H ≤ G a finitely generated subgroup of G. If X ⊂AG is effectively closed, 
then its H-projective subdynamics πH(X) is effectively closed.
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Proof. As H is finitely generated, there exists a finite set S ′ ⊂ H such that 〈S ′〉 = H . As G is finitely generated by S there 
exists a function γ : S ′ → S∗ such that s′ =G γ (s′) (that is, every element of S ′ can be written as a word in S∗). Extend the 
function γ to act by concatenation over words in S ′∗ .

As G is recursively presented, by Lemma 2.3 the set of pattern codings CG defining X can be chosen to be maximal. Let 
c = (wi, ai)i∈I a pattern coding where wi ∈ S ′∗ and consider γ (c) = (γ (wi), ai)i∈I . Let T be the Turing machine which on 
input c runs the algorithm recognizing CG on input γ (c) and accepts if and only if this machine accepts. Clearly CH = {c |
T accepts c} is recursively enumerable. Also, as CG is a maximal set of pattern codings then c ∈ CH ⇐⇒ [p(γ (c))] ∩ X = ∅. 
Therefore πH (X) = XCH . �

Besides all of these obstructions, even for recursively presented groups there are very simple subshifts which do not fall 
in this class. In order to illustrate this limitation we introduce the One-or-less subshift.

2.2. The one-or-less subshift

Consider the subshift X≤1 ⊂ {0, 1}G whose configurations contain at most one appearance of the letter 1.

X≤1 = {x ∈ {0,1}G | 1 ∈ {xg, xh} =⇒ g = h}
As we shall see later, this subshift is related to the word problem of a group. In the literature, it is sometimes called the 

“sunny side up” subshift. We begin by showing some properties of X≤1.

Proposition 2.10. If G is infinite, then X≤1 is not an SFT.

Proof. Suppose X≤1 = XF for a finite F and let F = ⋃
p∈F supp(p), U = ⋃

h∈F −1 hF and note that |U | < ∞. As G is infinite, 
there exists g ∈ G \ U . Consider the configuration x ∈ {0, 1}G which takes the value 1 in {1G , g} and 0 elsewhere. Clearly 
x /∈ [p]h for every h ∈ G and p ∈ F otherwise {1G , g} ⊂ hF implying that hF ⊂ U and thus g ∈ U . Therefore x ∈ XF but 
x /∈ X≤1. �

This subshift has already been studied in [10]. In that article the authors showed that the action of a relatively hyperbolic 
group on its boundary is related to X≤1 being sofic. They said a group G has the special symbol property if X≤1 ⊂ {0, 1}G is 
a sofic subshift. They furthermore proved some stability properties among which are:

1. If G has the special symbol property then G is finitely generated.
2. If G splits in a short exact sequence 1 → N → G → H → 1 and both N and H satisfy the special symbol property, then 

G also does.
3. If [G : H] < ∞ then G has the special symbol property if and only if H does.
4. The special symbol property is true for:

• Finitely generated free groups.
• Finitely generated abelian groups.
• Hyperbolic groups.
• Poly-hyperbolic groups.

Besides the restriction of G being finitely generated the authors did not present any example of group without the 
special symbol property. In this section we introduce a computability obstruction for this property which at the same time 
shows one of the limitations of the classical approach to effectiveness.

Proposition 2.11. Let G be a recursively presented group. Then X≤1 is effectively closed if and only if WP(G) is decidable.

Proof. If WP(G) is decidable then X≤1 is effectively closed. Indeed, an algorithm recognizing a maximal set of pattern 
codings C such that X≤1 = XC is the following: On input c it considers every pair (w1, 1), (w2, 1) in c and accepts if 
and only if w1 w−1

2 �=G 1G for a pair. Conversely, as G is recursively presented, the word problem is already recursively 
enumerable. It suffices to show it is co-recursively enumerable.

By Lemma 2.3 there exists a maximal set of forbidden pattern codings C with X≤1 = XC . Given w ∈ S∗ , consider the pat-
tern coding cw = {(ε, 1), (w, 1)}. Note that w �=G 1G ⇐⇒ cw ∈ C . The algorithm which on input w ∈ S∗ runs the algorithm 
recognizing C on input cw and accepts if and only if this one accepts recognizes S∗ \ WP(G). Hence WP(G) is co-recursively 
enumerable. �

Using Proposition 2.7 we obtain the following corollary which answers a question of Dahmani and Yaman [9,24].

Corollary 2.12. If G is recursively presented and WP(G) is undecidable, then X≤1 is not sofic.
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2.3. G-Effectiveness

In order to escape the limitations of Lemma 2.3 and Proposition 2.7 and include subshifts such as X≤1, we introduce 
the class of G-effectively closed subshifts. The aim of this subsection is to briefly introduce these objects and remark their 
properties. They are studied in detail in Section 3.

A set of pattern codings C is said to be recursively enumerable with oracle O if there exists a Turing machine with oracle 
O which accepts input c if and only if c ∈ C . The oracle O is a language to which these special machines have the right to 
ask if w ∈O and receive the correct answer in one step.

Definition. A subshift X ⊂ AG is G-effectively closed if there is a set of pattern codings C such that X = XC , and C is 
recursively enumerable with oracle WP(G).

We remark the following properties that either fall directly from the definition or are obtained from adding the word 
problem WP(G) as oracle to the previous results. Let G be a finitely generated group, then:

1. If X is a G-effectively closed subshift then a maximal set of pattern codings C such that X = XC is recursively enumer-
able with oracle WP(G).

2. The class of G-effectively closed subshifts is closed under finite intersections and unions.
3. The class of G-effectively closed subshifts is closed under factors.
4. Being G-effectively closed is a conjugacy invariant.
5. The class of G-effectively closed subshifts contains all sofic subshifts.
6. The class of G-effectively closed subshifts contains all effectively closed subshifts.
7. If WP(G) is decidable, then every G-effectively closed subshift is effectively closed.
8. X≤1 is a G-effectively closed subshift.

The only property which does not extend nicely is the stability under taking projective subdynamics. Clearly if X ⊂AG is 
G-effectively closed then for any finitely generated H ≤ G we would have that the H-projective subdynamics πH (X) can be 
defined by a set of pattern codings which is recursively enumerable with oracle WP(G). Nevertheless, it may not be possible 
to define such set with Turing machines using oracle WP(H).

Proposition 2.13. Let G be a group which is not recursively presented. There exists a (G × Z)-effectively closed subshift X ⊂ AG×Z

such that its Z-projective subdynamics is not Z-effectively closed.

Proof. Let A = S ∪ {	}. For w ∈ S∗ , let pw be defined over the support {1G } × {0, . . . |w| + 1} such that (pw )(1G ,0) =
(pw)(1G ,|w|+1) = 	 and for j ∈ {1, . . . , |w|} then (pw )(1G , j) = w j . Let X := XF ⊂ AG×Z be defined by the set of forbid-
den patterns F = {pw | w ∈ WP(G)}. Clearly X is (G × Z)-effectively closed. Every Z-coset of a configuration x ∈ X contains 
a bi-infinite sequence y ∈ AZ such that either y contains at most one symbol 	 or every word appearing between two 
appearances of 	 represents 1G in G .

We claim that πZ(X) is not effectively closed. If it were, there would exist a maximal set of forbidden pattern codings 
which is recursively enumerable and defines πZ(X). Therefore given w ∈ S∗ a machine could run the algorithm for the 
word 	w	 and it would be accepted if and only if w =G 1G . This would imply that G is recursively presented. �

In Section 3 a characterization of these subshifts by Turing machines which instead of a tape have Cayley graphs of 
groups is given. This allows an alternative definition of G-effectiveness which at the same time gives a concrete construction 
of Turing machines with oracle.

2.4. Groups with G-effective subshifts which are not sofic

In the work of two of the authors [1], it is shown that for subshifts in the hyperbolic plane that satisfy a technical 
condition, the property of being sofic is equal to the property of being effectively closed. By hyperbolic plane it is meant the 
monoid M = 〈a, a−1, b | ab = ba2, aa−1 = 1M〉 which looks like a shear of the Baumslag–Solitar group B S(1, 2) (here all the 
definitions given above for groups naturally extend to monoids). The reason behind this fact is that the doubling structure 
of this monoid allows to transmit the information on a row bn〈a〉 to all rows bm〈a〉 where m ≥ n, and thus a Turing machine 
calculation can be implemented as an extra SFT extension. This shows that any subshift defined by a recursively enumerated 
set of pattern codings is in fact a sofic subshift.

This result raises the following questions:

• If we consider the group B S(1, 2), is it true that every effectively closed subshift is sofic?
• Is there any group G such that every G-effectively closed subshift is sofic?
• Is there any group such that the class of effectively closed subshifts and sofic subshifts coincide?
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Fig. 1. Configuration in the mirror shift and technique showing non-soficity.

In this section we give a negative answer to the first question, and give partial negative answers to the second and third 
questions. More precisely, we show that the equality between the class of G-effectively closed subshifts and sofic subshifts 
cannot happen in three cases: recursively presented groups with undecidable word problem, amenable groups and groups 
with two or more ends.

Theorem 2.14. For every recursively presented group G with undecidable word problem there exists a G-effectively closed subshift 
which is not sofic.

Proof. The subshift X≤1 is G-effectively closed but not sofic for recursively presented G as stated in Corollary 2.12. �
Clearly, this does not say anything about the existence of effectively closed subshifts which are not sofic when the word 

problem is undecidable. In fact, it is not even known whether X≤1 is sofic for all groups with decidable word problem.
For the case of amenable groups, we take inspiration in a classical construction for Z2 called the mirror shift. It consists 

of all configurations over the alphabet A = {
, ,

}
such that these forbidden patterns do not appear.

F :=
{

, , ,

}
∪

⋃
w∈A∗

{
w , w w̃ , w w̃

}
,

where w̃ denotes the reverse of the word w .
This subshift is easily seen to be effectively closed, while it can be proven that it is not sofic. Indeed, if S is the canonical 

set of generators of Z2, then |Bn+1 \ Bn|/|Bn| tends to 0 as n goes to infinity. From this it is possible to deduce that in a 
suitable SFT extension of the mirror shift, there are two different patterns sharing the same boundary which yield different 
patterns in the mirror subshift. As shown in Fig. 1, switching a pattern for the other produces a point outside the subshift 
yielding a contradiction. In what follows we generalize this technique to amenable groups.

For a finitely generated group we say a sequence of elements (gn)n∈N is recursive if there is a Turing machine which on 
input n produces a word w ∈ S∗ such that w =G gn . If the Turing machine uses oracle O then the sequence is said to be 
recursive with oracle O.

Lemma 2.15. For every infinite group G there exists a pair of recursive sequences (gn)n∈N , (hn)n∈N with oracle WP(G) such that the 
family of sets

S = {{1G}} ∪ {gn Bn}n∈N ∪ {hn Bn}n∈N
is pairwise disjoint.

Proof. Fix a total order on S and extend it to a lexicographic order in S∗. Let T g, Th be the Turing machines with oracle 
WP(G) that do the following on input n ∈ N.

• Let N = 1 + 2 
∑n

k=1(2k + 1) = 1 + 2n(n + 2). Solve the word problem for every w ∈ S∗ such that |w| ≤ 2N . This allows 
to construct B N of the Cayley graph �(G, S).

• Assign the value 0 to every g ∈ B N \ {1G}, and 1 to 1G . Assign initially the value g0, . . . , gn, h0, . . . , hn to ε . And initiate 
a variable k with its value set initially to 0.

• While k ≤ n do the following: Iterate over all w ∈ S∗ lexicographically. If for w all of the values of w Bk have the value 
0 then:
– Turn all of the values in w Bk to 1.
– if gk = ε set gk = w .
– otherwise, set hk = w and assign k ← k + 1.

• For the machine T g return gn , for Th return hn .
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As G is infinite and finitely generated there exist elements of arbitrary length. Therefore the bound N suffices to construct 
all these disjoint balls: Indeed, it is the sum of the diameters of the considered sets. Moreover, as the lexicographic order 
is fixed beforehand this algorithm will always produce the same values, therefore it gives a recursive enumeration of the 
desired sets. �
Theorem 2.16. Let G be an infinite amenable group. Then there exists a G-effectively closed subshift which is not sofic.

Proof. Let (gn)n∈N , (hn)n∈N be recursive sequences with oracle WP(G) as in Lemma 2.15, and consider the subshift Y ⊂
{0, 1, 2}G defined as Y = Y1 ∩ Y2 where:

Y1 = {y ∈ {0,1,2}G | 2 ∈ {yg, yh} =⇒ g = h}
Y2 = {y ∈ {0,1,2}G | yg = 2 =⇒ ∀n ∈N,σg−1

n g−1(y)|Bn = σh−1
n g−1(y)|Bn }

It is clear these two sets are closed and shift-invariant, thus Y is a subshift. Moreover, they are both G-effectively closed 
subshifts: Y1 is defined by all pattern codings which contain a pair (w1, 2), (w2, 2) such that w1 �=G w2 and Y2 by all 
pattern codings which contain a triple (w1, 2), (w2, a), (w3, b) with a �= b for which there exists n ∈ N and h ∈ Bn such that 
w2 =G w1 gnh and w3 =G w1hnh. As the sequences are recursive with WP(G) as oracle this is an effectively enumerable 
set with oracle WP(G). As the class of G-effectively closed subshifts is closed under intersections we obtain that Y is 
G-effectively closed.

We are going to show that Y is not sofic. As G is amenable (see [7]), for each ε > 0 and finite K ⊂ G there exists a 
non-empty finite set F ⊂ G such that:

∀k ∈ K ,
|F \ Fk|

|F | < ε

Suppose Y is sofic, then there exists an SFT X ⊂ BG and a factor code φ : X � Y . Without loss of generality one can 
suppose that φ is a 1-block code, that is, it is defined by a local rule � : B → A. Indeed, if this was not the case, and 
� : BF →A for F �= {1G } we can find a conjugated version of X over the alphabet B̃ := BF which is given by the conjugacy 
φ̃ : X → X̃ such that φ̃(x)g = σg−1 (x)|F . As being SFT is a conjugacy invariant we can choose without loss of generality X̃ as 
the extension.

Let K be the union of the supports of p ∈ F where X = XF and |F | < ∞, ε = log(2)
|K |log(|B|) and for simplicity denote 

∂K F = F \ ⋂
k∈K Fk. We obtain that there is F such that:

|∂K F |
|F | ≤

∑
k∈K

|F \ Fk|
|F | < |K | log(2)

|K |log(|B|) = log(2)

log(|B|)
Note that the previous property is invariant by translation, that is, if F satisfies this property, then g F also does for each 

g ∈ G . By choosing a large enough n ∈ N such that F ⊂ Bn , then gn F ⊂ gn Bn .
Putting everything together, we can find a set F such that |B||∂ F | < 2|F | and there exists n ∈ N such that 1G /∈ gn F , 

gn F ⊂ gn Bn and gn F ∩ hn Bn = ∅.
Consider the set of patterns:

P = {p : {1G} ∪ gn F → {0,1,2} | p1G = 2,∀h ∈ gn F : ph ∈ {0,1}}
Clearly |P| = 2|F | . As gn F ⊂ gn Bn then for each p ∈ P , [p]1G ∩ Y �= ∅. Let yp ∈ [p]1G ∩ Y and xp ∈ X such that φ(xp) = yp . 
As |B||∂ F | < 2|F | by pigeonhole principle there are xp1 �= xp2 such that xp1 |gn∂ F = xp2 |gn∂ F .

By definition of K we obtain that ̃x ∈ X where ̃x is the configuration defined as ̃x|F = xp1 |F and ̃x|G\F = xp2 |G\F . As φ is 
a 1-block code we get that φ(̃x)|F = yp1 |F and φ(̃x)|G\F = yp2 |G\F . Consider ḡ ∈ Bn such that (yp1 )gn ḡ �= (yp2 )gn ḡ . Then:

φ(̃x)hn ḡ = (yp2)hn ḡ = (yp2)gn ḡ

φ(̃x)gn ḡ = (yp1)gn ḡ

Therefore φ(̃x)hn ḡ �= φ(̃x)gn ḡ but φ(̃x)1G = 2 which means that φ(̃x) /∈ Y . �
In particular, this theorem gives a negative answer in the case of B S(1, 2) which is solvable and thus amenable.

Definition. The number of ends e(G) of the group G is the limit as n tends to infinity of the number of infinite connected 
components of �(G, S) \ Bn .

The number of ends is a quasi-isomorphism invariant and thus it does not depend on the choice of S . It is also known 
that for a finitely generated group G then e(G) ∈ {0, 1, 2, ∞}. Stallings theorem about ends of groups [23] gives a construc-
tive characterization of the groups satisfying e(G) ≥ 2. In particular we have e(G) = 2 if and only if G is infinite and virtually 
cyclic.
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Theorem 2.17. Let G be a finitely generated group where e(G) ≥ 2. Then there are G-effectively closed subshifts which are not sofic.

Proof. Let N ∈ N such that �(G, S) \ B N contains at least two different infinite connected components C1 and C2.
Let (gi)i∈N ⊂ C1 and (hi)i∈N ⊂ C2 be sequences with no repeated elements. Let Y ⊂ {0, 1, 2}G defined as Y = Y1 ∩ Y2

where:

Y1 = {y ∈ {0,1,2}G | 2 ∈ {yg, yh} =⇒ g = h}
Y2 = {y ∈ {0,1,2}G | yg = 2 =⇒ ∀n ∈N, yggn = yghn }

Analogously to the proof of Theorem 2.16, if the sequences are recursive with oracle WP(G) then Y is effectively closed. 
We claim such sequences exist.

Fix a total order on S and extend it to a lexicographic order in S∗ . Let N be as above and let w0 ∈ S∗ such that w0 =G
g0 ∈ C1. Consider the Turing machines T g with oracle WP(G) that on input n ∈ N:

• If n = 0 returns w0.
• Let M = N + n + |w0|. Solve the word problem for every w ∈ S∗ such that |w| ≤ 2M . This allows to construct B M of 

�(G, S).
• Let H g0 be the connected component of B M \ B N which contains g0.
• Assign the value 0 to every element of H g0 \ {w0} and 1 to w0. Assign g1, . . . , gn to ε . And initiate a variable k with its 

value set initially to 1.
• While k ≤ n do the following: Iterate over all w ∈ S∗ lexicographically. If w0 w has the value 0 and belongs to H g0 then:

– Turn the value w0 w to 1.
– Assign gk = w0 w and increase k by 1.

• Return gn .

As the component C1 is infinite, the value of M suffices to find n different elements. It is clear this machine yields a 
sequence of distinct elements in component C1. The machine Th for the sequence in the component C2 is analogous.

Suppose Y is sofic. As in Theorem 2.16 we can consider an SFT extension X ⊂ BG given by a 1-block code φ : X � Y . 
Let also M ∈ N be a bound such that the union of all the supports of one finite set of forbidden patterns defining X is 
contained in B M . Let L = N + M .

As G is finitely generated |B L | < ∞. Consider thus the finite set P = {p ∈ BBL | φ([p]1G ) ∩ [2]1G �= ∅}. Clearly |P| ≤
|B||BL | < ∞. Consider w ∈ {0, 1}N and fix yw ∈ ⋂

n∈N[wn]gn ∩ [2]1G . Clearly yw ∈ Y . As there is an infinite number of such 
yw there exist w1 �= w2 and xw1 , xw2 ∈ X such that φ(xw1 ) = yw1 and φ(xw2 ) = yw2 and xw1 |BL = xw2 |BL .

By definition of L we have that ̃x ∈ X where:

x̃g =
{

(xw1)g , if g ∈ C1
(xw2)g , if g ∈ G \ C1

Thus ỹ = φ(̃x) satisfies that ỹ1g = 2, ỹ|C1 = (yw1 )|C1 and ỹ|C2 = (yw2 )|C2 . Let n ∈ N such that (w1)n �= (w2)n Then: 
ỹ gn = (yw1 )gn and ỹhn = (yw2 )hn = (yw2 )gn . Therefore ỹ /∈ Y2 which implies that ỹ /∈ Y . �
3. G-machines

Classical Turing machines keep their information in a bi-infinite tape, and are only able to work on inputs which are 
codified in the form of words. While in Z this is a natural model to study subshifts, it becomes cumbersome in general 
groups as we are forced to introduce pattern codings. Moreover, as we saw in Section 2, there is a number of constraints to 
what can be done with Turing machines when WP(G) is undecidable, and a general setting forces the use of oracles.

In this section we introduce an alternative model of computation which we call a G-machine. In this model, the tape 
is replaced by a finitely generated group G . These machines receive patterns p ∈ A∗

G as input instead of words and move 
by using the set S of generators. Similar machines using Cayley graphs as a tape have already been mentioned in [12] and 
studied in more detail in [8], but these machines take their input as a word in an auxiliary tape and only use the graph as 
a working tape. Another work considering subshifts defined by one or more Turing machine heads walking on the group 
has also been done in [20].

We begin this section by defining G-machines and the classes of languages they define. Then we present some robustness 
results similar to the ones satisfied by classical Turing machines. As the main result of this section, we characterize the 
class of G-effectively closed subshifts as those whose set of forbidden patterns is G-recursively enumerable, hence giving a 
characterization of this class without the use of oracles. We end this section with two applications of these machines: one 
to the domino problem of general groups (Theorem 3.7) and another in the form of a simulation theorem (Theorem 3.8).

Definition. A G-machine is a 6-tuple (Q , �, �, q0, Q F , δ) where Q is a finite set of states, � is a finite alphabet, � ∈ �

is the blank symbol, q0 ∈ Q is the initial state, Q F ⊂ Q is the set of accepting states and δ : � × Q → � × Q × S is the 
transition function.
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Fig. 2. A fixed head transition of an F2-machine.

Fig. 3. A moving head transition of a Z
2-machine.

As in the case of Turing machines, we can define the action of a Turing machine in two different ways. We call these 
the fixed head and moving head models.

In the fixed head model, a G-machine T acts on the set �G × Q as follows: let (x, q) ∈ �G × Q and δ(x1G , q) = (a, q′, s). 
Then T (x, q) = (σs−1 (̃x), q′) where ̃x|1G = a and ̃x|G\{1G } = x|G\{1G } . Fig. 2 illustrates this action when G is a free group. Here 
the head of the Turing machine is assumed to stay at a fixed position and the tape moves instead.

In the moving tape model, a G-machine T acts on the set �G × G × Q as follows: let (x, g, q) ∈ �G × G × Q and 
δ(x1G , q) = (a, q′, s). Then T (x, g, q) = (̃x, gs, q′) where ̃x|1G = a and ̃x|G\{1G } = x|G\{1G } . Fig. 3 illustrates this action when G
is Z2. Here the tape remains fixed and the second coordinate keeps track of the position of the head.

Let F ⊂ G be a finite set and p ∈ � F . Let xp ∈ �G be the configuration such that (xp)|F = p and (xp)|G\F ≡ �. We say 
that T accepts p if there is n ∈ N such that T n(xp, q0) ∈ �G × Q F in the fixed head model or equivalently T n(xp, 1G , q0) ∈
�G × G × Q F in the moving head model. L ⊂ �∗

G is G-recursively enumerable if there exists a G-machine T which accepts 
p ∈ �∗

G if and only if p ∈ L. If both L and �∗
G \ L are G-recursively enumerable we say L is G-decidable.

So far we have defined these machines using a fixed set of generators S . In the next proposition we show that the 
languages defined by such machines do not depend on this arbitrary choice.

Proposition 3.1. Let S, S ′ be finite subsets of G such that 〈S〉 = 〈S ′〉 = G. Let L ⊂ A∗
G be recursively enumerable using S ′ as the 

movement set. Then L is recursively enumerable using S.

Proof. Let T S ′ be a G-machine using S ′ as the movement set recognizing L. As 〈S〉 = G each s′ ∈ S ′ can be written as 
s′ = s1 . . . sn(s′) where every si ∈ S . Consider T S as a copy of T S ′ where for each state q ∈ Q we add a copy qs′,si for s′ ∈ S
and i ∈ {1, . . . , n(s′)}, and every instruction δ(a, q) = (b, r, s′) in T S ′ is replaced with the instructions:

• δ(a, q) = (b, rs′,s1 , s1)

• ∀a ∈ � and 1 ≤ i < n(s), δ(a, rs′,si ) = (a, rs′,si+1 , si+1)

• ∀a ∈ �, δ(a, rs′,sn(s′) ) = (a, r, 1G).

The modified machine T S moves with the set of generators S and accepts the same patterns as T S ′ . �
The class of G-machines shares also the robustness of Turing machines with respect to slight changes in its definition. 

For example, we can allow multiple tapes with multiple independent writing heads. We shall briefly and informally define 
this model as it will be used as a tool in a proof later on.

A multiple head G-machine is the same as a G-machine, except that the machine uses Gn as a tape and the transition 
function is δ : �n × Q → �n × Q × Sn , where n is the number of heads of the machine. The action of this machine is 
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defined analogously as before in either the moving head or moving tape model. It accepts a pattern p ∈A∗
G if starting from 

the initial configuration ((xp, �G , . . . , �G), q0) the machine reaches in a finite number of steps an accepting state in Q F .
In these machines each head works on its own tape, but can “read” the content of other tapes. By codifying independent 

movements of a tape accordingly, it is able to read not only what each head is looking at a certain step but what is written 
in an arbitrary finite portion of the other tapes.

Proposition 3.2. Let L ⊂ �∗
G . There exists a multiple head G-machine which accepts exactly patterns p ∈ L if and only if L is 

G-recursively enumerable.

This extended model is useful to prove the second of the following two results which links oracle machines to 
G-machines. The first result is relatively straightforward, as G-machines can be simulated by a machine with oracle WP(G)

by creating arbitrarily big balls of the Cayley graph. The second result is more interesting as it says that oracle machines 
can be simulated by G-machines.

Theorem 3.3. Let L ⊂ �∗
G be G-recursively enumerable. Then there exists a recursively enumerable with oracle WP(G) set of pattern 

codings C such that L = p(C).

Proof. Suppose T G is the G-machine recognizing L. With an oracle of WP(G), a machine can construct balls Bn of �(G, S)

for arbitrary n. A codification of Bn allows a classical Turing machine to simulate at least n applications of T G in the moving 
head model as the head starts in the origin and moves at most one generator per iteration. Let T be the Turing machine 
with oracle WP(G) which does the following on input c.

• Let N = 2 max(w,a)∈c |w|. Solve the word problem for all w ∈ S∗ of length at most N . If c is inconsistent accept.
• Let k = N and iterate the following procedure: Solve the word problem for w ∈ S∗ of length at most k and simulate T G

over p(c) for k steps. If this procedure accepts then accept, otherwise increase k by 1.

Clearly, T accepts c if and only if either c is inconsistent or p(c) ∈ L. �
Definition. A language L ⊂ �∗

G is said to be closed by extensions if for each p1 ∈ � F1 , p2 ∈ � F2 such that F1 ⊂ F2 and 
p2|F1 = p1 then p1 ∈ L =⇒ p2 ∈ L.

Theorem 3.4. Let G be an infinite group and C a recursively enumerable with oracle WP(G) set of pattern codings. If p(C) is closed by 
extensions, then p(C) is G-recursively enumerable.

Proof. Without loss of generality we can suppose C is a maximal set of pattern codings which gives p(C). Moreover we can 
also assume that T is a one-sided Turing machine with a reading tape and a working tape.

The construction is a multiple head G-machine M which consists of the following six layers (see Fig. 4):

1. A storage layer MSTORE where the input p ∈ �∗
G is stored.

2. A machine MPATH which constructs an arbitrarily long one-sided non-intersecting path starting from 1G .
3. A machine MVISIT which is able to visit iteratively all the elements of Bn for n ∈ N starting with n initially assigned 

to 1.
4. A Machine MORACLE which solves WP(G).
5. An auxiliary layer MAUX which serves as a nexus between the first layer and the sixth.
6. A simulation layer MSIM which simulates T in the one-sided path created by MPATH.

We will first describe MPATH and MVISIT which are the most complicated components. Then we will describe the general 
workings of the machine.

We begin by describing MPATH in detail. Let the set of generators S = {g1, g2, . . . , gk} and consider the G-machine 
MPATH := (Q , �, �, q0, Q F δ) where Q := {I, B} ∪ (S × {←, →}), � = ({�, �} ∪ S) × {�, ⊗} × ({�} ∪ S), q0 = I , Q F = ∅ (we 
force the machine to loop), and δ is given by the following rules where ∗i stands for an arbitrary fixed symbol.

δ((�,�,�), I) = ((�,⊗, g1), g←
1 , g1).

δ((�,�,�), g←
i ) = ((gi,⊗,�), g→

1 ,1G).

δ((∗1,⊗,∗2), g→
i ) = ((∗1,⊗, gi), g←

i , gi).

δ((∗1,⊗,∗2), g←
i ) = ((∗1,⊗,∗2), B, g−1

i ).

δ((g j,⊗, gi), B) =
{

((g j,⊗, gi), g→
i+1,1G), if i < k

((�,�,�), B, g−1
j ), if i = k.

δ((�,⊗, gi), B) = ((�,⊗, gi), g→ ,1G), if i < k
i+1
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Fig. 4. Construction of the machine M as a multiple head G-machine.

The rules from δ codify a backtracking in G which marks a one-sided non-intersecting infinite path in G . The states I
and B stand for initialization and backtracking respectively. The elements from � are triples (a1, a2, a3) which indicate the 
following information: my left and right neighbors are a1 and a3 respectively and I belong to the path if a2 = ⊗. The first 
rule initializes the infinite path by using the symbol � to indicate that there is no element to the left, marks the identity 
of the group as part of the path by using ⊗ and sets the next element in the direction g1. The second and third rules mark 
the left and right neighbors respectively and move to the next position. Rule 4 deals with the case of reaching a position 
already marked and going back. Rule 5 and 6 search the next available direction which potentially admits an infinite path 
and backtrack if every position has already been searched. Rule 6 lacks a case where i = 2k on purpose because such a state 
is never reached as the group is infinite.

Next we describe MVISIT that visits all elements of every ball Bn in G iteratively. It suffices to construct it as a multiple 
head G-machine with three layers as follows. The first layer runs a copy of MPATH. The second layer makes use of the 
path defined by MPATH to simulate a counter which has value n ∈ N – any one-sided Turing machine can be simulated in 
the path by identifying the instructions L, R with the first and third coordinates of �. The third layer runs another copy 
of MPATH, which is allowed only to run over words of length n. This is achieved by using the counter in second layer to 
measure the length of the path visited by the third layer and restrict it to be less than n. Each time the whole ball Bn is 
visited (that is, ((�, ⊗, gk), B) is reached in the third layer) then the counter in the second layer increments n by 1 and the 
third layer starts anew.

If at a given time the first layer, which constructs the one-sided path, backtracks until reaching a cell used by the counter 
in the second layer, then the second and third layers are erased and restart. As the group is infinite, then by choosing an 
adequate number of computation steps, the path generated by MPATH in the first layer is arbitrarily long. Thus the head of 
the third tape is able to visit every element of Bn for arbitrarily big n.

Finally, we describe the overall functioning of M:

• The input p ∈ �∗
G is stored in MSTORE whose head mimics that of MVISIT without changing anything.

• The machines MPATH and MVISIT run independently.
• MSIM uses the path given by MPATH to simulate two one-sided Turing machine tapes: an input tape where input will 

be stored, and a working tape which simulates T over that input.
• If at any moment the working tape of MSIM makes a call to the oracle WP(G), then MORACLE is made to mark the 

origin, follow the path w ∈ S∗ and accept the call if the last symbol is marked. Then it erases everything and goes back 
to the origin.

• Whenever MVISIT arrives at a position where the first layer is not marked by �, the head at MAUX follows the path w
marked from 1G by the first layer of MVISIT and writes (w, a) in the input tape of MSIM. Then MAUX marks position 
w as already visited and returns to 1G .
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• If at a given time MAUX extends the pattern coding written in the reading tape of the fifth layer, then the working tape 
of MSIM erases everything and begins anew.

• If at any moment the end of the simulated path created by MPATH backtracks into a cell used by the written portion 
of MSIM, then the content of all tapes except MPATH and MSTORE is erased and they start anew.

• M accepts if and only if the working tape of MSIM does.

As MPATH is able to construct arbitrarily long one-sided and non-intersecting paths, there is a finite number of compu-
tation steps such that MVISIT will visit all of the support of p. Thus the fourth layer will write a consistent pattern coding c
such that p = p(c) which is accepted by the working tape of MSIM if and only if p ∈ p(C) (as C is maximal). By considering 
a path which has length at least two times the running time of all the other algorithms, this eventually happens. Conversely, 
if p /∈ p(C), as p(C) is closed by extensions, the acceptance of any partial coding c′ would mean that p ∈ p(C), therefore, the 
machine never accepts. �
Corollary 3.5. A subshift X ⊂ AG is G-effectively closed if and only if there exists a G-recursively enumerable set F ⊂ A∗

G such that 
X = XF .

Proof. As X is G-effectively closed, the set of forbidden pattern codings C can be chosen to be maximal. This in turn gives 
a maximal set of forbidden patterns p(C) which is closed by extensions. Theorems 3.3 and 3.4 imply the result. �

For a language L ⊂ A∗ we define the Turing jump L′ as the halting problem for Turing machines with oracle L.
Let HALTG = {〈T 〉 | T is a G-machine which accepts the empty input}.

Corollary 3.6. Let G be an infinite group. HALTG is WP(G)′-hard, that is, it is at least as hard as the halting problem for Turing machines 
with oracle WP(G).

Proof. Let T be a Turing machine with oracle WP(G). Consider the construction from Theorem 3.4 without the Visit and 
Auxiliary tapes. Thus, there is only the tape which searches the infinite path, the oracle layer, and the layer which simu-
lates T (now only on empty input). It is clear that this machine accepts the empty input (and all inputs) if and only if T
accepts the empty input. �

Corollary 3.5 implies that G-effectively closed subshifts can be defined either by oracle machines or by G-machines. This 
nice characterization allows us to simulate Turing machines in groups which may not even have torsion-free elements. In 
what remains of this section we present applications of these machines both to the domino problem and to construct a 
simulation theorem.

3.1. Application: a class of groups with undecidable domino problem

The domino problem of a finitely generated group G is defined as the language given by the finite sets of pattern codings 
which give an empty subshift. Informally:

DP(G) = {〈F〉 | |F | < ∞, XF = ∅},
where 〈F〉 is a codification of the finite set of forbidden patterns F . Another related notion is the origin constrained domino 
problem, where a symbol in the alphabet is fixed to appear at the origin.

OCDP(G) = {(a, 〈F〉) | |F | < ∞, XF ∩ [a]1G = ∅}
It is known that both problems are decidable in Z [17] but undecidable in Zd with d > 1 [5,22]. Clearly, the decidability 

of OCDP(G) implies the decidability of DP(G) as it would suffice to run the algorithm for every symbol of the finite alphabet. 
So far, we do not know any group where the decidability of these two languages differ. In this section we use G-machines 
to exhibit a class of groups where these problems are undecidable.

Theorem 3.7. Let G be an infinite group with the special symbol property. Then:

1. The origin constrained domino problem OCDP(G ×Z) is WP(G)′-hard.
2. For any non-trivial finite group H, the domino problem for (G ×Z) ∗ H is WP(G)′-hard.

Proof. Let G = 〈S〉 and T be a G-machine with tape alphabet � = {�, 0, 1} and transition function δ : � × Q → � × Q × S . 
Denote the states by Q = {1, . . . , k} where the initial and final states are 1 and k respectively. Finally, let A = � × {0, . . . , k}
and Z = �G × X≤k ⊂AG where:

X≤k = {x ∈ {0, . . . ,k}G | 0 /∈ {xg, xh} =⇒ g = h}.
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The subshift Z consists on configurations where there is at most one appearance of a state in Q . As G satisfies the 
special symbol property, this is a sofic subshift.

We are going to define an extended sofic subshift Y ⊂ AG×Z which simulates the dynamical behavior of T by letting G
act as the space and Z as the time direction. We do this by defining its set of forbidden patterns as F = A1 ∪ A2 ∪ A3 ∪ A4
where these four sets are defined as follows:

• Let F ⊂ G . For p ∈ AF we define its immersion γ (p) : AF → AF×{0} where γ (p)(g,0) = pg for every g ∈ F . We define 
A1 as the immersion of the forbidden patterns defining Z .

• Consider the support F = {(1G , 0), (1G , 1)}. We define A2 as the set of p ∈ AF such that p(1G ,0) = (a, 0) and p(1G ,1) =
(b, ·) with b �= a.

• Let δ(a, q) = (b, r, s). We define A3 = B1 ∪ B2 where these sets are the following:
– Let F = {(1G , 0), (1G , 1)}, we define B1 as the set of p ∈ AF such that p(1G ,0) = (a, q) and p(1G ,1) = (c, ·) with c �= b.
– Let Fs = {(1G , 0), (s, 1)}, we define B2 as the set of p ∈ AFs such that p(1G ,0) = (a, q) and p(s,1) = (·, t) with t �= r.

• We define A4 to be the patterns with support {(1G , 0)} containing the symbol (a, k) for some a ∈ �.

This subshift is clearly sofic, as its forbidden patterns are the immersion of the forbidden patterns of a sofic subshift plus 
a finite amount of new forbidden patterns. The set A1 just forces every coset (G, z) to contain a configuration of Z . Said 
otherwise, at most one head. A2 forces that whenever a state 0 appears then the symbol must remain unchanged. A3 is 
composed of two rules related to the head: the first, B1 forces the symbol in the head position to correspond to the one 
from the rule δ. B2 forces the movement of the head to correspond to the rule δ. Finally, A4 forbids the appearance of the 
final state k.

Consider the coding ρ : �G × G × Q → Z given by ρ(x, h, q) = (x, z), where zh = q and z|G\{h} ≡ 0. This coding takes a 
configuration in the moving tape model and represents it as an element of the subshift Z . The rules defining Y force that if 
y ∈ Y and y(g,n) = ρ(x, h, q)g for all g ∈ G , for all m ≥ 0 one has y(g,n+m) = ρ(T m(x, h, q))g .

Using this previous relation and the fact that appearances of the final state are forbidden, we obtain that there exists 
y ∈ Y such that ∀g ∈ G then y(g,0) = ρ(�G , h, 1) for some h ∈ G if and only if T does not accept the empty input.

Let Xaux ⊂ {0, 	}G×Z be the SFT defined by the following forbidden patterns: for every s ∈ S the pattern p ∈ {0, 	}{1H ,s}
such that p1H = 	 but ps �= 	 is forbidden. This basically means that if a 	 appears in a position, then the whole G-coset 
contains a 	.

Now we have all the elements for the final construction: let Xfinal ⊂ AG×Z × Xaux defined by the following forbidden 
patterns:

• The immersion of all forbidden patterns of Y .
• A 	 in Xaux must always be accompanied by (�, j) for some j ∈ {0, . . . , k}.

This subshift is again sofic, since its forbidden patterns are the immersion of those of Y and a finite number of forbidden 
symbols in the alphabet. The role of Xaux is to force a G-coset to represent the machine T starting on empty input. We 
claim that Xfinal ∩ [((�, 1), 	)]1G = ∅ if and only if T accepts the empty input.

Indeed, let x ∈ Xfinal ∩ [((�, 1), 	)]1G . By using the definition of Xaux, the local rule of Xfinal and the characterization of Y , 
we deduce that for all g ∈ G \ {1G} then x(g,0) = ((�, 0), 	). Therefore the projection π1 to the first coordinate of x would 
satisfy π1(x)|(g,0) = ρ(�G , h, 1)g . This implies that π1(x)|h(g,k) = ρ(T m(�G , h, 1))g for all m ≥ 0. As the final state k cannot 
appear, we conclude that T does not accept the empty input. Conversely, if T does not accept the empty input we can 
construct a valid point as follows: let y ∈ Y such that ∀n ≥ 0 y(g,n) = ρ(T n(�G , 1G , 1)) and ∀m ≤ −1 y(g,m) = (�, 0). This is 
a valid point of Y as T does not accept the empty input. We can therefore define x ∈ Xfinal as follows:

x(g,k) =
{

(y(g,0), 	), if k = 0
(y(g,k),0), if k �= 0

which satisfies x ∈ Xfinal ∩ [((�, 1), 	)]1G .
Note that the previous argument implies that if ((�, 1), 	) appears in a configuration, it can only do so in at most one 

position. Therefore, we can consider a 1-block SFT extension of Xfinal with at most one preimage a of ((�, 1), 	). This is a 
G ×Z SFT such that X ∩ [a] = ∅ if and only if T accepts the empty input. Therefore OCDP(G × Z) is at least as hard as the 
halting problem for G-machines which in turn is WP(G)′-hard by Corollary 3.6.

Let H be a finite group and consider the subshift Yaux ⊂ {0, ♠}(G×Z)∗H defined by the following forbidden patterns: 
p ∈ {0, ♠}H such that |{h ∈ H | ph = ♠}| �= 1. This means that every coset of H must contain exactly one appearance of ♠. In 
the following, we choose a configuration y ∈ Yaux every (G ×Z)-coset contains at most one occurrence of ♠. Let h̄ ∈ H \{1H }
and w be a reduced word representation of an element in (G × Z) ∗ H . Define

yw =
{

1, if w ends by h̄
0, otherwise.

By using Yaux as an extra SFT layer, we can force the appearance of ((�, 1), 	) every time a ♠ appears, and immerse the 
patterns of Xfinal into (G × Z) ∗ H . By definition, each configuration in Yaux has at least one coordinate marked by an ♠, 
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Fig. 5. Example of a configuration of Y2 for the group Z2 with the canonical generators. The symbols 0, 1 and 2 are represented by the colors , and 
respectively. (For interpretation of the colors in this figure, the reader is referred to the web version of this article.)

and y has also the property that each (G ×Z)-coset contains at most one occurrence of ♠. We can thus repeat the previous 
argument to conclude that DP((G ×Z) ∗ H) is WP(G)′-hard. �

The role of the free product with H is to ensure that the machine starts the calculation over an empty tape at some 
place in every configuration. In the classical construction of Robinson [22] in the plane, this property is obtained using a 
hierarchical construction. We do not know if a generalization of this construction can be done in general groups.

Notice also that this result does not give new groups with undecidable domino problem when G has at least one 
non-torsion element. Indeed, if Z embeds into G then Z2 also embeds into G × Z. The advantage of this method using 
G-machines is that it allows to give a result over torsion groups such as the Grigorchuk group [13].

3.2. Application: a simulation theorem with oracles

In [3,11] it is shown that every effectively closed subshift on Z can be obtained as the projective subdynamics of a sofic 
subshift on Z2. As Propositions 2.9 and 2.13 show, an analogue can not hold for arbitrary G-effectively closed subshifts 
when G is recursively presented as the projective subdynamics would necessarily be effectively closed. Nevertheless, using 
G-machines, we can obtain a similar result if we allow the addition of a particular subshift as a universal oracle to our 
construction. Formally we show:

Theorem 3.8. For every finitely generated group G, there exists a G × Z-effectively closed subshift U ⊂ B̃G×Z such that for every 
G-effectively closed subshift X ⊂ AG which contains a uniform configuration (∃ā ∈ A such that āG ∈ X), there exists an alphabet B, 
a finite set of forbidden patterns F on alphabet B̃ ×B and a 1-block code φ such that:

πG

⎛⎝φ

⎛⎝(
U × BG×Z

)
\

⋃
p∈F,h∈G×Z

[p]h

⎞⎠⎞⎠ = X .

In order to define U we need to introduce some technical constructions. Let (X, d) be a metric space and D ⊂ X . The 
packing radius of D is rD = 1

2 inf {d(x, y) | x, y ∈ D, x �= y} and the covering radius of D is given by cD = sup {d(x, D) | x ∈ X}. 
Notice that for each pair of different x, y ∈ D , we have B(x, rD) ∩ B(y, rD) = ∅ and 

⋃
x∈D B(x, cD) = X . A set with non-zero 

packing radius and finite covering radius is said to be Delone. Notice that by definition a Delone subset of a non-empty set 
must be non-empty.

We define Yn ⊂ {0, 1, 2}G as the subshift defined by the following set of forbidden patterns Fn:

• All p ∈ {0, 2}B(1G ,4n) .
• p ∈ {0, 1, 2}B(1G ,n) such that p1G = 1 and there exists g ∈ B(1G , n) \ {1G } with pg �= 2.
• p ∈ {1, 2}F where F is a connected component of �(G, S) and there exist g1, g2 ∈ F , g1 �= g2 such that pg1 = pg2 = 1.

That is, Yn is the set of configurations y where, if we denote the set of positions marked in y by a 1 by D y , then D y

forms a Delone set with rD y ≥ n and cD y ≤ 4n. Also, each 1 is surrounded by a ball of size at least n marked by 2’s and 
there is no path of 2’s connecting two adjacent 1s. See Fig. 5 for an example in Z2.

Claim. ∀n ≥ 1, Yn is a non-empty, G-effectively closed subshift.

Proof. The set Fn can easily be recognized by a Turing machine with oracle WP(G), so Yn is G-effectively closed. For the 
non-empty part, we claim a Delone set D satisfying rD ≥ 2n and cD ≤ 4n always exists. Indeed, consider the restriction to 
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B(1G , k) for some k ∈ N and choose a maximal set Dk ⊂ B(1G , k) with rDk ≥ 2. If cDk > 4n then the set K := {g ∈ B(1G , k) |
d(Dk, g) > 2n} is not empty and Dk can be extended by an element of K , contradicting its maximality. Thus cDk ≤ 4n. 
Now, consider the sequence of indicator functions of (Dk)k∈N and choose an accumulation point. This limit is the indicator 
function of a Delone set D which satisfies the aforementioned property. Now, define y ∈ {0, 1, 2}G as:

yg =

⎧⎪⎨⎪⎩
1 if g ∈ D

2 if 0 < d(g, D) ≤ n

0 else

As cD ≥ 2n and n ≥ 1 it follows that there is no path consisting of 2’s between a pair of 1’s. It follows that y ∈ Yn . �
Consider a G-machine T with alphabet � and set of states Q whose head never leaves a bounded support F . Using a 

pigeonhole argument, it can be shown that if it accepts, it must do so before |Q | · |F | · |�||F | steps. Consider the function 
time : N → N given by time(n) = nnn+n+1. It is clearly a computable function which satisfies the following property: for 
any G-machine T , there exists N ∈ N such that for every n ≥ N , if T accepts a pattern p without leaving the support B(1G , n)

then it does so before time(n) steps. Indeed, we can always bound B(1G , n) ≤ |S|n and thus an upper bound for the max-
imum number of steps without leaving the support B(1G , n) is given by |Q | · |S|n · |�||S|n . Choosing N ≥ max{|Q |, |S|, |�|}
we get that ∀n ≥ N the number of steps is bounded by nnn+n+1.

We are going to construct a Z-subshift Xtime which encodes the function time and instructions for a Turing machine in 
a convenient way. Consider the alphabet AX = {•, 	, ⊕, �} ∪ S . Let ̃x ∈ AN

X be the infinite concatenation of {wn}n∈N , where 
w0 = 	 and for n ≥ 1 the word wn is defined as follows. Let u1, . . . , uk(n) be the lexicographic enumeration of all words in 
S∗ of length at most 4n. Then,

v j,n = u j � •time(n)u−1
j , and wn = ⊕v0,n v1,n, . . . , vk(n),n

Example. Let S = {a, a−1} and suppose just for this example that the words are enumerated up to length n instead of 4n, 
and that time(1) = 2 and time(2) = 3. Then the first symbols of ̃x would be:

x̃ = 	 ⊕ � • • a � • • a−1a−1 � • • a⊕ � • • •a � • • •a−1a−1 � • • •a

aa � • • •a−1a−1aa−1 � • • •aa−1a−1a � • • •a−1aa−1a−1 � • • •aa · · ·

With the infinite word ̃x in hand, we define Xtime ⊂AZ

X as the subshift such that if x ∈ X and xn = 	, then for all m ≥ 0
we have xn+m = x̃m . Clearly the forbidden patterns of Xtime can be recognized by a Turing machine.

Let X̃time ⊂ AG×Z

X be the periodic extension of Xtime . That is, for all ̃t ∈ X̃time and g ∈ G we have ̃t(g,k) = t̃(1G ,k) and 
the configuration x ∈AZ

X defined by xk = t̃(1G ,k) belongs to Xtime .
Finally, we define U ⊂ X̃time × {0, 1, 2}G×Z by a set of forbidden patterns. In order to describe this set, we denote by π1

and π2 the projections to the first and second coordinate respectively.

• Let (kn)n≥1 be the sequence of positions in ̃x such that ̃xkn = ⊕. Recall that Fn denotes the set of forbidden patterns 
defining Yn . We forbid all patterns p with support F � (1G , 0) such that π1(p)(1G ,0) = 	 and for which there is n ∈ N

such that the restriction of π2(p) to Fn = {(g, kn) | (g, kn) ∈ F } contains a pattern in Fn .
• We forbid all patterns p with support F = {(1G , 0), (1G , 1)} such that π1(p)(1G ,1) ∈ {�, •} and π2(p)(1G ,1) �= π2(p)(1G ,0) .
• For s ∈ S , we forbid all patterns with support Fs = {(1G , 0), (s, 1)} such that π1(p)(s,1) = s and π2(p)(s,1) �= π2(p)(1G ,0) .

In other words, these patterns use the information on the first coordinate to force a structure on the second one as 
follows: The n-th coordinate marked with ⊕ after a 	 must carry a configuration y ∈ Yn in the second coordinate. The 
symbols � and • in the layer (G, m) just copy the configuration in the layer (G, m − 1). The symbols from S shift the whole 
configuration by s ∈ S . See Fig. 6.

Claim. U is a non-empty, G ×Z-effectively closed subshift.

Proof. The first set of forbidden patterns is recursively enumerable with oracle WP(G) as (kn) is computable and Yn is 
G-effectively closed (the Turing machine accepting patterns of Yn can be constructed universally for all (Yn)n∈N such that 
it receives n ∈ N, p ∈ {0, 1, 2}G as an input and accepts if [p] ∩ Yn = ∅). The rest of the forbidden patterns is a finite set, 
therefore U is a G ×Z-effectively closed subshift. It is non-empty as each Yn is non-empty. �

Now that the description of U is done, we are ready to show Theorem 3.8.
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Fig. 6. A typical configuration in U ⊆ ({•, 	,⊕,�} ∪ S) × {0, 1, 2}G×Z . Symbols on the left side of the picture correspond to the first coordinate of the 
configuration, and the part in {0, 1, 2}G×Z is on the right. On the example, the bottom ⊕ is the n-th appearance after 	.

Proof. Let A be the alphabet of X and T be the G-machine which on input p ∈ A∗
G accepts if and only if [p] ∩ X = ∅. Using 

Mvisit from Theorem 3.4 we can construct from T a machine T̃ working on an infinite configuration whose description is 
as follows.

The machine T̃ contains two tapes: a reading tape which is never modified and initially filled with symbols from A, 
and a working tape. The machine T̃ iterates infinitely for n = 1, 2, . . . as follows: for n ∈ N, the machine iterates in order 
k = 1, 2, . . . , n the following procedure:

• Copy the pattern appearing in the reading tape in the support B(1G , k) around the head to the working tape.
• Run T over this pattern n steps. If T accepts at some point, then T̃ accepts.
• Erase everything in the working tape and go back to the starting position.

Let � � � be the alphabet of the working tape of T̃ and let its set of states be Q = {1, . . . , k}, where 1 is the initial 
state and k the only accepting state. We proceed similarly to Theorem 3.7 by modeling this machine as a subshift on G ×Z. 
We define the alphabet B = A × � × {0, . . . , k}. Here A is the alphabet of X , � is the alphabet of the working tape and 
{0, . . . , k} codes the state of the head of a G-machine, 0 coding the absence of a head. In order to describe the finite set of 
forbidden patterns we introduce some notation. Recall that U is defined over the alphabet {•, 	, ⊕, �} × {0, 1, 2}. Therefore 
the set of forbidden patterns F is defined over the alphabet AFinal where:

AFinal = {•, 	,⊕,�} × {0,1,2} ×A× � × {0, . . . ,k}.
We denote the projection to each of these five coordinates by π1, . . . , π5 respectively. The forbidden patterns in F belong 

to four categories: configuration patterns, starting patterns, ending patterns and transitions patterns.
The configuration patterns force that every Z-coset sees the same symbol in the third coordinate. Said otherwise, the 

third coordinate is invariant under the action of Z. To obtain this we forbid all p with support {(1G , 0), (1G , 1)} such that 
π3(p(1G ,0)) �= π3(p(1G ,1)).

The starting patterns are defined by forbidding symbols in AFinal in a way such that every time the symbol � appears 
in a G-coset, then the working tape symbols are empty (that is, marked by �) and all positions marked by 1 carry a head 
with the initial state. Formally, we force that all a ∈ AFinal such that π1(a) = � must also satisfy π4(a) = �. Furthermore, if 
π2(a) = 1 then π5(a) = 1 and if π2(a) ∈ {0, 2} then π5(a) = 0.

The ending patterns are described by forbidding the appearance of any symbol containing the accepting state k. Formally, 
every symbol a ∈AFinal π5(a) = k is forbidden.
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Fig. 7. A sofic subshift which doubles its period.

The transition patterns describe the evolution of T̃ after a symbol �. Each time the symbol • appears it marks that the 
G-machines must execute one step with respect to the previous G-coset. The description of these patterns is the same as 
the one done in Theorem 3.7 with one difference. We update the tape according to the transition function of T̃ only if a 
head is lying in a position not marked by a 0 in the second coordinate. If this happens, then the tape does not evolve.

Finally, we describe the 1-block code φ. Let ā ∈ A be a symbol such that āG ∈ X . We define a local function
� :AFinal →A by:

�(a) =
{
π3(a) if π1(a) = 	

ā otherwise

and we set φ(x)(g,k) = �(x(g,k)).
Let x ∈ AG be the G-projective subdynamics of φ(z), where z ∈ U × BG×Z and avoids all forbidden patterns in F . By 

definition of U , as X̃time is a periodic extension, each G-coset of z is either completely marked by 	 or does not contain a 	
at all. If this last case happens, then x = āG ∈ X . Otherwise π1(z)(g,0) = 	 and thus by definition of U we have π1(z)(g,k) = x̃k . 
Suppose x /∈ X , then there exists a ball Bn and p ∈ ABn such that [p] ∩ X = ∅. This implies that T accepts the input p in a 
finite number of steps nT . By definition, T̃ also accepts all configurations in [p] in a number of steps bounded by a function 
of nT . Let Bm be a ball such that T̃ never leaves Bm when working on [p] (one could take for instance m as the bound on 
the number of steps). Let N ≥ max{|Q |, |S|, |�|, m}. Then we know that T̃ starting on position 1G would accept an input 
in [p] in less than time(N) steps. Consider kN the position of the N-th appearance of ⊗ in x̃. By definition we know 
that in the G-coset in kN , the second coordinate contains a configuration y ∈ {0, 1, 2}G such that y ∈ Y N . Therefore, there 
exists g ∈ B(1G , 4N) such that yg = 1. As each word of length smaller or equal to 4N appears, then a codification of g−1

eventually does. Using the rules of U , this means that after this word the next coset is marked by �, and the configuration 
in the second coordinate is y′ = σg−1(y) thus y′

1G
= 1. By definition of x̃, the next time(N) cosets are marked by • thus 

simulating T̃ for that number of steps as long as the head does not see a 0 in the second coordinate. As there is a ball of 
size at least N around the identity marked by a symbol 2, then T̃ is run for time(N) steps, thus reaching the accepting 
state k which is forbidden. This contradicts that x /∈ X .

Conversely, each x ∈ X can be obtained by constructing a configuration z such that π3(z)(g,k) = xg and π1(z)(g,0) = 	. 
By definition of T̃ and similar arguments as above, this configuration can be completed for all g ∈ G and k ≥ 0 without 
producing forbidden patterns. For k ≤ 0 we can just fill the coordinate (g, k) with the symbol (•, 0, xg , �, 0) without creating 
forbidden patterns. �

We remark that the condition that X must contain a uniform configuration can easily be replaced by weaker statements. 
For example, it suffices to contain a periodic configuration or more generally, a G-SFT Y such that Y ⊂ X . In the proof above 
it would suffice to add a Z-periodic extension of Y as an extra coordinate and change the definition of the 1-block code φ
such that it projects to this coordinate instead of ā.

Another interesting aspect of this construction is that even if the subshift U is G ×Z-effectively closed in general, it can 
sometimes be forced to be a sofic subshift. For example, if G = Z

d then Xtime is an effectively closed Z-subshift and thus 
its periodic extension is a sofic Zd+1-subshift by [3,11]. Also, we remark that in the second coordinate of U , it suffices to 
contain a non-empty subsystem of Yn in each G-coset. For Zd it is not hard to produce sofic subshifts with those properties. 
For example, the subshift shown in Fig. 7 in which each horizontal strip contains a periodic configuration which doubles 
its period when advancing vertically can be easily shown to be sofic and adapted by adding extra symbols to produce a 
suitable subsystem of the second layer of U .
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