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Abstract. We define the domino problem for tilings over self-similar
structures of Zd given by forbidden patterns. In this setting we exhibit
non-trivial families of subsets with decidable and undecidable domino
problem.

Introduction

In its original form, the domino problem was introduced by Wang [10] in 1961. It
consists of deciding if copies of a finite set of Wang’s tiles (square tiles of equal
size, not subject to rotation and with colored edges) can tile the plane subject
to the condition that two adjacent tiles possess the same color in the edge they
share. Wang’s student Berger showed undecidability for the domino problem
on the plane in 1964 [3] by using a reduction to the halting problem. In 1971,
Robinson [8] simplified Berger’s proof.

Symbolic dynamics classically studies sets of colorings of Zd from a finite set
of colors which are closed in the product topology and invariant by translation,
such sets are called subshifts. Given a finite set of patterns F (a pattern is a
coloring of a finite part of Zd), we associate a subshift of finite type X(F) which
corresponds to the set of colorings which does not contain any occurrence of
patterns in F . The domino problem can therefore be expressed in this setting:
given a finite set of forbidden patterns F , it is possible to decide whether the
subshift of finite type X(F) is not empty?

It is well known that there exists an algorithm deciding if a subshift of finite
type is empty in dimension one [5] and that there is no such algorithm in higher
dimensions. The natural question that comes next is: What is the frontier between
decidability and undecidability in the domino problem?

One way to explore this question is to consider subshifts defined over more
general structures, such as finitely generated groups or monoids and ask for which
groups the domino problem is decidable. This approach has yielded various result
in different structures: Some examples are the hyperbolic plane [6], confirming a
conjecture of Robinson [9] and Baumslag-Solitar groups [1]. The conjecture in
this direction is that the domino problem is decidable if and only if the group is
virtually free. The conjecture is known to hold in the case of virtually nilpotent



groups [2]. The main idea of the proof of this result is to construct a grid by local
rules in order to use the classical result in Z2.

In this paper we explore another way to delimit the frontier between decid-
ability and undecidability of this problem. In geometry the structures which lie
between the line and the plane can have Hausdorff dimension strictly between
one and two. In this article we propose a way to define the domino problem in
a digitalization of such fractal structures. In Section 1 we use self-similar sub-
stitutions to define a “fractal” structure where a natural version of the domino
problem can be defined. We exhibit a large class of substitutions (including
the one which represents the Sierpiński triangle) where the domino problem is
decidable (Section 2), another class (including the Sierpiński carpet) where the
problem is undecidable (Section 4) and an intermediate class where the question
is still open (see Figure 1 for an example of each of these classes).

Sierpiński triangle Intermediate Sierpiński carpet

Decidable domino problem Unknown Undecidable domino problem

Fig. 1. Some digitalizations of fractal structures and the status of their domino problem

1 Position of the problem

1.1 Coloring of Zd and local rules

Given a finite alphabet A, a coloring of Zd is called a configuration. The set of

configurations, denoted AZd , is a compact set according to the usual product
topology. A subshift is a closed set of configurations which is invariant by the
shift action. Given a finite subset S ⊂ Zd, a pattern with support S is an element
p of AS . A pattern p ∈ AS appears in a configuration x ∈ AG if there exists
z ∈ Zd such that xz+S = p. In this case we write p @ x.

Equivalently, a subshift can be defined with a set of forbidden patterns F as
the set of configurations where no patterns of F appear. We denote it by X(F).
If F is finite, X(F) is called subshift of finite type which can be considered as
the set of tilings defined by the local contraints given by F .



1.2 Self similar structure

We want to extend the condition of coloring to self similar structures of Zd. This
means that only some cells can be decorated by elements of A. To formalize that,

a structure is coded as a subset of {0, 1}Zd and self similarity is obtained by a
substitution.

Let A be a finite alphabet. A substitution is a function s : A → AR where
R = [1, l1]× · · · × [1, ld] is a d-dimensional rectangle. It is naturally extended to
act over patterns which have rectangles as support by concatenation. We denote
the successive iterations of s over a symbol by s, s2, s3 and so on. The subshift
generated by a substitution s is the set

Xs := {x ∈ AZd |∀p @ x, ∃n ∈ N, a ∈ A, p @ sn(a)}.

To obtain self-similar structures, we restrict the notion of substitution to
{0, 1} imposing that the image of 0 consists on a block of 0s. These substitutions
are called said self-similar. Self-similar substitutions represent digitalizations
of the iterations of the following procedure: start with the hypercube [0, 1]d,
subdivide it in a l1 × · · · × ld grid and remove the blocks in the positions z of the
grid where s(1)z = 0. Then repeat the same procedure with every sub-block.

Example 1. Consider A = { , }. The self-similar substitution s such that:

and

is called the Sierpiński triangle substitution and is extended by concatenation as
shown in Figure 2.

Fig. 2. First four iterations of the Sierpiński triangle substitution.

1.3 Coloring of a self similar structure and local rules

Let A be a finite alphabet where 0 ∈ A and s be a self-similar substitution.

Consider Xs ⊂ {0, 1}Z
d

the associated self-similar structure. A configuration

x ∈ AZd is compatible with s if π(x) ∈ Xs where π is a map which send all
elements of A \ {0} onto 1 and 0 onto 0. Given a finite set of patterns F we
define the set of configurations on Xs defined by local rules as

Xs(F) =
{
x ∈ AZd : π(x) ∈ Xs and no pattern of F appears in x

}
.



1.4 The domino problem on self-similar structures

The domino problem for on Zd is defined as the language

DP(Zd) = {F finite set of patterns : X(F) 6= ∅}.

It is the language of all finite sets of patterns over a finite alphabet such that it
is possible to construct a configuration without patterns of F .

Classical results which can be found in [5] show that the domino problem for
Z is decidable. In the other hand, we know that for d > 1 the domino problem for
G = Zd is undecidable (see [3, 8]). This gap of decidability when the dimension
increases motivates us to define the domino problem for structures which lay
between those groups. Thus given a self-similar substitution s we introduce the
s-based domino problem as the language

DP(s) := {F finite set of patterns : Xs(F) 6= {0Z
d

}}.

That is, DP(s) is the set of all finite sets of forbidden patterns such that there is
at least a configuration containing a non-zero symbol. We assume implicitly that
F does not contain any pattern consisting only of 0.

2 Self-similar structures with decidable domino problem

In this section we present a family of self-similar substitutions such that the
domino problem associated is decidable. In order to present this result in the most
general setting, we introduce the channel number of a self-similar substitution.

Let H = {−1, 0, 1}d and consider the set Λ ⊂ {0, 1}{1,2,3}d consisting of all
d-dimensional hypercube patterns of side 3 which appear in Xs and that have a
1 in the center. Let Λn = sn(Λ) be the set of the images of each q ∈ Λ under sn

by concatenation and Sn be the support corresponding to the image of position
(2, . . . , 2) of q under sn. We define the n-channel number χ(s, n) of s as follows:

χ(s, n) = max
p∈Λn

|{z ∈ Sn | ∃h ∈ (z + H) ∩ (supp(p) \ Sn), pz = ph = 1}|

In other words, it is the maximum number of positions in the support of
the pattern sn(1) such that if we surround it either by blocks of 0 or copies of
sn(1) appearing in Xs there might be two symbols 1, one appearing in sn(1) and
another outside, at distance smaller than 1. We say that s is channel bounded if
there exist K ∈ N such that for all n then χ(s, n) ≤ K. The Sierpiński triangle
substitution is an example of a channel bounded substitution.

Theorem 1. For every channel bounded self-similar substitution s the domino
problem DP(s) is decidable.

Proof. Let F be set of forbidden patterns over the alphabet A for which we are
deciding the emptiness of Xs(F). By compacity of the space of configurations,

Xs(F) 6= {0Zd} if and only if for every n ∈ N there exists a pattern p over A



which does not contain any pattern from F and satisfying π(p) = sn(1). In
consequence, it suffices to show that if s is channel bounded, it is possible to
calculate N such that if it is possible to cover sN (1) with symbols from A without

any pattern from F appearing then Xs(F) 6= {0Zd}. Indeed, an algorithm could
calculate N and try every possible pattern p such that π(p) = sN (1). If there

exists one which does not violate any rule from F it returns that Xs(F) 6= {0Zd},
otherwise it returns that Xs(F) = {0Zd}.

For simplicity, suppose that ∀p ∈ F , supp(p) ⊆ H and let K be a bound for
χ(s, n) (If the support if {−m, . . . ,m}d we can recalculate K). We claim that

N = 2|A|
(3d−1)K

suffices. Consider a pattern p such that π(p) = sn(1). For each
q ∈ Λ consider the set of positions from the definition of χ(s, n) (that is, the
set of positions which matter when considering only q) and store the symbols
appearing in p in those positions (order the positions lexicographically) as a
tuple (q, a1, a2, . . . aK) ∈ Λ×AK . Therefore all the information concerning the
dependency of p with its possible surroundings can be stored on |Λ| tuples. Now,
given the set of all patterns (pj)j∈J such that π(pj) = sn(1) and which do not
contain any forbidden patterns we can extract the |Λ| tuples from each one of
them. All this information for the level n is represented as a subset of (AK)Λ. By
definition of these tuples this is the only information needed in order to construct
the patterns which contain no pattern from F and project under π to sn+1(1),
moreover, the tuples representing those patterns can be obtained from the ones of
sn(1) because the positions from the definition of χ(s, n+ 1) necessarily appear
in the patterns of sn(1). This means it is possible to extract pasting rules which

can be codified in a function µs : 2(A
K)Λ → 2(A

K)Λ .
This function gives therefore all the useful information concerning how to

construct the tuples of level n+ 1 from the tuples of level n. Obviously, µs(∅) = ∅,
therefore there are two possibilities: either this function arrives eventually at
∅ and there are no patterns p such that π(p) = sm(1) for some m ∈ N or
µs cycles and thus it’s possible to construct patterns projecting to sm(1) for
arbitrarily big m. Anyway, by pigeonhole principle this behavior must occur

before |2(AK)Λ | ≤ 2|A|
(3d−1)K

iterations of µs.

3 The Mozes property for self-similar structures

Most of the proofs of the undecidability of the domino problem on Z2 are based
on the construction of a self similar structure. A Theorem proven by Mozes [7]
shows that every Zd-substitutive subshift is a sofic subshift for d ≥ 2. This
theorem fails for the case d = 1. The importance of this result is the fact that
multidimensional substitutions can be realized by local rules. In order to present
a family of self-similar substitutions with undecidable domino problem we will
make use of an analogue of the theorem shown by Mozes.

Definition 1. A self-similar substitution s satisfies the Mozes property if for
every substitution s′ defined over the same rectangle and over an alphabet A



containing 0 and such that ∀a ∈ A \ {0}, π(s′(a)) = s(1) and s′(0) = 0R there
exists an alphabet B containing the symbol 0, a finite set of forbidden patterns
F ⊆ B∗Zd and a local function Φ : B → A such that Φ(0) = 0 and the function

φ : BZd → AZd given by φ(x)z = Φ(xz) is surjective from Φ(Xs(F)) to Xs′ .

Said otherwise, it’s the analogous of saying that Xs′ is a sofic subshift, except
that the SFT extension has to be an Xs-based subshift. Currently, we have been
able to prove that several substitutions satisfy the Mozes property but we have
not found a characterization. The channel bounded property is not relevant as it
is possible to show that the Sierpiński triangle substitution satisfies the Mozes

property, while the channel bounded substitution given by does not.
Unfortunately, the proof that a self-similar substitution satisfies the Mozes

property consists on a technical construction which has a lot of details. For the
sake of the 10 page limit we skip the proof and just state that it is valid in an
important example, the Sierpiński carpet substitution shown in Figure 3.

Theorem 2. The Sierpiński carpet substitution satisfies the Mozes property.

Fig. 3. The first iterations of the Sierpiński carpet substitution.

4 Self-similar structures where the domino problem is
undecidable

In this section we present a family of self-similar substitutions s such that the
s-based domino problem is undecidable. The definition of this class follows.

Definition 2. A self-similar substitution s defined on [1, l1]× [1, l2] contains a
grid if there are integers 1 ≤ i1 < i2 <= l1 and 1 ≤ j1 < j2 <= l2 such that
j ∈ {j1, j2} or i ∈ {i1, i2} implies that s(1)(i,j) = 1.



One example of a self-similar substitution that contains a grid is the Sierpiński
carpet. In what follows of this section we show the following theorem:

Theorem 3. Let s be a self-similar substitution which satisfies the Mozes prop-
erty and contains a grid. Then the domino problem DP(s) is undecidable.

Proof. We claim that an oracle for DP(s) can be used to decide DP(Z2). This is
enough to conclude, as DP(Z2) is undecidable.

Let s be defined on [1, l1]× [1, l2] , some values satisfying the grid condition
(i1, i2) and (j1, j2) and consider a substitution s′ over the alphabet A(s′) = {•, l
,↔, 0} given by the following rules: Let C = {(i1, j1), (i1, j2), (i2, j1), (i2, j2)},
H = {(i, j)|i ∈ {i1, i2}} \ C and V = {(i, j)|j ∈ {j1, j2}} \ C.

s′(•)z =


0, if s(1)z = 0

↔, if z ∈ H
l, if z ∈ V
•, else

s′(l)z =


0, if s(1)z = 0

l, if z ∈ V ∪ C
•, else

s′(↔)z =


0, if s(1)z = 0

↔, if z ∈ H ∪ C
•, else

For example, in the case where s is the Sierpiński carpet we get:

• s′→
• ↔ •
l 0 l
• ↔ •

l s′→
l • l
l 0 l
l • l

↔ s′→
↔ ↔ ↔
• 0 •
↔ ↔ ↔

For any y ∈ Xs′ \ {0Z2} and n ∈ N we have s′n(•) @ y. Indeed, • appears
in the image of every symbol a ∈ A(s′) \ {0}, then for every positive integer n,
• appears at a bounded distance of every non-zero symbol in s′n(a). The same
argument extends by induction by replacing • by s′n(•) and using the fact that
s′n−1(•) appears at a bounded distance in every s′k(a) with k > n necessarily
implies that s′n(•) appears at bounded distance in s′k+1(a).

As s satisfies the Mozes property there exists an alphabet B(s′), a finite set
F(s′) ⊂ B(s′)∗Z2 and Φ : B(s′) → A(s′) such that Φ(0) = 0 and ∀x ∈ Xs(F(s′))
yz := Φ(xz) satisfies that y ∈ Xs′ .

Consider a finite set of forbidden patterns F over an alphabet A defining
a Z2 subshift X(F). Without loss of generality F contains only patterns with
supports {(0, 0), (1, 0)} and {(0, 0), (0, 1)} (one can choose a conjugated version
of X(F) satisfying this property by using a higher block code. See [5]).

Finally, consider the alphabet B := B(s′)× (A ∪ {0}) along with the set of
forbidden patterns G given by the union of the following sets:

– Zeros correspond: {(0, a) | a ∈ A} ∪ {(b, 0) | b ∈ B(s′) \ {0}}.
– First layer forbidden patterns: {p × q | p ∈ F(s′), q ∈ Asupp(p)}. These

forbidden patterns make sure that configurations belonging to the first layer
of Xs(G) belong to Xs(F(s′)).



– Horizontal forbidden patterns: let p ∈ B{(0,0),(1,0)} be denoted by (a, b, c, d)
if p(0, 0) = (a, c) and p(1, 0) = (b, d) and q ∈ A{(0,0),(1,0)} be denoted by
(c, d) if q(0, 0) = c and q(1, 0) = d. The set of horizontal forbidden patterns
is {(a, b, c, d) | (a =↔, b ∈ {↔, •} and c 6= d) or (a = •, b =↔ and (c, d) ∈
F)}.

– Vertical forbidden patterns: let p ∈ B{(0,0),(0,1)} be denoted by (a, b, c, d) if
p(0, 0) = (a, c) and p(0, 1) = (b, d) and q ∈ A{(0,0),(0,1)} be denoted by (c, d)
if q(0, 0) = c and q(0, 1) = d. The set of vertical forbidden patterns is given by
{(a, b, c, d) | (a =l, b ∈ {l, •} and c 6= d) or (a = •, b =l and (c, d) ∈ F)}.

These rules codify the following idea: • carry arbitrary symbols from A in
the second layer and the arrows send this information left and up respecting
the rules from F , see Figure 4. By iterating the substitution s it is easy to see
that sn(1) actually contains 2n vertical and horizontal lines. This means that the
intersection of these lines contain symbols of A which represent a 2n× 2n pattern
which contains no forbidden patterns from F inside. Therefore if Xs(G) 6= {0Z2}
then X(F) 6= ∅ by compacity. Conversely if X(F) 6= ∅ it is possible to always
build the second layer of a point having s′n(1) in the first layer.

a1 a2 a3 a4
b1 b2 b3 b4
c1 c2 c3 c4
d1 d2 d3 d4

@ X(F)←→

• ↔ •↔↔↔ •↔ •
l l • • l l
• ↔ •↔↔↔ •↔ •
l • l l • l
l l l l
l • l l • l
• ↔ •↔↔↔ •↔ •
l l • • l l
• ↔ •↔↔↔ •↔ •

a1 a2 a2 a3 a3 a3 a3 a4 a4
b1 b2 ? ? b3 b4
b1 b2 b2 b3 b3 b3 b3 b4 b4
c1 ? c2 c3 ? c4
c1 c2 c3 c4
c1 ? c2 c3 ? c4
c1 c2 c2 c3 c3 c3 c3 c4 c4
d1 d2 ? ? d3 d4
d1 d2 d2 d3 d3 d3 d3 d4 d4

Fig. 4. In the left a pattern from X(F). In the right its coding in Xs(G). The ?s
represent any symbol from A.

Suppose there is an algorithm for deciding DP(s). Then for any F defining
a Z2 subshift the alphabet B and the rules G can be built in order to decide if
Xs(G) 6= {0Z2}. This is equivalent to deciding if X(F) 6= ∅, therefore DP(Z2) can
be decided. This yields the desired contradiction.

Adapting the proof of Theorem 5 we can prove that all self-similar substitu-
tions which contain a grid satisfy the Mozes property, therefore Theorem 3 can
also be stated without that assumption.

5 Generalizations and perspectives

Here we present some ideas to generalize previous results in order to advance
towards a characterization of the self-similar structures where the domino problem
is decidable. In the previous sections the information which allows to simulate
grids is transfered through straight lines. We can imagine less rigid possibilities.



5.1 Connectivity

We propose a way to define the directions in which the information can be
transfered in a substitution in Z2. Given a self-similar substitution defined
over [1, l1] × [1, l2] we denote by X the set of coordinates z such that s(1)z =
1. Let S = {(0,−1), (0, 1), (−1, 0), (0, 1)} and W contains {(−1,−1), (1, 1)} if
{(1, 1), (l1, l2)} ∈ X and {(−1, 1), (1,−1)} if {(1, l2), (l1, 1)} ∈ X. We say s admits
a rigid (respectively flexible) vertical line at 1 ≤ v ≤ l1 if there is a non-repeating
sequence of vertices (v, 1) = x1, . . . xn = (v, l2) such that the differences xj−xj−1
belong to S (respectively W ∪ S). We define rigid and flexible horizontal lines for
1 ≤ h ≤ l2 analogously. We also say that two lines are weakly disjoint if they
share no consecutive pair of vertices in their path.

According to these notions, we distinguish the following four subclasses:

– s has bounded connectivity if s has at most one flexible horizontal and vertical
line;

– s has a isthmus if s(1) has at least two weakly disjoint flexible lines in one
direction and at most one weakly disjoint flexible line in the other direction;

– s has a weak grid if s(1) has at least two flexible horizontal lines and two
flexible vertical lines which are pairwise weakly disjoint.

– s has a strong grid if s(1) has at least two rigid horizontal lines and two rigid
vertical lines which are pairwise weakly disjoint.

If s has bounded connectivity the proof of Theorem 1 can be adapted to show
decidability. If s has a strong grid it is possible to adapt the proof of Theorem 3
to show the undecidability of the domino problem associated to such substitution,
moreover, a generalization of that proof works even in the case of weak grids.
Nevertheless we still have no results supporting either direction in the isthmus
case. We believe that the Mozes property does not hold in the isthmus case, which
would be evidence towards decidability. Figure 5 presents the domino problem of
different substitutions according to this classification.

B. Connectivity Isthmus Weak grid Strong grid

DP decidable Unknown DP undecidable DP undecidable

Fig. 5. Some examples of substitution according to this classification



5.2 Concluding remarks

In this article we introduced a version of the domino problem on self-similar
structures in order to understand the frontier between decidability and unde-
cidability in the domino problem when we go from the line (dimension 1) to
the plane (dimension 2). In fact it does not depend on the Hausdorff dimension
of the self-similar structure considered. Indeed, using the obtained results it is
possible to obtain self similar structures with decidable domino problem and
Hausdorff dimension arbitrary near to 2 (obtained by sn) and self similar struc-
tures with undecidable domino problem and Hausdorff dimension arbitrary near
to 1 (obtained by s′n) .

sn : n s′n : n

Thus, the frontier between decidability and undecidability seems more likely to
be based on the presence of a grid where it is possible to implement a computation.
To confirm this hypothesis, it remains to study self similar structures with an
isthmus. In the case of an isthmus the substitution presents an unique bridge
which links different zones. This prevents the possibility of a Mozes-like [7] or
Goodman-Strauss-like [4] proof of the Mozes property and therefore of the
implementation of a computation. The main problem is that in order to simulate
a substitution there is the need to transfer arbitrarily big amounts of information
by that isthmus. We believe the study of this class of substitutions will certainly
provide new tools to the study of how information can be transfered.
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6 Annexes

Theorem 4. The Sierpiński triangle substitution satisfies the Mozes property.

Proof. Let the substitution s′ satisfying the hypothesis of the Mozes property
be defined over an alphabet A. For the sake of simplicity during this proof we
refer to positions (1, 1), (1, 2) and (2, 2) in R[2, 2] as 1, 2 and 3 respectively. We
proceed by constructing explicitly the alphabet A′ and the set of finite rules F ′
which satisfy the requirements.

Consider the alphabet A′ given by the following three types of tiles:

a)
•

b)
•

c)
•

where each tile carries some extra information which is not shown in the
picture. The dot and each of the two segments in each tile carry a tuple belonging
to

A× {1, 2, 3} × A3.

Where the triple in A3 is the image under s′ of the element in A (ordered
according to the previous simplification of the positions in R[2, 2]). It will be
represented as:

a, i→ 0 a3
a1 a2

. where i, j ∈ {1, 2, 3} and a, a1, a2, a3 ∈ A

The meaning of such a tuple is the following: it represents the substitution
rule s′(a) coming from s′ with the additional information that a appears in
position i in a previous substitution rule.

Now we proceed to describe the finite set of forbidden patterns F ′. We do so
by first describing a set of rules and later showing how they can be obtained by
forbidden rules. In this description, a single dot · means an arbitrary tile from
A′, # means a number in {1, 2, 3} and ∗ means a symbol from A.

1. Structure rule: The only admissible tilings of s(1) are the ones where tiles
of the type a), b) and c) are on positions 1, 2 and 3 respectively. Furthermore,
in every such tiling of s(1) the tuple in the dots must be the same for each dot.
Also the tuples from lines that match in the border of a tile must coincide.
It is possible to generate these rules in the following way: The first part of
the rule can be easily enforced by checking the neighbors, that is, we forbid
every pattern of size 2× 2 which has any of the following configurations:

·
·

•
0

·
·
•

0

·
·
•

0

· ·
•0

·
·

•
0

··
•0



The rest of the rules described here can be obtained by further forbidding
any 2× 2 pattern which does not satisfy the conditions.

2. Base rule: Any tiling of s(1) which carries in their dots a rule of the form:

a, i→ a3
a1 a2

must satisfy the following rule: if second coordinate of the tuple is the number
i=1 (respectively 2, 3) then the vertical (resp diagonal, horizontal) line in
the triangle must carry a tuple where a must appear in the right hand side
in position i, that is:

∗,#→ a
∗ ∗ supposing i = 3, for example

This rule can be obtained in the same way as the rules before.
3. Pasting rule: Whenever patterns of the following form appear:

• •
,
•
•

or
•
•

.

We demand that the two lines which have the same orientation must carry
the same tuple. Also, the other pair of lines forming an angle must also carry
the same tuple between them.
This rule can obviously be enforced by forbidding every pattern with the
shapes shown above which does not satisfy the property.

4. Extension rule: When encountering patterns as in the last rule: if the tuple
shared by the lines forming an angle carries in the second coordinate the
number 1 (respectively 2, 3), then if the other two lines which share the
orientation are vertical (respectively diagonal, horizontal) then they must
carry a tuple which originates from the tuple shared by the lines which make
an angle in the same way as in the base rule.

With these rules, we claim that by projecting each tile to the third coordinate
in the position given by the type of tile ( that is: a) goes to 1, b) to 2 and c) to
3) of the tuple which is held by the black •, (this is the local rule Φ) then for
every n ∈ N, every tiling of sn(1) projects onto s′n(a) for an a ∈ A.

Before starting, let n ∈ N. We will refer to the set of positions of R[2n, 2n]
given by

Bn = {(1, j), (j, j), (j, 2n) for j ∈ {0, . . . , 2n}}

as the n-border and we will call n-skeleton to the set (See figure 7)

Sn = {(2n−1 + 1, j), (j + 2n−1, j), (j + 2n−1, 2n−1 + 1) for j ∈ {1, . . . , 2n−1}}.

We proceed by induction. We show the previous claim along with two extra
invariants: for any n ∈ N the tuple carried by horizontal lines in the lowest part



• • • • • • • •
0 • 0 • 0 • 0 •
0 0 • • 0 0 • •
0 0 0 • 0 0 0 •
0 0 0 0 • • • •
0 0 0 0 0 • 0 •
0 0 0 0 0 0 • •
0 0 0 0 0 0 0 •

Fig. 6. A tiling of s3(1). Different colors represent different tuples in lines.

Fig. 7. The n-border is given by the black lines and the n-skeleton by the dashed lines.



of the border of sn(1) (respectively by the diagonals or the vertical lines) is the
same. Also, for n ≥ 2, the tuple in the n-skeleton is the same everywhere.

The structure rule ensures that every tiling of s(1) satisfies both the claim
and the invariants. The case for n = 2 is implied by the fact that any tiling of s(2)
is made by pasting together three tilings of s(1), thus, by using the pasting rule
we obtain the invariant over the border B2. The pasting rule also ensures that
the rules in the 2-skeleton S2 must match and hence we have the two invariants.
Using the base rule we obtain the claim for n = 2.

Suppose both the invariants and the claim are true for n − 1, using the
structure of Xs, that is, that every tiling of sn(1) is formed by pasting 3 tilings of
the previous level, the pasting rules again ensure that the invariants are satisfied
for both Bn and Sn. Using the extension rule in the same fashion as the basic
rule, we are ensured that each side of the skeleton carries the symbol which
generated each one of the three tilings of sn−1(1), and thus the claim is also
satisfied by n.

Now consider a configuration x ∈ Xs(F). As the projection via φ defined by
φ(x)z = Φ(x)z of any tiling of sn(1) yields s′n(a) for a ∈ A, then we conclude
that φ(x) ∈ Xs′ (every tiling of Xs(F) can be partitioned in either tilings of
sn(1) or patterns consisting only on zeros). In the other sense, it is clear that the
construction allows every s′n(a) for a ∈ A which appears in the right side of a
substitution rule to appear as the projection of a tiling of sn(1). As this are the
only patterns that appear in Xs′ for an arbitrary size and they can always be
constructed, we conclude that for each y ∈ Xs′ there exists a preimage which
can be easily obtained by a compacity argument.

Therefore we conclude that φ : Xs(F)� Xs′ satisfies the properties demanded
by Definition 1.

Theorem 5. The Sierpiński carpet substitution satisfies the Mozes property.

Proof. Let s′ be a substitution over an alphabet A satisfying the requirements of
the Mozes property. We construct an alphabet B and local rules which codify the
transfer of information from the substitution s′ between the different levels of s.

We start by defining the alphabet B. Consider the set of tuples T := R[3, 3] \
{(2, 2)}, that is, the positions of s(1) which carry a 1. We add each one of these
tuples to B and represent them via the following tiles.

(1, 1) (2, 1) (3, 1) (2, 1) (2, 3) (3, 1) (3, 2) (3, 3)

We say that a pair of tuples (t1, t2) ∈ T 2 are horizontally adjacent if t2 =
t1 + (1, 0) and we say they are vertically adjacent if t2 = t1 + (0, 1). For every
pair of horizontally adjacent tuples (h1, h2) and vertically adjacent tuples (v1, v2)
we add to B the following tiles:

h1 h2 h1 h2 h1h2 v1 v2 v1 v2 v1
v2



The tiles which have dashed lines are called basic lines, the ones which carry
arrows are called arrow lines, and the tiles with a segment and two tuples are
called a middle line.

For the construction, we will also need a white tile, a black tile (represents
the 0) and a variety of intersection tiles where each intersection is between an
arrow line and either a basic line or a middle line. Each of the lines in these tiles
will carry tuples in the way shown above (these are not shown in the picture).

This defines the alphabet B. Now we define the rules that every coloring of
Z2 by these tiles must satisfy. These are all obtainable by using a finite number
of forbidden patterns.

1. Whenever a black tile is accompanied by two tiles which are not black in the
positions which are below and to the left then the position diagonally to the
bottom and left of the 0 must carry a tuple in t ∈ T , conversely, every tuple
tile must have a black tile in the position which is diagonally up and to the
right and non-black tiles to the right and up:

2. Each tuple must be continued in the directions of the two adjacent tuples
either by basic lines or by arrow lines carrying the same tuple. We show
examples of this rule for tuples (1, 1) and (3, 2).

(1, 1)

(1, 1)

(1, 1)
(1, 1)

(1, 1)

(1, 1)

(3, 2)
(3, 2) (3, 2)

··

(3, 2)
(3, 2) (3, 2)

··

3. A basic horizontal (respectively vertical) tile can only be continued by another
horizontal basic tile carrying the adjacent horizontal tuple. (Either of these
basic lines could be part of an intersection tile). Thus the tuples connected
by basic lines are at distance 3, see figure 8.

4. A horizontal (respectively vertical) arrow tile (with no intersections) can only
be continued by another horizontal arrow tile carrying the same tuple, or by
an intersection tile where the arrow carries the same tuple and matches.

t t t t t t

5. A middle tile can only be continued in the direction of the segment either
by an identical middle tile, or by an intersection tile. If the connection is
with an intersection tile, then the arrow head from the intersection tile must
match with the end of the middle tile so that their tuples coincide.

t1 t1 t2 t1 t1 t2 t1 t2 t1 t2 t1 t2 t2 t1 t2 t2

6. An intersection line can only be continued in the direction of the arrow by a
middle line, and in the opposite direction by an arrow line, all carrying the
same tuple as above. the other line (basic or middle) must follow rules 3 and
4.



(1, 1) (1, 2) (1, 3)

(2, 1) (2, 3)

(3, 1) (3, 2) (3, 3)

(1, 1)

Fig. 8. A tiling of s2(1) using B. The tuples in the lines aren’t shown in order to make
the picture readable.

Now we proceed to add extra information to the symbols (tiles) of B. This
information is given in the form of 4-tuples (a, t1, (at)t∈T , t2) ∈ S where S :=
A× T ×AT × T and such that they satisfy s′(a) = (at)t∈T . This 4-tuple codes
the following information: “I carry the symbol at2 which is s′(a)t2 and the symbol
a appears in position t1 of another substitution rule”.

To black tiles we add no 4-tuples. To the rest of the tiles we add a 4-tuple in
the background. Additionally, each tuple tile or line carries an extra 4-tuple of S.
Intersection tiles carry three 4-tuples in total (one in the background and two
associated to each line).

Finally we add the following rules:

1. Structure rule: Each tiling of s(1) must carry the same 4-tuple in the
background except for the last coordinate, where each one of them must
match to the position of s(1) it is holding (this can be done using the black tile
as reference), also, in position (1,1) the second coordinate of the background
4-tuple must be the same as the tuple tile.

2. Base rule: In each tiling of s(1), if the 4-tuples of S in the background are
of the form (a, t1, (at)t∈T , ·), then the 4-tuple of S which goes with the tuple
tile t1 in position (1,1) is of the form: (b, t2, (bt)t∈T , t1) where bt1 = a.

3. Pasting rule: Any set of 8 tuples which are connected by lines, and the
lines that connect them must carry the same tuple from S, except by the last
coordinate, which must coincide with the tuple they are carrying (in the case
of middle tiles, it must be the smallest one lexicographically)

4. Extension rule: When two lines meet in an intersection tile, if the basic or
middle lines carries the tuple (a, t1, (at)t∈T , ·), then the tuple of the arrow
must be of the form (b, t2, (bt)t∈T , t1) where bt1 = a.

This finishes the description of B and the local rules. Now we proceed to prove
the result. Consider the function Φ which projects every tile by considering the
4-tuple (a, t1, (at)t∈T , t2) in the background and projecting it to at2 . We claim
that this function satisfies the requirements of the Mozes property.

In order to prove that, it suffices to show that for any n ∈ N the projection by
Φ of any tiling of sn(1) is s′n(a) for a ∈ A which appears at the right hand side of



a substitution rule of s′ and conversely that every tiling as such can be obtained as
a projection of a pattern in the construction. These two facts are easily obtained
simultaneously from the fact that for a tiling of sn(1) if the tuple tile from the
first layer in position (3n−1, 3n−1), carries the 4-tuple (a, t1, (at)t∈T , t2) then the
image via Φ of the whole block corresponds to s′n(at2).

We proceed to show the previous fact by induction, when n = 1 the result
follows from the structure and base rule. Now suppose the property holds for
n − 1 and consider a valid tiling of sn(1) such that the 4-tuple in the center
position described above is (a, t1, (at)t∈T , t2). The first set of rules imply that in
any valid tiling of sn(1) the tuples originating in the centers of the 8 blocks of
shape sn−1(1) composing sn(1) must be connected by arrows and middle tiles,
and the pasting rule imposes the condition that all these tuples and lines must
carry the same 4-tuple from S except for the last coordinate. As the tuple in
position (3n−1, 3n−1) is not at distance 2 of any other tuple, then arrow tiles
must extend from it eventually intersecting the connected structure formed
by the 8 sub-blocks of level n − 1. Finally, using the extension rule we obtain
that the structure formed by the 8 tuple tiles must carry a 4-tuple of the form:
(at2 , t2, (at)t∈T , t

′) where t′ depends on the 4-tuple carried by the structure of
the 8 tuple tiles. using the induction hypothesis we obtain that the image of
each of these blocks is sn−1(s(at2)t′) and thus the image of the whole block is
s′n−1((s′(at2)t′)t′∈T ) = s′n(at2).


