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Abstract. The asymptotic behaviour of a cellular automaton iterated on a random configuration
is well described by its limit probability measure(s). In this paper, we characterise measures and
sets of measures that can be reached as limit points after iterating a cellular automaton on a simple
initial measure. In addition to classical topological constraints, we exhibit necessary computational
obstructions. With an additional hypothesis of connectivity, we show these computability conditions
are sufficient by constructing a cellular automaton realising these sets, using auxiliary states in order
to perform computations. Adapting this construction, we obtain a similar characterisation for the
Cesàro mean convergence, a Rice theorem on the sets of limit points, and we are able to perform
computation on the set of measures, i.e. the cellular automaton converges towards a set of limit
points that depends on the initial measure. Last, under non-surjective hypotheses, it is possible to
remove auxiliary states from the construction.

Introduction

A cellular automaton is a complex system defined by a local rule which acts synchronously and
uniformly on the configuration space AZ, where A is a finite alphabet. These simple models have
a wide variety of different dynamical behaviours. We are interested in the typical asymptotic
behaviour starting from a random configuration, as this is usually done in simulations; different
approaches stemmed from such observations. It is well-described by taking the iterated image of
the initial measure under the action of the cellular automaton, and considering the limit points of
this sequence in the weak∗ topology.

It is natural to ask which sets of measures can be obtained as limit points in this way. Obviously,
any measure can be reached by iterating the identity on itself. Therefore, a more interesting ap-
proach is to start from some simple measure such as the uniform Bernoulli measure. In some sense,
this is similar to SRB measures which are “physically” relevant invariant measures obtained when
starting from the Lebesgue measure in continuous dynamical systems [You02].

Formally speaking, given a simple initial measure µ, we want to characterise all reachable V(F, µ),
the sets of accumulation points of the sequence (F t∗µ)t∈N of the images of µ under the iterated action
of F , and V ′(F, µ), the sets of accumulation points of

(
1
t+1

∑t
i=0 F

i
∗µ
)
t∈N

, the Cesàro mean of the
previous sequence, for all possible cellular automata F .

Previous works focused on the µ-limit set, which corresponds to the union of the support of the
limit measures [KM00, Ků05]. Very complex µ-limit sets can be constructed [BPT06, BDS10], and
our construction is partly inspired from these works.

Describing limit measures has been done for only few concrete nontrivial examples. There are
essentially two types of convergence quite well understood:
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• convergence towards a simple measure: for example, the cyclic cellular automaton on three
states introduced in [Fis90], starting from a Bernoulli measure, converges towards a linear
combination of Dirac measures supported by uniform configurations [dMS11];
• randomisation phenomenon for linear cellular automata: the Cesàro mean sequence of the it-
eration of a linear cellular automaton on a initial measure converges to the uniform Bernoulli
measure as soon as the initial measure is in a large class which contains Markov mea-
sures [Lin84, FMMN00, MM98, PY02].

For any cellular automaton, starting from a Bernoulli measure or a Markov measure, we obtain
after a finite number of steps a hidden Markov chain which is well understood [BP11]. If we consider
a computable initial measure µ (which means that there is an algorithm that approximates at a
known rate the probability that a word u ∈ A∗ appears), then it is easy to see that F t∗µ is also
computable. For example, a Bernoulli or Markov measure is computable iff its parameters are
computable real numbers.

The limit measure(s) are not necessarily computable since the speed of convergence is not known.
Nevertheless, we show in Section 2 that there exists necessary computational obstructions. The main
problem is to prove the reciprocal, in other words: given a set of measures satisfying the computa-
tional obstructions, construct a cellular automaton which, starting on any simple initial measure,
reaches exactly this set asymptotically. Similar computational obstructions appear when character-
ising possible topological dynamics properties of subshifts of finite type or cellular automata: possi-
ble entropies [HM10], possible growth-type invariants [Mey11], possible sub-actions [Hoc09, AS11]...
However, the construction is quite different here since starting from a random configuration requires
to self-organise the space, in the same spirit as the probabilistic cellular automaton of [Gác01] which
corrects the random perturbations.

In Section 3, we construct a cellular automaton F such that, starting from any shift-mixing
probability measure µ with full support, the limit points of the sequence of measures (F t∗µ)t∈N are
described as the accumulation points of a computable polygonal path of measures supported by
periodic orbits. First of all the cellular automaton divides the initial configuration in segments and
formats each segment using a method similar to the one developed in [DPST11]. Computation
takes place in a negligible part of each segment and the result is copied periodically on the rest
of the segment. In order to have an arbitrarily large area of computation, segments are merged
progressively in a controlled manner. The difficulty of the construction is to synchronise all the
operations to ensure the convergence.

In the Section 4, we modify this construction so that we do not need auxiliary states, i.e., the
cellular automaton only uses the same alphabet as the limit measure(s). This is only possible,
however, at the price of some additional hypotheses on the support of the measures.

In Section 5 we use these constructions to answer various questions, along with some open ques-
tions. The results are, for a fixed measure µ in a large class of measures:

• characterisation of shift-invariant measures ν such that there exists a cellular automaton F
which verifies F t∗µ −→

t→∞
ν (Corollary 1);

• characterisation of connected subsets of shift-invariant measures K such that there exists a
cellular automaton F which verifies V(F, µ) = K (Corollary 2);
• characterisation of subsets of shift-invariant measures K′ such that there exists a cellular
automaton F which verifies V ′(F, µ) = K′ (Corollary 4);
• Rice theorem for shift-invariant measures and connected subsets of shift-invariant measures
reached by a cellular automaton (Corollary 7).
• counterparts of all these results without auxiliary states, using the modified construction
(Corollaries 3, 6 and 8).
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In Section 5.4, we consider the case where the set of limit points depends on the initial measure.
Computational constraints appear to describe functions µ 7−→ V(F, µ) that can be realised in this
way. Indeed, it is possible to “transfer” the computational complexity of the initial measure (using
it as an oracle) to the set of limit points. Modifying the construction of Section 3, we manage to
build a set of limit points depending on the density of a special state; however, we do not obtain a
complete characterisation.

1. Definitions

1.1. Configuration space and cellular automata
Let A be a finite alphabet. Consider AZ the space of configurations which are Z-indexed se-
quences in A. If A is endowed with the discrete topology, AZ is compact, perfect and totally
disconnected in the product topology. Moreover one can define a metric on AZ compatible with
this topology:

∀x, y ∈ AZ, dC(x, y) = 2−min{|i| : xi 6=yi, i∈Z}.

Let U ⊂ Z. For x ∈ AZ, denote xU ∈ AU the restriction of x to U. Given a pattern w ∈ AU, one
defines the cylinder [w]U = {x ∈ AZ : xU = w}. Denote A∗ =

⋃
nAn the set of all finite words

w = w0 . . . wn−1; |w| = n is the length of w. Also denote [w]i = [w][i,i+|w|−1] and [w] = [w]0 =

[w][0,|w|−1], and A≤k =
⋃
n≤kAn. For any u ∈ A∗ such that |u| ≤ |w|, define the frequency of u in

w as Freq(u,w) = 1
|w|−|u|+1Card

({
i ∈ [0, |w| − |u|] : w[i,i+|u|] = u

})
.

The shift map σ : AZ → AZ is defined by σ(x)i = xi+1 for x = (xm)m∈Z ∈ AZ and i ∈ Z and a
subshift is a closed σ-invariant subset of AZ. For w ∈ A∗, ∞w∞ is the σ-periodic word defined
by ∞w∞[0,|w|−1] = w and σi+|w|(∞w∞) = σi(∞w∞) for all i ∈ Z.

A cellular automaton (CA) is a pair (AZ, F ) where F : AZ → AZ is a continuous function that
commutes with the shift (σ ◦ F = F ◦ σ). By the Curtis–Hedlund–Lyndon theorem [Hed69], it is
equivalent to a function defined by F (x)i = F ((xi+u)u∈UF ) for all x ∈ AZ and i ∈ Z, where UF ⊂ Z
is a finite set named neighbourhood and F : AUF → A is a local rule.

1.2. Sets of measures on AZ

1.2.1. Dynamical properties

Let B be the Borel sigma-algebra of AZ. Denote byM(AZ) the set of probability measures on AZ

defined on the sigma-algebra B. LetMσ(AZ) be the σ-invariant probability measures on AZ,
that is to say the measures µ such that µ(σ−1(B)) = µ(B) for all B ∈ B. Cylinders corresponding
to finite words form a base of the topology, so a measure µ ∈ Mσ(AZ) is entirely characterised by
{µ([u]) : u ∈ A∗}.

Usually Mσ(AZ) is endowed with the weak∗ topology: a sequence (µn)n∈N in Mσ(AZ) con-
verges to µ ∈ Mσ(AZ) if and only if, for all finite subsets U ⊂ Z and for all patterns u ∈ AU, one
has limn→∞ µn([u]U) = µ([u]U). In the weak∗ topology, the setMσ(AZ) is compact and metrisable.
A metric is defined by

dM(µ, ν) =
∑
n∈N

1

2n
max
u∈An

|µ([u])− ν([u])|.

Define the ball centered on µ ∈Mσ(AZ) of radius ε > 0 as

B(µ, ε) =
{
ν ∈Mσ(AZ) : dM(µ, ν) ≤ ε

}
,
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and this definition is extended to balls around a set of measures. A measure µ ∈ Mσ(AZ) is σ-
ergodic if for every σ-invariant B ∈ B (σ−1(B) = B µ-almost everywhere), one has µ(B) = 0 or
1. The set of σ-ergodic probability measures is denoted byMσ−erg(AZ).

For U ⊂ Z not necessarily finite, denote by BU the σ-algebra generated by the set {[u]U : u ∈
AU′ ,U′ ⊂

finite
U}. Define the weak mixing coefficients of a measure µ ∈Mσ(AZ) as

ψµ(n) = sup

{∣∣∣∣ µ(A ∩B)

µ(A)µ(B)
− 1

∣∣∣∣ : A ∈ B]−∞,0], B ∈ B[n,∞[, µ(A) > 0, µ(B) > 0

}
.

A measure µ ∈Mσ(AZ) is ψ-mixing if ψµ(n) −→
n→∞

0. DenoteMσ−mix(AZ) the set of ψ-mixing

measures. In particularMσ−mix(AZ) ⊂Mσ−erg(AZ).
For a measure µ ∈ Mσ(AZ), define the support of µ supp(µ) as the set of configurations of

AZ such that any open neighbourhood of these points have positive measure. µ has full support
if supp(µ) = AZ, which is equivalent to µ([u]) > 0 for all u ∈ A∗. Denote Mfull

σ−erg(AZ) the set
of ergodic measures with full support, and Mfull

σ−mix(AZ) the set of ψ-mixing measures with full
support.

1.2.2. Classical examples

The Dirac measure supported by x ∈ AZ is defined as δx(A) = 1x∈A. Generally δx is not σ-
invariant. However, for any σ-periodic configuration ∞w∞, it is possible to define the σ-invariant
measure supported by ∞w∞ by taking the mean of the Dirac measures on the orbit under σ:

δ̂w =
1

|w|
∑

i∈[0,|w|−1]

δσi(∞w∞).

The set of measures
{
δ̂w : w ∈ A∗

}
is dense inMσ(AZ) [Pet83].

Given (pa)a∈A a family of elements of [0, 1] such that
∑

a∈A pa = 1. The Bernoulli measure
λ(pa) associated to (pa)a∈A is defined by

λ(pa)([u]) = pu1pu2 . . . pun for all u = u1u2 . . . un ∈ An.

1.3. Action of a cellular automaton on Mσ(AZ) and limit points
1.3.1. Definition of V(F, µ) and V ′(F, µ)

Let (AZ, F ) be a cellular automaton and µ ∈ Mσ(AZ). Define the image measure F∗µ by
F∗µ(A) = µ(F−1(A)) for all A ∈ B. Since F is σ-invariant, that is to say F ◦ σ = σ ◦ F ,
one deduces that F∗(Mσ(AZ)) ⊂ Mσ(AZ) and F∗(Mσ−erg(AZ)) ⊂ Mσ−erg(AZ). This defines a
continuous application F∗ :Mσ(AZ)→Mσ(AZ).

We consider in particular F t∗µ the iterated image of µ by F∗, and its Cesàro mean at time t ∈ N
defined by ϕFt (µ) = 1

t+1

∑t
i=0 F

i
∗µ ∈Mσ(AZ).

For a measure µ ∈ Mσ(AZ), we are interested in the asymptotic behaviour of the sequences
(F t∗µ)t∈N and (ϕFt µ)t∈N. Define

• V(F, µ), the µ-limit measures set, as the set of limit points of the sequence (F tµ)t∈N;
• V ′(F, µ), theCesàro mean µ-limit measures set, as the set of limit points of the sequence

(ϕFt µ)t∈N.
Since Mσ(AZ) is compact, V(F, µ) and V ′(F, µ) are nonempty. When V(F, µ) is a singleton {ν},
F t∗µ([u]) −→

t→∞
ν([u]).
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1.3.2. Topological obstructions

Our main purpose is to characterise which sets of measures can be realised in this way. There
are topological obstructions for these sets: V(F, µ) and V ′(F, µ) are closed and thus compact since
Mσ(AZ) is it.

Moreover V ′(F, µ) is connected. Indeed, let K be a connected component of V ′(F, µ) and as-
sume that V ′(F, µ) is not reduced to K. Since K and V ′(F, µ) \ K are closed in a compact set,
there exists a minimum distance d > 0 between them. Since dM(ϕFt (µ), ϕFt+1(µ)) −→

t→∞
0, the set

B(K, 2d
3 )\B(K, d3) contains arbitrarily many points in the sequence and thus contains a limit point,

this is a contradiction.

2. Computability obstructions

In this section, we explore the computability obstructions of V(F, µ) and V ′(F, µ) when the initial
measure µ is computable.

2.1. Notions of computability

Definition 1. A Turing machine TM = (Q,Γ,#, q0, δ, QF ) is defined by:

• Γ a finite alphabet and a blank symbol # /∈ Γ;
• Q the finite set of states of the head; q0 ∈ Q is the initial state;
• δ : Q× (Γ ∪ {#})→ Q× (Γ ∪ {#})× {←,→} the transition function.
• QF ⊂ Q the set of final states.

Initially, a one-sided infinite memory tape is filled with #, except for a finite prefix (the input), and
a computing head in state q0 is located on the first letter of the tape. At each time step, given the
state of the head and the letter it reads on the tape — depending on its position — the head changes
state, replaces the letter and moves by one cell at most, according to the transition function. When
a final state is reached, the computation stops and the output is the value currently written on the
tape.

A function f : A∗ → A∗ is computable if there exists a Turing machine working on an alphabet
Γ ⊃ A that, on any input w ∈ A∗, eventually stops and outputs f(w).

To generalise this definition to functions mapping arbitrary countable sets X → Y , we introduce
the notion of encoding.

An encoding for a countable set X is the choice of a finite alphabet ΓX , a subset VX ⊂ Γ∗X of
valid encodings and a surjection eX : VX � X. Intuitively, a word in Γ∗X represents an element
of X, but an element can have several valid encodings and not all words of Γ∗ are a valid encoding
of an element of X. Strictly speaking, the following definitions depend on the chosen encoding,
but empirically all reasonable choices lead to the same notion of computability. Therefore we fix
canonical encodings that will be valid throughout this article for N, Q and their products.

• N or Z: Γ = {0, 1} and to each binary sequence we assign the corresponding integer, with
the first bit encoding the sign for Z;
• X × Y : If ΓX , eX and ΓY , eY are the encodings fixed for X and Y , respectively, we put

Γ = ΓX ∪ ΓY t {|} (disjoint union, i.e. assume | is a fresh symbol), and to x|y we assign
(eX(x), eY (y));
• Q: Take the encoding for Z × N∗ and compose the encoding function by (p, q) 7−→ p

q

(surjection).
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Definition 2. A function f : X → Y between two countable sets is computable if there exists a
Turing machine working on an alphabet containing ΓX ∪ ΓY that, on any input x ∈ VX , stops and
outputs y ∈ VY such that f(eX(x)) = eY (y).

A set K ⊂ X is computable if 1K is computable.

2.2. Measures and computability
2.2.1. Definitions and some examples
Since a probability measure µ ∈Mσ(AZ) is characterised by the value of µ([u]) for all words u ∈ A∗,
it can be seen as a particular type of function A∗ → R. Here R is not countable but is a metric
space with a countable dense set. Therefore it is natural to define a computable function A∗ → R
as a function that can be approximated by functions A∗ → Q in a computable manner.

Definition 3 (Computability of probability measures). A measure µ ∈ Mσ(AZ) is computable
(or ∆1-computable) iff there exists f : A∗ × N→ Q computable such that

|µ([u])− f(u, n)| < 2−n for all u ∈ A∗ and n ∈ N.

A sequence of measures (µi)i∈N is a uniformly computable sequence of computable mea-
sures iff there exists f : A∗ ×N×N→ Q computable such that |µi([u])− f(u, n, i)| < 2−n. This is
a stronger statement than saying that all µi are computable.

A measure µ ∈Mσ(AZ) is limit-computable (or ∆2-computable) iff there exists a uniformly
computable sequence of computable measures (µi)i∈N such that limi→∞ µi = µ. Equivalently there
exists f : A∗ × N→ Q computable such that

|µ([u])− f(u, n)| −→
n→∞

0 for all u ∈ A∗.

DenoteMcomp
σ (AZ) the set of computable measures andM∆2-comp

σ (AZ) the set of limit-computable
measures. Of courseMcomp

σ (AZ) ⊂M∆2-comp
σ (AZ).

Example 1. Let us provide some examples of such measures:
• any measure supported by a periodic orbit is computable;
• any Bernoulli measure or Markov measure with computable1 (resp. limit-computable) pa-
rameters is computable (resp. limit-computable);
• if an effective subshift (i.e. such the set of forbidden patterns can be enumerated by a Turing
machine) has a unique σ-ergodic measure µ, then µ is computable.

To obtain an approximation of µ([u]) for a pattern u, we construct an algorithm as follows.
At step n, the algorithm enumerates the first n forbidden patterns and produces all words of
size n which does not contain any of these forbidden patterns. If the frequencies of u in all
these words are sufficiently close (less than the requested precision), the average frequency
is an approximation of µ([u]). If not, we continue to the step n+ 1, until an approximation
is found. This process must stop since, for all elements of an unique ergodic subshift, the
frequency of a pattern converges towards the measure of this pattern (we would otherwise
obtain another σ-invariant measure). We deduce that µ is a computable measure. This
proof can be found in [GHR11] with a more abstract point of view.

This class of measures is very large. For example, this is the case for any subshift obtained
by a primitive substitution or the orbit of a Sturmian word defined by some computable
slope. For more details about measures of primitive substitutions and Sturmian words, see
for example [FM10].

1Here the computability of a real is defined as the computability of the function that maps n to the nth digit of
the real.
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2.2.2. Approximation by measures supported by periodic orbits

It is well known that the set of measures supported by periodic orbits is dense inMσ(AZ) for the
weak topology. The notions of computability for probability measures can be defined in an equivalent
way using this countable dense set and the distance dM which measures the approximation.

Proposition 1 (Approximation by measures supported by periodic orbits). It is possible to define
computable and limit-computable measure as approximation of measures supported by periodic orbits.

(i) A measure µ ∈ Mσ(AZ) is computable if and only if there exists a computable function
f : N→ A∗ such that dM

(
µ, δ̂f(n)

)
≤ 2−n for all n ∈ N.

(ii) A measure µ ∈Mσ(AZ) is limit-computable if and only if there exists a computable function
f : N→ A∗ such that lim

n→∞
δ̂f(n) = µ.

Proof. (i) Let µ ∈Mcomp
σ (AZ). Given some n ∈ N, we can enumerate words in A∗ in a computable

manner until we find a word f(n) such that |µ([u]) − δ̂f(n)([u])| < 2−n−2 for all u ∈ A≤n+1. Such

a word exists since the set
{
δ̂w : w ∈ A∗

}
is dense in Mσ(AZ), and it is eventually found since µ

and δ̂w are computable. One has

dM(µ, δ̂f(n)) =
∑
i∈N

1

2i
max
u∈Ai

|µ([u])− δ̂f(n)([u])| ≤ 1

2n+1
+
∑
i≥n+2

1

2i
≤ 1

2n
.

The converse is obvious since (n, u) 7−→ δ̂f(n)([u]) is computable and we have

∀u ∈ A∗,
∣∣∣µ([u])− δ̂f(n)([u])

∣∣∣ ≤ 2|u|dM

(
µ, δ̂f(n)

)
.

(ii) Let µ ∈ M∆2-comp
σ (AZ). There exists a uniformly computable sequence of computable mea-

sures (µi)i∈N such that limi→∞ µi = µ. For each n ∈ N, we enumerate words until we find
f(n) ∈ A∗ such that dM(µn, δ̂f(n)) ≤ 2−n. Clearly f : N → A∗ is computable and we have
dM(µ, δ̂f(n)) ≤ dM(µ, µn) + dM(µn, δ̂f(n)) −→

n→∞
0. The converse is similar to the previous case. �

2.3. Action of a cellular automaton on computable measures

When a computable measure is iterated by a cellular automaton, the resulting sequence of measures
is uniformly computable. This is formalised in the following property.

Proposition 2 (Uniform computability). Let F : AZ → AZ be a cellular automaton. If µ ∈
Mcomp

σ (AZ), then (F t∗µ)t∈N is an uniformly computable sequence of computable measures.

Proof. By definition, there is a computable function f : A∗×N→ Q such that |µ([u])−f(u, n)| ≤ 2−n

for all u ∈ A∗. Because F is defined locally, F t(x)[0,k] depends only on x[lt,rt+k] where l = minUF
and r = maxUF . In other words, for all u ∈ Ak, there is a set Predt(u) ⊂ A[lt,rt+k] such that
F−t([u]) = ∪v∈Predt(u)[v]. Now consider the function

f ′ : (u, n, t) 7−→
∑

v∈Predt(u)

f(v, |u|+ n+ (r − l)t).

7



It is computable by enumerating elements of Ak+(r−l)t and checking if F t([v]−lt) ⊂ [u] by iterating
the local rule on v. Finally:

|F t∗µ([u])− f ′(u, n, t)| =

∣∣∣∣∣∣µ
 ⋃
v∈Predt(u)

[v]

− ∑
v∈Predt(u)

f(v, |u|+ n+ (r − l)t)

∣∣∣∣∣∣
≤

∑
v∈Predt(u)

|µ([v])− f(v, |u|+ n+ (r − l)t)|

≤ 2|u|+(r−l)t · 2−|u|−n−(r−l)t = 2−n

which means that (F t∗µ)t∈N is a uniformly computable sequence of computable measures. �

From this proposition, we deduce the first computability obstruction when the sequence (F t∗µ)t∈N
converges toward a single limit starting from a computable measure µ.

Proposition 3 (First computability obstruction). Let F : AZ → AZ be a cellular automaton. If
µ ∈Mcomp

σ (AZ) and F t∗µ −→
t→∞

ν then ν ∈M∆2-comp
σ (AZ).

We have obtained a computability obstruction on single limit measures. In the following subsec-
tions, we extend this obstruction to sets of limit points.

2.4. Closed sets in computable analysis
2.4.1. Definitions and some examples
We introduce computability notions on compact subsets of metric spaces which cannot be defined
using the characteristic function since the compact set is not necessary countable. A standard
reference book of the theory of computable analysis on metric spaces is [Wei00], but this theory is
widely applied in the context of invariant measures (see for example [GHR11]). Computability in a
general metric space is defined according to a countable dense subset and a metric, (δ̂w)w∈A∗ and
dM in the case ofMσ(AZ).

Definition 4. A closed set K ⊂Mσ(AZ) is computable if the set{
(w, r) ∈ A∗ ×Q : B(δ̂w, r) ∩ K 6= ∅

}
is computable, that is, if its characteristic function is.

However, a set of limit points of a sequence (F t∗µ)t∈N, for µ ∈ Mcomp
σ (AZ), is not necessarily

computable. We need to extend these definitions further in order to obtain an arithmetic hierarchy.

Definition 5 (Σ2 and Π2-computable function). Let X,Y be two countable sets, with Y being
ordered. A sequence of functions (fi : X → Y )i∈N (resp. (fi,j : X → Y )i,j∈N2) is uniformly
computable if (i, x) 7−→ fi(x) (resp. (i, j, x) 7−→ fi,j(x)) is computable.

A function f : X → Y is Π1-computable (resp. Σ1-computable) if f = infi∈N fi (resp.
f = supi∈N fi), where (fi)i∈N is an uniformly computable sequence of functions.

A function f : X → Y is Π2-computable (resp. Σ2-computable) if f = infi∈N supj∈N fi,j
(resp. f = supi∈N infj∈N fi,j), where (fi,j)(i,j)∈N2 is an uniformly computable sequence of functions.

Definition 6 (Σ2 and Π2-computable closed set). A closed set K ⊂ Mσ(AZ) is Π2-computable
(resp. Σ2-computable) if the set{

(w, r) ∈ A∗ ×Q : B(δ̂w, r) ∩ K 6= ∅
}

is Π2-computable (resp. Σ2), that is, if its characteristic function is.
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Remark. The symmetric notions of Π2- and Σ2-computability come from an analogy with the real
arithmetic hierarchy [ZW01, Zie05]. These definitions extend naturally to Πn- and Σn-computability.

Example 2.
• Mσ(AZ) is a computable set.
• the set of shift-invariant measures supported by any effective subshift is a Π1-computable
compact set (that is to say the set

{
(w, r) ∈ A∗ ×Q : B(δ̂w, r) ∩ K 6= ∅

}
is Π1-computable);

• let K ⊂ [0, 1] be a closed Πn-computable set2 and denote λp ∈ Mσ({0, 1}Z) the Bernoulli
measure which charges 0 with the probability p and 1 with the probability 1 − p. The set
K = {λp : p ∈ K} is a Πn-computable compact set ofMσ({0, 1}Z) and is connected if and
only if K is. Furthermore {αλp + (1 − α)λq : p, q ∈ K and α ∈ [0, 1]} is a Πn-computable
compact connected set of {0, 1}Z. This example extends naturally to larger alphabets and
Markov measures;
• denote µα ∈ Mσ({0, 1}Z) the measure supported by the Sturmian subshift of slope α.
The set K = {µα : α ∈ K}, where K is a Πn-computable closed subset of [0, 1], is a
Πn-computable compact set ofMσ({0, 1}Z) and is connected if and only if K is.

Proof of the second example. Let Σ ⊂ AZ be an effective subshift, which means that it is defined by
a set of forbidden patterns F and there exists a computable function f : i, u 7−→ {0, 1} such that
u ∈ F ⇐⇒ supi f(i, u) = 1. Denote Fi = {u ∈ A∗ : supj≤i f(j, u) = 1}.

There exists an effective sequence of integers (αi)i∈N such that:

∀µ ∈Mσ(AZ), ∃w ∈ A≤αi , dM(µ, δ̂w) ≤ 1

i
.

This is due from the fact thatMσ(AZ) is a recursively precompact metric space (see [GHR11]).
Now define:

Wi =

{
w ∈ A≤αi :

∑
`∈N

1

2`
max

v∈Fi∩A`
δ̂w([v]) ≤ 1

i

}
,

where the maximum is worth 0 when the set is empty, which means that the sum has a finite number
of terms: the maximum length of a word in Fi.

Let A be the algorithm that, on input (u, r) ∈ A∗ ×Q and i ∈ N,
(1) computes all elements of Fi (evaluating a computable function over a finite set of arguments);
(2) computes all w ∈ Wi (a finite number of tests, and u 7−→ δ̂w([u]) is a function A∗ → Q

which can be evaluated exactly);
(3) computes di(δ̂w, δ̂u) =

∑i
n=0

1
2n maxv∈An |δ̂w([v])− δ̂u([v])| for all w ∈Wi;

(4) outputs 1 if there exists w ∈Wi such that di(δ̂w, δ̂u) ≤ r + 1
i and 0 otherwise.

We prove the correctness of this algorithm, that is, we show that

inf
i∈N

A(u, r, i) = 1⇐⇒ B(δ̂u, r) ∩Mσ(Σ) 6= ∅.

Notice that for every sequence (wi)i∈N satisfying wi ∈Wi for all i, any accumulation point µ of
the sequence (δ̂wi)i∈N satisfies µ([u]) = 0 for all u ∈ F , and therefore µ ∈Mσ(Σ).

If infi∈NA(u, r, i) = 1 then for all i ∈ N there exists wi ∈Wi such that di(δ̂wi , δ̂u) ≤ r+ 1
i . Thus

one has dM(δ̂wi , δ̂u) ≤ r+ 1
2i

+ 1
i . We deduce that for any accumulation point µ of (δ̂wi)i∈N one has

dM(µ, δ̂u) ≤ r and therefore B(δ̂u, r) ∩Mσ(Σ) 6= ∅.

2The computability of a closed set of real numbers is defined similarly to the computability of a closed set of
probability measures.
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Conversely, let µ ∈ B(δ̂u, r) ∩Mσ(Σ). There exists a sequence (wi)i∈N such that wi ∈ A≤αi and
dM(µ, δ̂wi) ≤ 1

i . Since µ ∈Mσ(Σ), one has

1

i
≥ dM(µ, δ̂wi) ≥

∑
`∈N

max
u∈F∩A`

δ̂wi([u]) ≥
∑
`∈N

max
u∈Fi∩A`

δ̂wi([u])

which means that wi ∈Wi. Furthermore,

di(δ̂u, δ̂wi) ≤ dM(δ̂u, δ̂wi) ≤ dM(δ̂u, µ) + dM(µ, δ̂wi) ≤ r +
1

i

so A(u, r, i) = 1 for all i ∈ N.
We conclude thatMσ(Σ) is a Π1-computable set. �

2.4.2. Equivalent definitions of Π2-computability
The Π2-computability of a closed set can be defined in other equivalent ways, which requires to
extend notions of computability and Π2-computability to functions mapping metric spaces with
countable dense sets.

Definition 7. A sequence of functions (fn : Mσ(AZ) −→ R)n∈N is a uniformly computable
sequence of functions if:

• there exists a : N×N×A∗ −→ Q computable such that
∣∣∣fn(δ̂w)− a(n,m,w)

∣∣∣ ≤ 1
m for every

w ∈ A∗ and n,m ∈ N (sequential computability);
• there exists b : N −→ Q+ computable such that dM(µ, ν) ≤ b(m) implies |fn(µ)− fn(ν)| ≤

1
m for all n,m ∈ N (computable uniform equicontinuity).

A function f :Mσ(AZ) −→ R is Π1-computable if there exists a uniformly computable sequence
of functions (fn :Mσ(AZ) −→ R)n∈N such that f = infn fn.

A function f :Mσ(AZ) −→ R is Σ2-computable if there exists a uniformly computable sequence
of computable functions (fi,j :Mσ(AZ) −→ R)(i,j)∈N such that f = supi infj fi,j .

Proposition 4. Let K ⊂Mσ(AZ) be a closed set. The following are equivalent:
(1) K is Π2-computable;
(2) dK : µ 7−→ minν∈K dM(µ, ν) is Σ2-computable;
(3) K = f−1({0}) where f :Mσ(AZ) −→ R is a Π1-computable function.

Proof.
1 =⇒ 2 : Assume there is a computable function f : N2 × A∗ × Q −→ R such that, for every

w ∈ A∗ and r ∈ Q, B(δ̂w, r) ∩ K 6= ∅ ⇐⇒ infi supj f(i, j, w, r) = 1. Consider the sequence(
di,j,w,r : µ 7−→ (1− f(i, j, w, r)) max

(
0, r − dM(δ̂w, µ)

))
(i,j,w,r)∈N2×A∗×Q

.

The function (i, j, w, r, w′) 7−→ di,j,w,r(δ̂w′) is computable as a product of computable functions
(sequential computability) and every di,j,w,r is 1-Lipschitz (computable uniform equicontinuity),
hence this sequence is a uniformly computable sequence of functions. We now show that dK =
supw,r supi infj di,j,w,r.

For any (w, r) such that infi supj f(i, j, w, r) = 0, we have dK(δ̂w) > r, and thus for all µ ∈
Mσ(AZ) one has:

sup
i

inf
j
di,j,w,r(µ) = max

(
0, r − dM(δ̂w, µ)

)
≤ max

(
0, dK(δ̂w)− dM(δ̂w, µ)

)
≤ dK(µ).

If µ ∈ K, we conclude that supi,w,r infj di,j,w,r(µ) = 0 = dK(µ).
10



Now let µ /∈ K. For all ε > 0, there exists w such that dM(δ̂w, µ) ≤ ε. Let r ∈ Q be such
that 0 < dK(δ̂w) − r < ε, which implies that B(δ̂w, r) ∩ K = ∅ and so infi supj f(i, j, w, r) = 0.
Furthermore dK(µ) ≤ dK(δ̂w) + dM(δ̂w, µ) ≤ r + 2ε, we deduce that

sup
i

inf
j
di,j,w,r(µ) = r − dM(δ̂w, µ) ≤ r − 2ε− dM(δ̂w, µ) ≤ dK(µ)− 3ε.

The latter is true for every ε > 0, we deduce that supi,w,r infj di,j,w,r(µ) = dK(µ).

2 =⇒ 3 : Let (di,j : Mσ(AZ) −→ R)(i,j)∈N2 be a uniformly computable sequence of computable
functions such that dK = supi∈N infj∈N di,j . By considering sup(di,j , 0) (which is uniformly com-
putable since x 7−→ sup(x, 0) is computable), these functions are assumed nonnegative w.l.o.g.
Denote gi,n = inf{di,j : j ∈ {0, . . . , n}}.

dK(µ) = 0⇐⇒
∑
i∈N

1

2i

(
inf
j∈N

di,j(µ)

)
= 0

⇐⇒
∑
i∈N

1

2i

(
inf
n∈N

gi,n(µ)

)
= 0

⇐⇒ inf
n∈N

∑
i∈N

1

2i
gi,n(µ) = 0,

where the last equivalence is obtained by the monotone convergence theorem, gi,n being decreasing
in n. Let fn : µ 7−→

∑
i∈N

1
2i
gi,n(µ). (fn)n∈N is a uniformly computable sequence of functions, since

computing (n,w′) 7−→ fn(δ̂w′) up to precision 2−r only requires to compute the values of di,j(δ̂w′)
for i, j ∈ {0, . . . , r}, and the computable uniform equicontinuity of (fn)n∈N is a consequence of the
computable uniform equicontinuity of (di,j)(i,j)∈N2 . Thus K = f−1(0) where f = infn fn.

3 =⇒ 1 : Let (fn :Mσ(AZ)→ R)n∈N be a uniformly computable sequence of functions such that
f = infn∈N fn. We assume w.l.o.g that the sequence is decreasing. For i ∈ N, we note:

di(µ, ν) =
i∑

n=1

1

2n
max
u∈An

|µ([u])− ν([u])|,

so that 0 ≤ dM(µ, ν)− di(µ, ν) ≤ 1
2i
. For any n ∈ N, w′ ∈ A∗ and i ∈ N, define

Kn,w′,i =

{
(w, r) ∈ A∗ ×Q : di(δ̂w, δ̂w′) ≤ r and |fi(δ̂w′)| ≤

1

n

}
.

The function (n,w′, i, w, r) 7−→ 1Kn,w′,i(w, r) is computable and thus the characteristic functions
1Kn,w′,i are uniformly computable. Define:

K =
⋂
n∈N

⋃
w′∈A∗
i∈N

Kn,w′,i and thus 1K = inf
n∈N

sup
w′∈A∗
i∈N

1Kn,w′,i .

The set K is Π2-computable by definition, we are going to prove that

K =
{

(w, r) ∈ A∗ ×Q : B(δ̂w, r) ∩ K 6= ∅
}
.

Let (w, r) ∈ K. For all n ∈ N, there exists wn ∈ A∗ and in ∈ N such that dM(δ̂w, δ̂wn) ≤ r

and |fin | ≤ 1
n . By compactness, there exists µ ∈ Mσ(AZ) such that dM(δ̂w, µ) ≤ r and f(µ) =

limn→∞ fin(win) = 0. Thus B(δ̂w, r) ∩ K 6= ∅.
11



Conversely, consider µ ∈ B(δ̂w, r) ∩ K. Since f(µ) = 0, for all n ∈ N there exists in ∈ N such
that |fin(µ)| ≤ 1

2n . Thus one has |fin(ν)| ≤ 1
n for all ν ∈ B(µ, b(2n)). Let wn ∈ A∗ such that

δ̂wn ∈ B(δ̂w, r) ∩ B(µ, b(n)). One has |fin(wn)| ≤ 1
n , that is to say (w, r) ∈ Kn,wn,in . Since it is

verified for all n ∈ N, one deduces that (w, r) ∈ K. �

Remark. There exist other equivalent definitions for Π2-computable closed set. See [dM14] for
some complements.

2.5. Computability obstruction for V(F, µ) and V ′(F, µ)

We now state the computability obstruction for subsets of Mσ(AZ) reachable as limit sets of the
sequence (F t∗µ)t∈N (µ-limit measures sets).

Proposition 5 (Second computability obstruction). Let F : AZ → AZ be a cellular automaton and
µ ∈Mcomp

σ (AZ). Then V(F, µ) and V ′(F, µ) are nonempty Π2-computable compact sets.

Remark. If a Π2-computable closed set of measures is reduced to a single measure, then this
measure is limit-computable. Thus Proposition 5 implies Proposition 3.

Proof. Let fn : ν 7−→ dM(Fn∗ µ, ν). Since µ is computable, (fn)n∈N is sequentially computable.
Moreover |fn(ν)−fn(ν ′)| = |dM(Fn∗ µ, ν)−dM(Fn∗ µ, ν

′)| ≤ dM(ν, ν ′) so (fn)n∈N is computably uni-
formly equicontinuous. The result follows from the fact that dV(F,µ)(ν) = lim infn→∞ dM(Fn∗ µ, ν) =
supm infn>m fn(ν), using Proposition 4.

The same reasoning holds for V ′(F, µ). �

Remark. When the initial measure is not computable, it can be used as an oracle. These obstruc-
tions will be generalised accordingly in Section 5.4.

2.6. Technical characterisation of Π2-computable compact connected sets

Π2-computable compact set of measures can be described as the limit points of a sequence (δ̂wn)n∈N
corresponding to some uniformly computable sequence of words (wn)n∈N. However, for technical
reasons, the µ-limit measures set of the construction presented in Section 3 corresponds to the limit
set of an infinite polygonal path composed of segments of the form[

δ̂u, δ̂v

]
=
{
tδ̂u + (1− t)δ̂v : t ∈ [0, 1]

}
⊂Mσ(AZ)

where u, v ∈ A∗, and is in particular connected. This is why we describe in the following proposition
how compact, Π2-computable, connected sets can be covered by a polygonal path corresponding to
a uniformly computable sequence of words.

Definition 8. Let (wn)n∈N be a sequence of words of A∗. Denote V((wn)n∈N) the limit points of
the polygonal path defined by the sequence of measures (δ̂wn)n∈N:

V((wn)n∈N) =
⋂
N>0

⋃
n≥N

[
δ̂wn , δ̂wn+1

]
.

Proposition 6. Let K ⊂ Mσ(AZ) be a non-empty Π2-computable, compact, connected set (Π2-
CCC for short). Then there exists a uniformly computable sequence of words (wn)n∈N such that
K = V((wn)n∈N).

Proof. By Proposition 4 there is a uniformly computable sequence of functions (fn)n∈N satisfying
K = f−1({0}) where f = infn∈N fn. Let a : N × N × A∗ → Q and b : N → Q+ be the computable
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functions given by Definition 7. Without loss of generality, we can assume that b is a decreasing
function and b(i) −→

i→∞
0.

For k ∈ N, define:

αtk = min{` ≤ t : ∀u ∈ A≤t,∃w ∈ A≤`, dM(δ̂u, δ̂w) ≤ b(k)}

αk = min

` ∈ N : Mσ(AZ) =
⋃

u∈A≤`
B(δ̂u, b(k))


Vt
k =

{
u ∈ A≤αtk : ∃n ≤ t such that a(n, k, u) <

2

k

}
Vk =

{
u ∈ A≤αk : ∃n ∈ N such that a(n, k, u) <

2

k

}
Since the periodic measures are dense in Mσ(AZ), we have αtk = αk when t is large enough.
Furthermore αk −→

k→+∞
+∞.

Moreover, for u ∈ A≤αk , if f(δ̂u) < 1
k there exists n ∈ N such that fn(δ̂u) < 1

k so a(n, k, u) < 2
k

which implies that u ∈ Vk. Conversely, if u ∈ Vk then there exists n ∈ N such that a(n, k, u) < 2
k

so f(δ̂u) ≤ fn(δ̂u) ≤ a(n, k, u) + 1
k ≤

3
k .

Claim 1: Vt
k is increasing with regards to t and there exists Tk such thatVTk

k = Vk. Furthermore,
the function (k, t, w)→ 1Vt

k
(w) is computable.

Proof. For all k and t, Vt
k ⊂ Vt+1

k . Furthermore, if w ∈ Vk, then w ∈ Vt
k for t large enough.

Since Vk is finite, there is a Tk such that Vk = VTk
k .

The conditions for being included in Vt
k can be checked by computing computable functions

over a finite range of values, so (k, t, w) 7−→ 1Vt
k
(w) is computable. 3 Claim 1

Notice that the Tk are not necessarily computable, which means that even though each Vk is
finite, there is not necessarily a way to know when the enumeration is finished.

Claim 2:
K =

⋂
k

⋃
u∈Vk

B
(
δ̂u, b(k)

)
.

Proof. For each element µ ∈ K and k ∈ N, there is an element uk ∈ A≤αk such that
dM(µ, δ̂uk) ≤ b(k), and therefore f(δ̂uk) ≤ 1

k . Thus, there is m ∈ N such that fm(δ̂uk) < 1
k .

One deduces that a(m, k, uk) ≤ fm(δ̂uk) + 1
k <

2
k , which means that uk ∈ Vk. In other words,

∀k ∈ N,K ⊂
⋃
u∈Vk

B
(
δ̂u, b(k)

)
.

Conversely, let µ ∈
⋂
k

⋃
u∈Vk

B
(
δ̂u, b(k)

)
. For all k ∈ N, there exists uk ∈ Vk such that

µ ∈ B
(
δ̂uk , b(k)

)
. Following the same reasoning as before, there exists n ∈ N such that

a(n, k, uk) ≤ 2
k and so

f(µ) ≤ f(δ̂uk) +
1

k
≤ fn(δ̂uk) +

1

k
≤ a(n, k, uk) +

2

k
≤ 4

k
.

We conclude that f(µ) = 0 so µ ∈ K. 3 Claim 2
13



We introduce Algorithm 1 for computing the sequence (wn)n∈N which realizes K as the limit
points of the polygonal path defined by (δ̂wn)n∈N.
Algorithm 1: Enumeration of the sequence (wn)n∈N.
Data: An algorithm computing (k, t, w) 7−→ 1Vt

k
(w)

Result: Enumeration of the sequence (wn)n∈N

n← 0;
1. for t ∈ N, by increasing order do

2. for k ≤ t, by increasing order do
3. for each element w ∈ Vt

k do
if n = 0 then

w0 ← w;
n← 1;
Go to the next element of Vt

k;
else

if t > 0 and w ∈ Vt−1
k then

Go to the next element of Vt
k;

else
4. for i ≤ k, by decreasing order do

Enumerate all finite sequences without repetition u1, . . . , ul−1 ∈ Vt
i;

if a p̄ath wn−1 = u0, u1, . . . , ul = w with dM(uk, uk+1) ≤ 4b(i) is found
then

wn ← u1, . . . , wn+l−1 ← ul and n← n+ l;
Go to the next element of Vt

k;
if no such path was found for any i then

wn ← w, n← n+ 1;
Go to the next element of Vt

k;

Notice that in the fourth loop, if a path is found, then it corresponds to the largest i ≤ k for
which such a path exists. Now we prove the correctness of this algorithm. First notice that all
elements of all Vk is enumerated in (wn)n∈N.

Claim 3: If µ ∈ K, then µ ∈ V((wn)n∈N).

Proof. By Claim 2, there is a sequence of words (uk)k∈N such that uk ∈ Vk and dM(δ̂uk , µ) <
b (k) for all k ∈ N. So uk appears at some point in the sequence (wn)n∈N for every k ∈ N. We
conclude that limk→∞ δ̂uk = µ ∈ V((wn)n∈N). 3 Claim 3

Claim 4: For every ε > 0, there exists a tε such that in the previous algorithm, if t′ ≥ t ≥ tε,
w ∈ Vt+1

k \V
t
k and w′ ∈ Vt′+1

k′ \V
t′
k′ , then the path w = u0, . . . , w

′ = ul built in the fourth loop
satisfies dK(ν) ≤ ε for all ν ∈

⋃
0≤i<l[δ̂ui , δ̂ui+1 ].

Proof. Let ε > 0, there exists by compacity a nε ∈ N such that f(µ) ≤ 4
nε

=⇒ dK(µ) ≤ ε.
Iterating the same argument, there exists kε ≥ 3nε such that f(µ) ≤ 4

kε
=⇒ dK(µ) ≤ b(nε).

Let tε = max0≤i≤kε(Ti) and assume w ∈ Vt+1
k \V

t
k and w′ ∈ Vt′+1

k′ \V
t′
k′ with t

′ ≥ t ≥ tε. By
definition of the Ti, we have Vtε

n = Vt
n = Vt′

n for all n ≤ kε. For w and w′ to be chosen by the
14



algorithm, we must have k ≥ kε and k′ ≥ kε with w ∈ Vk and w′ ∈ Vk′ so f(δ̂w) < 3
kε
< 1

nε

and f(δ̂w′) <
3
kε
< 1

nε
, thus w,w′ ∈ Vnε . Moreover, by definition of kε, dK(δ̂w) ≤ b(nε) and

dK(δ̂w′) ≤ b(nε).
Therefore

⋃
u∈Vnε

B
(
δ̂u, b(nε)

)
contains δ̂w and δ̂w′ as well as K in a single connected

component, since K is connected. This means that in the fourth loop of the algorithm, a
path can be found for some i ≥ nε. The path is entirely included in

⋃
u∈Vi

B
(
δ̂u, b(i)

)
. For

ν ∈
⋃
u∈Vi

B
(
δ̂u, b(i)

)
, there exists u ∈ Vi such that f(ν) ≤ f(δ̂u)+ 1

i ≤
4
i ≤

4
nε

so dK(ν) ≤ ε
by definition of nε. The result follows. 3 Claim 4

Claim 5: If µ ∈ V((wn)n∈N), then µ ∈ K.
Proof. Take any ε > 0, and wait that the first loop reaches the value t = tε where tε is defined
in Claim 4. At some point, a new element wn will be found in the third loop and it will
be added to the sequence already built (with a path of words before it). By construction,
wn ∈ Vt

k for some t ≥ tε, and the same is true for any element found in the third loop from
now on.
By Claim 4, this means that any pair of elements (wk, wk+1) with k ≥ n added in the

sequence from now on satisfies ∀ν ∈ [δ̂wk , δ̂wk+1
], dK(ν) ≤ ε. This is true for all ε > 0, so any

accumulation point of the polygonal path
⋃
n≥N [δ̂wn , δ̂wn+1 ] is included in K. 3 Claim 5

�

3. Construction of a cellular automaton realising a given set
of measures

In this section, we prove a reciprocal to the computability obstructions of Proposition 3 and a partial
reciprocal to Proposition 5 using Proposition 6. Given an uniformly computable sequence of words
(wn)n∈N in B∗, we construct a cellular automaton realising V((wn)n∈N) as its µ-limit measures set.
We remind that V((wn)n∈N) is defined as the set of limit points of the polygonal path defined by
the sequence of measures (δ̂wn)n∈N:

V((wn)n∈N) =
⋂
N>0

⋃
n≥N

[
δ̂wn , δ̂wn+1

]
.

Theorem 1 (Realisation of a computable polygonal path of measures).
Let (wn)n∈N be a uniformly computable sequence of words of B∗, where B is a finite alphabet. Then
there is a finite alphabet A ⊃ B and a cellular automaton F : AZ → AZ such that:

• for any measure µ ∈Mfull
σ−mix(AZ), V(F, µ) = V((wn)n∈N).

• if V((wn)n∈N) = {ν}, then for any measure µ ∈Mfull
σ−erg(AZ), F t∗µ −→

t→∞
ν.

Furthermore we get an explicit bound for the convergence rate in the first point of the theorem.
Assume that wn is computable in space O(

√
n) (by repeating elements of the sequence (wn)n∈N if

necessary), one has:

dM(F t∗µ,V((wn)n∈N)) = O

(
1

log(t)

)
+ sup

dM(ν,V((wn)n∈N)) : ν ∈
⋃

n≥C(log t)2

[δ̂wn , δ̂wn+1 ]


for some constant C > 0. The first term of the upper bound corresponds to the intrinsic limitations
of the construction, the second term depends on the speed of convergence of the polygonal path
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defined by δ̂wn towards V((wn)n∈N), which is intuitively the quality of the approximation of V(F, µ)
by a computable path.

This construction has many applications detailed in Section 5. We just mention here Corollary 2
which says that every compact, Π2-computable and connected subset ofMσ(BZ) can be obtained
as the µ-limit measures set of a cellular automaton F : AZ → AZ for any µ ∈Mfull

σ−mix(AZ).
In the rest of this section, we detail the construction of this cellular automaton and prove the

correctness of the construction in Subsection 3.5.

3.1. Overview of the construction
This section presents a sketch of the construction. The alphabet A, where is defined the cellular
automaton, contains a symbol W (for wall) persisting in time, except under special circumstances,
defining independent areas of computation (segments). Independently in each segment, three tasks
are performed in parallel:

Formatting: the initial contents of the segment are erased;
Computation and copy: each word wi is successively computed and concatenated copies of

it are written on the whole segment;
Merging: the length of the segment is checked at regular intervals, and it merges with the

segment to its right if it is too small.
The key task is the second, since the goal of the construction is that F t∗µ gets close to each

measure δ̂wi successively. This requires that the computation is performed synchronously between
all segments, so that each segment contains copies of the same wi at the same instant. To do this,
we define another symbol I (init), which appears only in the initial configuration, creating a wall
and initialising computation and auxiliary processes. This process is detailed in Section 3.2.1.

Any symbol or process created in this way is referred to as initialised ; uninitialised processes
are those already present in the initial configuration over which we have no control, and that we
wish to erase. In particular, uninitialised walls are not considered as valid segment borders.

Apart from I and W , the new alphabet A is divided in different layers: the main layer
where the words wn are output and copied out, and auxiliary layers where computation and
other processes take place. This allows to perform all tasks in parallel.

Formatting. Since we have no control over the initial contents of each segment, we first want to
format the segment, that is, to erase uninitialised walls and uninitialised contents of the auxiliary
layers.

Most processes defined below are designed to self-destruct when they are not initialised. This is
detailed as each new process is introduced. The difficult task is to distinguish uninitialised walls
from initialised walls.

To do that, each initialised wall sends to its right a signal on a specific layer progressing at speed
one (formatting counter - see Section 3.2.4), that keeps track of its age using a binary counter.
Meanwhile, each initialised walls also keeps track of its age under the form of a binary counter on
another layer, to its left, incrementing at each step (time counter - see Section 3.2.3).

Time and formatting counters already present in the initial configuration (uninitialised) have a
nonnegative value at time 0, whereas those created by an I symbol (initialised) have value 0 at
time 1, and they increment at the same rate. Thus, uninitialised walls have older time counters,
and by comparing time counters and formatting counters as they cross, we can erase older counters
and uninitialised walls. Figure 1 is an overview of those processes.

Computation and copy. Meanwhile, on another layer, a Turing machine is simulated in the space
delimited by the time counter. This machine successively computes each wn (see Section 3.3.2) and
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Figure 1. Sketch of the bootstrapping and formatting processes. Vertical lines
are walls. Dashed parts contain time counters (section 3.2.3) and Turing machines
(section 3.3.2). Slanted lines are formatting counters (section 3.2.4), white and grey
areas are respectively formatted and non-formatted.

writes concatenated copies on the main layer of the segment to its left (see Section 3.3.3). For each
wn, this happens synchronously on the whole configuration, so as to approach the measure δ̂wn .

Merging. Synchronously at some time Tn, segments of a given length n are merged with their left
neighbour. This allows us to enlarge computational space and decrease the density of cells with
nonempty auxiliary layers, so that they do not appear in the limit measure (see Section 3.4). To
determine the length of its right segment, each wall sends a signal to the right on a dedicated layer
that bounces off the next wall and counts the return time. Figure 2 is an overview of copy and
merging processes.

Alphabet.We obtain an enlarged alphabetA =
{

I , W
}
∪Amain×Acomp×Atime×Aformat×Acopy×

Amerge. All those alphabets contain a symbol # (blank) representing the absence of information.

• I and W are the two above-mentioned symbols;
• Amain = B ∪ {#} is the layer on which wn is output and then copied out;
• Acomp is the layer where Turing machines are simulated to compute wn and other processes;
• Atime is the layer on which time counters are incremented;
• Aformat is the layer on which formatting counters move and are incremented, and where
comparisons are done;
• Acopy is a layer used in the process of writing copies of the output on the main layer;
• Amerge is a layer used in the process of merging two segments.

We have B ⊂ A up to the identification b⇐⇒ (b,#,#,#,#,#). If u ∈ A, denote main(u), resp.
comp(u), time(u). . . the projections on each layer (the result being # on I and W ).

We detail the different alphabets in the following sections. As we will see, our construction needs
interactions at a distance at most three, so we can take UF = {−3, . . . , 3} as the neighbourhood of
the local rule of F .
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Figure 2. Sketch of the copying and merging processes. Here all walls are ini-
tialised. Slanted thick lines are copy processes (see Section 3.3.3), slanted dotted
lines are merging signals (see Section 3.4).

3.2. Formatting the segments
3.2.1. Bootstrapping

If two symbols I are separated by two cells or less, the rightmost one is destroyed. Otherwise,
every I symbol turns into a W , erases the contents of three cells to their right and left (including
walls), and initialises on its left a computation process and a time counter, and on its right a
formatting counter. No more I or W symbols can be created.

Definition 9. Let x ∈ AZ. The set of positions [i, j] is a segment at time 0 if xi and xj are the
symbol I and this symbol does not appear for intermediate coordinate in ]i, j[. It is a segment
at time t if F t(x)i and F t(x)j are initialized walls W (that is to say xi = xj = I ) and there are
no initialized walls between them at time t. Define the length of this segment as j − i− 1.

Walls persist over time and are only destroyed under three circumstances:
• if the time layer of the computation layer of the cell to its left is empty (so the wall must
be uninitialised);
• by a growing time counter (see Section 3.2.3 and Facts 2, 6 and 7);
• by the merging process detailed in Section 3.4.

As the only exception, if a segment is of length three at time 0, then the leftmost I prevents
the creation of a time counter for the rightmost wall at time 1 and the wall itself is destroyed at
time 2. Thus segments have minimum length four from time 2 onwards.

3.2.2. Counters

All counters are binary in a redundant basis, so that they can be incremented by one at each step
(keeping track of current time) in a local manner. Notice that in the following two definitions, the
indexing of the letters is inverted.
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Definition 10 (Redundant binary basis). Let u = u0 . . . un−1 ∈ {0, 1, 2}∗. The value of u is

val(u) =

n−1∑
i=0

ui2
i.

Since the basis is redundant, different words in {0, 1, 2}∗ can have the same value.

Definition 11 (Incrementation). The incrementation operation inc : {0, 1, 2}∗ 7−→ {0, 1, 2}∗ is
defined in the following way. If u|u|−1 = 2, then |inc(u)| = |u|+ 1, |u| otherwise, and:

inc(u)i =

 1 if i = |u| and u|u|−1 = 2;
ui mod 2 + 1 if i = 0 or ui−1 = 2;
ui mod 2 otherwise.

Intuitively, the counter is increased by one at the rightmost bit and 2 behaves as a carry propagat-
ing along the counter. If the most significant bit was a carry, the length of the counter is increased
by one. Thus:

Fact 1. val(inc(u)) = val(u) + 1.

Taking a symbol as spark where the counter is incremented, in our case the symbol W , and
another one to precise the end of the word, in our case #, this operation can be defined locally and
can be seen as the local rule of a cellular automaton.

3.2.3. Time
We use the alphabet Atime = {0, 1, 2,#}. In a configuration, a time counter is a word of maximal
length containing no # in the time layer. A time counter is attached if it is bounded on its right
by a wall W , detached otherwise.
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Figure 3. A detached time counter, and a time counter attached to an initialised
wall. Only the time layer is represented. ? cells have arbitrary values.

At each step, attached counters are incremented by one while detached counters have their right-
most bit deleted (see Figure 3). Indeed, detached counters are uninitialised and can be safely
deleted. Formally,

• if u1 = W , then time(F (u)0) = time(u0) mod 2 + 1;
• if time(u1) = #, then time(F (u)0) = #;
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• otherwise, follow the incrementation definition (Definition 11).
When a counter increases in length, it may erase a wall by overwriting it. However, this is not a

problem, as we shall see in Facts 2 and 6.

Fact 2. An initialised wall cannot be erased by a detached time counter.

Proof. A detached time counter is not incremented and can extend by one cell at most because of the
carries initially present in the word. But I symbols erase two cells to their right at initialisation. �

Fact 3. Let x ∈ AZ be the initial configuration. Each attached time counter u in F t(x) satisfies
val(u) ≥ t− 1, the equality being attained if this counter is attached to an initialised wall.

Proof. No time counter is created except at t = 1 (by I ). Therefore such a counter was present
either in the initial configuration (with a nonnegative value), or was created at t = 1 by a I symbol.
It is incremented by one at each step in both cases. �

Thus we can use time counters to tell apart initialised walls from non-initialised walls, which is
the object of the next section.

3.2.4. Formatting and comparisons

We want to implement a counter in a new layer which is compared to the time counter when they are
in interaction. The formatting layer Aformat, contains the symbol # as all layers. A formatting
counter is a word of maximal length where the value of the cell in Aformat is different than #.
Formatting counters are defined and incremented at each step in a similar way as time counters,
but they have a range of different behaviours. Thus the other elements of Aformat are decomposed
into two layers Avalue = {0, 1, 2,#} and Astate where the possible value are:

“Go” state: The counter progresses at speed one to the right.
“Stop” state: Once a wall is encountered, the counter progressively (right to left) stops.
Comparison states: Once the whole counter has stopped, we locally compare the formatting

counter and the time counter, left to right, with a method we describe later which use the
symbol {−,=−,=,=+,+}.

The wall is destroyed if the formatting counter is strictly younger, and the formatting counter is
destroyed otherwise (see Figures 5 and 6). In the former case, the counter progressively returns to
the “Go” state.

Changing state takes some time to propagate the information along the counter. Therefore,
counters passing from a “Go” state to a “Stop” state are temporarily in a situation where the left
part of the counter progresses whereas the right part has not. To avoid erasing information, counters
in a “Go” state have buffers, i.e. the value of the counter is only written on half the cells, the other
half containing (Go,#) (see Figure 4).

When its length increase, a counter never merges with another counter, erasing bits from the
right-hand counter instead in order to avoid merging: we say the right-hand counter is dominated.
Notice that it is impossible for a counter located to the right of another counter to be initialised,
and so it is safe to erase bits of it.

Fact 4. Let x ∈ AZ be the initial configuration. Any non-dominated formatting counter u of F t(x)
satisfies val(u) ≥ t− 1, the equality being attained if the counter is initialised.

Proof. Similar to Fact 3. �
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Figure 4. One initialised and one uninitialised formatting counter. X symbols mark
the cells where values are prevented to appear to avoid merging: the right counter
is dominated. Only the formatting layer is represented.

Thus we guarantee that an initialised (hence non-dominated) formatting counter is strictly
younger than any uninitialised wall, and symmetrically. Uninitialised formatting counters can only
progress to the right to be destroyed by the nearest initialised wall. We will see that dominated
counters, whose value is arbitrary, are not a problem since they are erased before any comparison
takes place.

Definition 12 (Comparison method). Let u = u0u1 . . . and v = v0v1 . . . be two counters in
redundant binary basis (adding zeroes so that |u| = |v|). Let us note sign(u− v) the result of the
comparison between u and v, that is, +, 0 or −.

Case 1: if |u| = |v| = 1, sign(u− v) = sign(u0 − v0);
Case 2: if u0 + bu1/2c > v0 + bv1/2c+ 1, then sign(u− v) = +,

and symmetrically;
Case 3: if u0 + bu1/2c = v0 + bv1/2c + ε (for some ε ∈ {−1, 0, 1}), then sign(u − v) =
sign((u′1 + 2ε)u2 · · · − v′1v2 . . . ),
where u′1 = u1 mod 2 and v′1 = v1 mod 2.

In other words, we do a bit-by-bit comparison starting from the most significant bit, consider-
ing that # is equal to 0, and taking into account the carry propagation “in advance”, so that the
incrementation and carry propagation can continue during the comparison. When the “local differ-
ence” ε is too small, the result cannot be determined locally and a remainder is carried (consider a
comparison between 120 · · · 0 and 11 · · · 12).

Formally, for each pair of bits (un, vn), we add 1 to each bit if the following bit of the corresponding
counter is 2, and depending on the value of un − vn + 2ε:

result < −1 −1 0 +1 > +1
new state − =− = =+ +

If the result can be determined locally (cases 1 and 2), the state is changed to + or −, and the
result propagates to the right without further comparisons. Otherwise (case 3), the state changes to
=, which means future bit comparisons will decide the result in the same way. If there is a remainder
ε, it is remembered for the next comparison by having three states =−,=+,=. See Figure 6 for an
example.
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After the comparison, two cases are possible:
• if the state of the rightmost bit is − or =−, the wall is strictly older than the counter.
The wall is destroyed and the state of the rightmost bit becomes “Go”. The counter then
progressively returns to the “Go” state.
• if the state of the rightmost bit is +, =+ or =, the wall is younger than the counter. The
rightmost bit is erased, and the rest of the counter is progressively erased in a similar way
as a detached time counter.
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The second case covers the case where both the counter and the wall are initialised (result =), which
means that the formatting counter has finished formatting its segment and may be erased. Also, if
the counter is dominated, then its leftmost bit is erased at each step, preventing the comparison to
start, until the counter is entirely erased.

To sum up, Aformat = {#} ∪ ({Go} × {0, 1, 2,#}) ∪ ({Stop,+,−,=,=+,=−} × {0, 1, 2}).

When a formatting counter reaches the right wall of the segment, the segment is said to be
formatted. This implies that the segment contains no more uninitialised walls.

Fact 5. At time k(1 + dlog ke), all segments of length k (for k > 3) are formatted.

Proof. As long as t ≤ k(1 + dlog ke), any initialised formatting counter has length dlog te ≤ 2dlog ke
(excluding the buffers) since it is in base 2. The counter progresses at speed one except when it
meets another wall. Each comparison takes a time equal to twice the current length of the counter
(again excluding the buffers). Furthermore, two consecutive walls are separated by three cells at
least (cf. Section 3.2.1). Thus, the segment is formatted in less than k+ k

4 · 2 · 2dlog ke steps, which
is coherent with our first assumption. �

Fact 6. An initialised wall cannot be erased by a time counter attached to a uninitialised wall.

Proof. Consider two walls, the left being initialised and the right uninitialised. As explained in
Section 3.2.1, we can assume they are separated by k > 3 cells. The value of the time counter
attached to the right wall cannot exceed 2k−3 at time 1 (since every symbol I erases three cells to
its right at time 1), so it takes more than 2k−2k−3 steps before the left wall is erased. According to
Fact 5, the right wall is destroyed in less than k(1 + dlog ke) steps, and from then its time counter
takes at most k more steps to be erased.

For k ≥ 5, k(1 + log k) + k ≤ 2k − 2k−3, so the counter is erased before it reaches the left wall.
For k = 4, any wall between them is destroyed at time 1, so the destruction time is actually less
than k + 2 log k + k ≤ 2k − 2k−3. �

3.3. Computation and copy
3.3.1. Simulating a Turing machine in a cellular automaton

Let TM = (Q,Γ,#, q0, δ, QF ) be a Turing machine. We simulate this machine in a cellular au-
tomaton F on the alphabet (Γ ∪#)× (Q ∪#). The left part contains the content of the tape; the
right part contains the state of the machine for the cell where the head is located, and # everywhere
else.

The local rule of F is governed by the rules of the machine. That is, for all u ∈ ((Γ∪#)×(Q∪#))Z,
and writing _ to denote an arbitrary value:

• if the head is on u0 and δ(u0) = (q, γ,_), then F (u)0 = (γ,#);
• if the head is on u1, δ(u1) = (q,_,←) and u0 = (γ′,#), then F (u)0 = (γ′, q);
• similarly if the head is on u−1 and δ(u−1) = (q,_,→);
• otherwise, F (u)0 = u0.

When starting from a configuration filled with (#,#) everywhere except for a finite window with
only one head, the time evolution of the cellular automaton matches the time evolution the Turing
machine. The Turing machine considered in the proof does not stop, but by consistency we can
assume that when the machine has stopped (the state being in QF ), the local rule is the identity
function.
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3.3.2. Computation
Computation takes place to the left of each initialised wall. Acomp is divided into three layers, on
which three Turing machines are simulated, using the alphabet

Acomp =

3⊗
i=1

(Γi ∪#)× (Qi ∪#).

We adapt the simulation so that these Turing machines can read input from or write output to
another layer (when indicated).

We now describe the operations to be performed symchronously between times Tn−1 and Tn that
we will fix later. Assume that, at time Tn−1, n is already written on the layer 1 and Tn−1 on layer
3. The machines:

(1) replace n by n+ 1 on layer 1 and stops;
(2) compute wn on layer 2, outputting it on the main layer, and stops;
(3) compute Tn on layer 3, and stops;

When t = Tn (t being read from the time layer), the copying process triggers and the next compu-
tation starts, except when merging occurs; see next subsections.

All these operations must be performed in less than Tn− Tn−1 steps. We now fix the value of Tn
so that it is indeed possible.

A Turing machine with tape alphabet Γ and set of states Q and using only a computational space
S stops in time S · |Γ|S · |Q| which is the number of possible configurations. Otherwise, the same
configuration would be reached twice, entering a loop.

Therefore there exists a constant q > 0 large enough that the operations on layers 1 and 2 can
be performed in space b

√
nc log2 q and time O(qb

√
nc). Furthermore, the function (r, n) 7−→ rb

√
nc

is computable in space b
√
nc log2 r (length of the output) and time O(n3/2(log r)2) (compute b

√
nc

in time O(n), then perform b
√
nc multiplications between numbers of length b

√
nc log2 r at most in

time O((
√
n log2 r)

2)).

In other words, if we fix
Tn − Tn−1 = qb

√
nc,

then the operation on layer 3 can be performed in space b
√
nc log2 q and time O(qb

√
nc). However,

we need an upper bound on the time at each step and not only an asymptotic bound. This is solved
by the linear speedup theorem for Turing machines: we can divide the computational time by any
fixed constant C by replacing each machine Mi by a new machine M ′i , such that M ′i performs C
computational steps of Mi at each step, increasing the radius as necessary.

Remark. We fixed Tn so that the computation space is of size
√
n at time Tn and constitutes an

asymptotically negligible fraction of its segment. We could choose instead of
√
n any other function

in o(n) which is time constructible.

Similarly to time counters, whenever they find an empty computational layer to their right (in-
stead of a wall or another computation state), computation states was replaced by the symbol
(#,#). Thus uninitialised computation states self-destruct progressively. This requires that the
Turing machines are adapted so that they never write (#,#) in a cell in the middle of a computation.

3.3.3. Copying
On the layer Acopy, the cellular automaton copies periodically the words produced by the Turing
machine in view to make samplings of the limit measures, we just put Acopy = B ∪ {#}.

At time Tn (n ≥ 0), wn has been output on the main layer, followed by a symbol #. If the
segment is not in the process of merging, repeated copies of wn have to be written over the main
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layer. The Turing machine triggers the copying process by copying the rightmost letter of wn from
the main layer to the copy layer.

First phase: As long as it has not met a symbol #, the word on the copy layer progresses at
speed -2 (that is to say if it is in the position [i, j] it moves to the position [i− 2, j− 2]) and
at each step a letter is copied from the main layer to the tail of the word;

Second phase: The word keeps progressing at speed -2 but the head loses one letter at each
step and copies it on the main layer. The tail keeps copying letters from the main layer.

Intuitively, the cellular automaton performs a caterpillar-like movement between the copy and
main layers (see Figure 7 for an example). The process ends when it meets a wall.
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Figure 7. Beginning of the copying process, with wn = 1101. Only the layers Acopy
and Amain are represented.

Uninitialised copying processes may write arbitrary words on the main layer, but they progress
to the left at speed one and are destroyed by the nearest wall in this direction.

3.4. Merging
At time Tn, all segments of length n are forced to merge with their left neighbour, so that the
density of walls tends to 0. This means that merging is performed at time Tn between a segment
larger than n to the left, and any number of consecutive segments of length n to the right. To
determine the length of each segment, a signal is sent to the right and bounces off the right wall,
and its return time is measured.

To do so, a merging counter of value 2n is initialised at time Tn−1 on the merge layer. The
value of n is copied from the first computing layer to the merge layer (with an additional 0 at the
end), using an auxiliary state C (copy). This counter decrements at each step in a similar way
as incrementing counters, except it uses -1 as a negative carry. See Figure 8 for an example of this
process.
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If the signal returns at or before the end of the decrementation, a symbol M (merge) is created
on the merge layer to indicate that the wall is to be destroyed at the next Tn; this is the only case
where the copying process described above does not trigger. To sum up,

Amerge = {−1, 0, 1, M , C } × {→,←} ∪ {#}.
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Figure 8. Determination of the length of a segment. Here the right segment is
of length 3 and the two segments merge at time T3. Only the merging layer is
represented, with the counter of the right segment omitted for clarity.

Fact 7. Left walls of segments of length ` are erased at time T ′` = min(T`, 2
` + `).

Proof. Except for the situation described above, the only other way for an initialised wall to be
erased is a time counter attached to an initialised wall, see Facts 2 and 6. A redundant binary
counter whose initial value is 0 reaches length ` at time 2`+ `, the second term come from the carry
propagation. �

Uninitialised merging counters are destroyed in exactly the same way as uninitialised time coun-
ters. To prevent uninitialised merging signals from disturbing a merging process, any right merging
signal → erase incoming left merging signals ←. Merging signals arriving to a wall outside of a
merging process is simply ignored and destroyed.

3.5. Correctness of the construction
To sum up, we have two time sequences (Tn)n∈N and (T ′n)n∈N such that:

• At time Tn, the computation of wn is finished and the copy starts;
• At time T ′n, the segments of length n merge with their left neighbour.

Furthermore, those sequences are equal for n large enough.
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The computation, copy and merging processes described in the previous section have to be per-
formed between time Tn and time Tn+1, which requires that the segments are not too large. In this
section, we control the length of segments at time Tn.

Proposition 7. Tn = Θ(b
√
ncqb

√
nc) where q is defined in Section 3.3.2.

Proof. Tn =
∑n

k=1 Tk − Tk−1. Since Tk+1 − Tk = qb
√
kc, and:

(2b
√
nc − 1)qb

√
nc−1 ≤

b
√
nc−1∑
k=1

(2k + 1)qk ≤
n∑
k=1

qb
√
kc ≤

b
√
nc∑

k=1

(2k + 1)qk ≤ (2b
√
nc+ 1)qb

√
nc+1,

the proposition follows. �

3.5.1. Acceptable segments
Definition 13. Denote:

Γt[i,j] =
{
x ∈ AZ | [i, j] is a segment of F t(x)

}
Γtl,k =

{
x ∈ AZ : [0, l] is included in a segment of F t(x) of length k

}
=

0⊔
i=−k+`+1

Γt[i,i+k+1] (disjoint union)

and Γtl,≥k =
⊔
i≥k

Γtl,i.

Proposition 8 (Lower bound).
Let µ ∈Mfull

σ−erg(AZ). For all l ∈ N, one has µ(ΓTnl,≥n) −→
n→∞

1.

Proof. Tn = T ′n for n large enough, so we do the proof for T ′n. Since µ has full support,

µ
(
x ∈ AZ : x0 = I and xi 6= I for all i ∈ {−2,−1, 1, 2, . . . , n}

)
6= 0.

By σ-ergodicity of µ, segments of length larger than n appear at time 0 in µ-almost all configurations,
and those segments survive up to time T ′n by construction. In particular, F T

′
n
∗ µ([ I ]) 6= 0.

By σ-ergodicity of F T
′
n
∗ µ, the cell 0 is µ-almost surely included in some segment at time T ′n, and

this segment has length larger than n by definition of T ′n. By σ-invariance, the probability that [0, l]
crosses a border of the segment tends to 0 as n tends to infinity. �

Definition 14. Let x ∈ AZ, [i, j] a segment at time t ∈ [Tn, Tn+1]. It is acceptable if j − i− 1 ≤
Kn =

√
Tn+1 − Tn. For n large enough, Kn = q

b
√
nc
2 .

Proposition 9 (Upper bound). Let µ ∈Mfull
σ−mix(AZ). One has µ(ΓTnl,≥Kn) −→

n→∞
0, that is to say:

µ({x ∈ AZ : [0, l] is in an acceptable segment of F t(x)}) −→
t→∞

1

and the rate of convergence is exponential.

Proof. Again, Tn = T ′n for n large enough, so we do the proof for T ′n. Any segment at time T ′n
corresponds to a segment larger than n merged with 0 or more consecutive segments of length n at
time T ′n−1 (only the left wall of segments of size n are destroyed at time T ′n). See Figure 9 for an
illustration of this decomposition. Therefore we define:

∆t
n,α = {x ∈ AZ : starting from 0 there is a strip of α consecutive segments of size n in F t(x)}.
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First we bound the value of µ(∆t
n,α). For any m > 0, by considering one symbol out of every m:

µ
(
∆t
n,α

)
≤ µ

(
α⋂
i=0

σin
([

I
]))

≤ µ

b αm c⋂
i=0

σin·m
([

I
])

≤ (1 + ψµ(mn))b
α
m
cµ
([

I
])b α

m
c+1

,(1)

where ψµ are the weak mixing coefficients of µ as defined in Section 1.2.1.

Now take x such that [0, l] is included in a segment longer than k at time T ′n. As we said before,
this segment is issued from the merging of one segment with 0 or more segments of length n− 1 at
time T ′n−1. Take any L > 2n and distinguish the two following cases concerning the segments at
time T ′n−1 it is issued from:

• There were less than
⌊
L
n

⌋
segments of length n: then the other segment is larger than k−L.

By shifting the configuration by L− l cells at most, we can ensure that [0, l] is included in
this segment at time T ′n−1.
• There were more than

⌊
L
n

⌋
segments of length n. Therefore there is a strip of

⌊
L
n

⌋
segments

of length n starting at some j ∈ [−k, k].

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

strip

m · n

n

time

T ′n

0j

Figure 9. Illustration of the proof of Proposition 9 with α = 9 and m = 3.

In other words,

Γ
T ′n
l,≥k ⊂

0⋃
i=−L+l

σi
(

Γ
T ′n−1

l,≥k−L

)
∪

k−1⋃
j=−k+1

σj
(

∆
T ′n−1

n,bLnc

)
.

From which it follows:

(2) µ
(

Γ
T ′n
l,≥k

)
≤ Lµ

(
Γ
T ′n−1

l,≥k−L

)
+ 2kµ

(
∆
T ′n−1

n,bLnc

)
.
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Now take an arbitrary n0 > 0 and a constant M ≥ n0. For any n ≤ n0 and k ≥ L, Using (1) with
m =

⌈
M
n

⌉
inside equation (2) yields:

µ
(

Γ
T ′n
l,≥k

)
≤ Lµ

(
Γ
T ′n−1

l,≥k−L

)
+ 2k

[
1 + ψµ

(
n ·
⌈
M

n

⌉)] L
M

µ
([

I
]) L

M
+1

≤ Lµ
(

Γ
T ′n−1

l,≥k−L

)
+ 2k

[
(1 + ψµ(M))µ

([
I
])] L

M

Applying this equation inductively, and assuming k ≥ n0L, we obtain:

µ

(
Γ
T ′n0
l,≥k

)
≤ Ln0µ

(
Γ0
l,≥k−n0L

)
+ 2kn0

[
(1 + ψµ(M))µ

([
I
])] L

M(3)

For the first component of the right-hand term, we have:

µ
(
Γ0
l,≥k−n0L(x)

)
≤ µ

AZ r
−1⋂

j=−k+n0L

k−n0L⋃
i=0

[
I
]
j+i


≤ µ

 −1⋃
j=−k+n0L

b k−n0L
n0

c⋂
i=0

[
A\ I

]
j+in0


≤ (k − n0L)(1 + ψµ(n0))

b k−n0L
n0

c
µ
([
A\ I

])b k−n0L
n0

c+1

the second line being obtained by considering one symbol out of every n0. To conclude, we fix the
values M = n0, L = n2

0

√
n0, and k = Kn0 =

√
Tn0+1 − Tn0 . Since ψµ(n) → 0 and Equation (3)

holds for any n0, we have µ(Γ
T ′n
l,≥Kn) −→

n→∞
0 and the rate of convergence is exponential. �

3.5.2. Density of auxiliary states
By auxiliary state, we mean any element of A\B, that is to say I , W and any element of A which
is not of the form (b,#,#,#,#,#).

Proposition 10. For t large enough, an acceptable segment is formatted and contains only initialised
processes.

Proof. In a segment of length k, Fact 5 ensures that the segment is formatted if t ≥ k(1 + log k).
All remaining uninitialised processes may take up to k more steps to be erased.

When Tn ≤ t < Tn+1, for an acceptable segment of length k, we have k(2 + log k) ≤ Kn(2 +
log(Kn)) = o(Tn) by Proposition 7. Taking n large enough, we conclude. �

Proposition 11. Let µ ∈ Mfull
σ−erg(AZ) and u ∈ B[0,`] for some fixed `. For a given length k such

that n+ 1 ≤ k ≤ Kn, we have:
• If t ∈ [Tn + k, Tn+1],∣∣∣µ(F−t([u]0) | ΓTn`,k

)
− δ̂wn([u])

∣∣∣ = O

(
1√
n

)
;

• If t ∈ [Tn, Tn + k],∣∣∣∣µ(F−t([u]0) | ΓTn`,k

)
−
(
k − (t− Tn)

k
δ̂wn−1([u]) +

t− Tn
k

δ̂wn([u])

)∣∣∣∣ = O

(
1√
n

)
.

Proof. Take x ∈ ΓTn[−1,k]. Since a segment of length k with n + 1 ≤ k ≤ Kn is acceptable, it is
formatted, and any uninitialised symbol has been destroyed. Since |wn| = O(

√
n) (the length of the

output is smaller than the computing space), the copying process uses O(
√
n) auxiliary cells.
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Figure 10. Illustration of Proposition 11. The output is not correctly written in
dashed areas because of the destruction of a wall.

First point: The tail of the copying process progresses at speed one, so at time Tn + k the copy
of wn is finished, and until time Tn+1 the segment only contains copies of wn except for the time
counter, computation and merging counter area (O(

√
n) cells) and a merging signal (one cell).

Therefore for all x ∈ ΓTn[−1,k], one has
∣∣∣Freq(u, F t(x)[0,k−1])− δ̂wn([u])

∣∣∣ = O(
√
n)

k = O
(

1√
n

)
, taking

into account the last copy of wn in the segment which can be incomplete (|wn| ≤
√
n), and since

k ≥ n. Thus we have: ∣∣∣∣∣1k
k−1∑
i=0

µ
(
F−t([u]i) | ΓTn[−1,k]

)
− δ̂wn([u])

∣∣∣∣∣ = O

(
1√
n

)
.

To conclude,

µ
(
F−t([u]0) | ΓTn`,k

)
=

−1∑
i=−k+`

µ
(
F−t([u]0) | ΓTn[−1−i,k−i]

)
· µ
(

ΓTn[−1−i,k−i] | ΓTn`,k

)

=
1

k − `

k−∑̀
i=1

µ
(
F−t([u]0) | ΓTn[i−1,i+k]

)
=

1

k − `

k−∑̀
i=1

µ
(
F−t([u]i) | ΓTn[−1,k]

)
where the last two lines are by σ-invariance of µ. Since each term is at distance O

(
1√
n

)
of δ̂wn([u]),

the result follows.

Second point: When t ∈ [Tn, Tn + k], the copy is still taking place, with t − Tn cells containing
copies of wn and the rest containing copies of wn−1, except for except for O(

√
n) various auxiliary

states, and possibly defects when a wall has been destroyed at time Tn (there are at most k
n of

them). Therefore∣∣∣∣Freq (u, F t(x)[0,k−1]

)
−
(
k − (t− Tn)

k
δ̂wn−1([u]) +

t− Tn
k

δ̂wn([u])

)∣∣∣∣ =
1

k
O(
√
n) · k

n
= O

(
1√
n

)
,

since k ≥ n. Using the same reasoning as the first point, we conclude. �
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3.5.3. Proof of Theorem 1 - first point
We prove the following: for a given computable sequence of words (wn)n∈N, the CA F that we
described above satisfies that for any measure µ ∈Mfull

σ−mix(AZ), V(F, µ) = V((wn)n∈N).

Let µ ∈Mfull
σ−mix(AZ) and u ∈ B[0,`]. By Propositions 8 and 9, µ

(⋃Kn
k=n+1 Γ

T ′n
`,k

)
−→
n→∞

1 exponen-

tially fast, and Γt`,k = Γ
T ′n
`,k for t ∈ [T ′n, T

′
n+1 − 1]. Therefore:

∃C > 0, max
Tn≤t<Tn+1

∣∣∣∣∣F t∗µ([u])−
Kn∑

k=n+1

µ
(
F−t([u])|Γt`,k

)
µ
(
Γt`,k

)∣∣∣∣∣ = O
(
e−Cn

)
.

Take n large enough that Tn = T ′n. By Proposition 11,

max
T ′n≤t<T ′n+1

∣∣∣∣∣F t∗µ([u])−
Kn∑

k=n+1

µ(ΓTn`,k)

(
max

(
0,
k − (t− Tn)

k

)
δ̂wn−1([u])

+ min

(
1,
t− Tn
k

)
δ̂wn([u])

)∣∣∣∣ = O

(
1√
n

)
.

Let fn be the piecewise affine function defined by:

fn : [Tn, Tn+1] −→ [0, 1]

t 7−→
Kn∑

k=n+1

min

(
1,
t− Tn
k

)
µ
(

ΓTn`,k

)
+

t− Tn
Tn+1 − Tn

µ
(

ΓTn`,>Kn

)
.

The second term is chosen so that fn(Tn) = 0 and fn(Tn+1) = 1, but it converges to 0 exponentially
fast and thus does not affect the equation by more than O

(
1√
n

)
. Therefore:

max
Tn≤t<Tn+1

∣∣∣F t∗µ([u])−
(
fn(t)δ̂wn([u]) + (1− fn(t))δ̂wn−1([u])

)∣∣∣ = O

(
1√
n

)
.

max
Tn≤t<Tn+1

dM

(
F t∗µ,

[
δ̂wn−1 , δ̂wn

])
= O

(
1√
n

)
,

so V(F, µ) ⊂ V((wn)n∈N). Since fn is 1
n -Lipschitz on [Tn, Tn+1], any ν ∈

[
δ̂wn−1 , δ̂wn

]
is at distance

at most 1
n of an element of the form

(
fn(t)δ̂wn + (1− fn(t))δ̂wn−1

)
for Tn ≤ t < Tn+1.

We conclude that V(F, µ) = V((wn)n∈N).

Rate of convergence. For clarity, assume that wn is computable in space O(
√
n) by repeating

elements if necessary.
By Proposition 7 we have Tn = Θ(b

√
ncqb

√
nc) so, writing n(t) the current value of n at time t,

we have n(t) = Θ(log(t)2) and O
(

1√
n(t)

)
= O

(
1

log t

)
.

We find that the rate of convergence is:

dM
(
F t∗µ,V ((wn)n∈N)

)
≤ dM

(
F t∗µ,

[
̂δwn(t)−1

, δ̂wn(t)

])
+ sup
ν∈

[
̂δwn(t)−1

,δ̂wn(t)

] dM (ν,V ((wn)n∈N))

= O

(
1

log(t)

)
+ sup

dM (ν,V ((wn)n∈N)) : ν ∈
⋃

n≥n(t)

[
δ̂wn , δ̂wn+1

] ,

by the last proof.
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3.5.4. Proof of Theorem 1 - second point

Now we treat the case where V((wi)i∈N) = {ν}. Let F be the cellular automaton associated with
this sequence as described above, and consider µ ∈ Mfull

σ−erg(AZ). Since µ is not assumed to be
ψ-mixing, Proposition 9 does not apply, and there is no guarantee most segments are acceptable.
However large segments are still rare; more precisely, µ(Γt0,≥k) −→

k→∞
0 for all t since all sets Γt0,k are

disjoint.

Claim 1: F t∗µ([A\B]) −→
t→∞

0, i.e., the density of auxiliary states tends to 0.

Proof. Suppose we are in an initial segment of length k. Detached time counters, Turing
machines and merging counters initially present are destroyed in less than k steps. Similarly,
left merging signals and copy auxiliary states initially present progress at speed -1, so they are
destroyed before time k. Any uninitialised wall is destroyed after k(1 + log k) steps at most,
and any counter attached to it are destroyed after less than k more steps. For all those states,
the probability of apparition after time k(2 + log k) is less than µ(Γ0

0,≥k) −→
k→∞

0.

At time T ′n, all segments are longer than n, so the density of initialised walls and initialised
auxiliary states inside each segment is O

(√
n
n

)
.

Only uninitialised formatting counters and right merging signals remain. Inside each seg-
ment, call non-formatted area the interval between the initialised formatting counter of the
left wall and the rightmost cell containing one of those two states. At each step, this area
decreases by one cell to its left but may grow by one cell to its right as a counter or signal
progresses. Notice that merging with other segments cannot increase this area since segments
of length n at time Tn are formatted (see Figure 11).

Figure 11. Illustration of the last part of the proof of Claim 1. Slanted lines are
formatting counters and grey areas are potentially non-formatted.

Therefore, a segment at time Tn can contain a non-formatted area longer than
√
n only if it

is issued from a segment longer than
√
n initially. Other segments have a non-formatted area

smaller than
√
n for a length larger than n. By σ-invariance,

µ({x ∈ AZ | x0 is in a non-formatted area}) ≤
√
n

n
+ µ

(
Γ0

0,≥
√
n

)
−→
n→∞

0.

Therefore, for a ∈ A\B, we have F t∗µ([a]) →
t→∞

0. 3 Claim 1

Claim 2: For any n ∈ N, dM
(
F t∗µ,Conv

(
(δ̂wi)i≥n

))
−→
t→∞

0, where Conv(X) is the convex hull
of the set X.
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Proof. Consider a segment of length k at time Tn. At time Tn + k the copying process for wn
is finished, but since the segment is not necessarily acceptable, other copying processes may
have started in the meanwhile (see Figure 12). Therefore, the segment contains:
• auxiliary states, with negligible frequency;
• strips containing repeated copies of wn, then wn+1, wn+2. . . separated by ongoing copy
processes and the frequency of auxiliary copy states being negligible.

Consider a segment of size k at time Tn in the positions [i, i+ k]. At time Tn + k it is filled
with copies of wn. When t ≥ Tn + k, the positions [i, i + k] contain a succession of stripes
containing wN , wN+1, . . . with N ≥ n plus a negligible part of auxiliary states and defects.
The strip containing wi is larger than i since this word is produced in a segment of size larger
than i. One deduces that µ

(
F−(Tn+t)([u]0) | ΓTn`,k

)
is quite near of Conv((δ̂wi([u]))i≥n) for

t ≥ k. Since µ(ΓTn0,≥k) −→k→∞ 0, we have

dM

(
F Tn+t
∗ µ,Conv((δ̂wi)i≥n)

)
−→
t→∞

0.

3 Claim 2

time

Tn

Tn+1

Tn+2

Tn + k

k

wn−3

wn−2

wn−1

wn

wn+1

wn+2

Figure 12. Illustration of Claim 2. When t > Tn + k, a segment of length k is a
succession of stripes containing wn, wn+1, . . . plus a negligible part of auxiliary states
and defects.

The second point of the Theorem 1 follows easily from Claim 2.

Remark. It does not follow from the last claim that the sequence (F t∗µ) is close to any of the δ̂wi
at any point, which is the reason why the result holds only for a single measure. Controlling the
length of the segments as needed in the proof of the first point requires ψ-mixing.
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4. Removing the auxiliary states

Before stating consequences of Theorem 1, we consider in this section the case where the cellular
automaton does not use auxiliary states, that is, A = B. A straightforward extension is impossible:
if ν is a full support measure, and F : AZ → AZ a cellular automaton such that F t∗µ→ ν for some
initial measure µ, then F is a surjective automaton which leaves the uniform Bernoulli measure
invariant. Therefore, starting from the uniform measure, F can only reach the uniform Bernoulli
measure.

However, if the limit measure does not have full support, the previous results can be extended
by using a word not charged by the measure to encode the auxiliary states in some sense.

Theorem 2. Let (wn)n∈N be a uniformly computable sequence of words of B∗, where B is a finite
alphabet, and assume there exists a word u that does not appear as subwords in any of the wn.
Then there is a cellular automaton F : BZ → BZ such that for any measure µ ∈ Mfull

σ−mix(BZ),
V(F, µ) = V((wn)n∈N).

However, because of the destructive nature of the formatting counter in the construction, the
proof in Section 3.5.4 cannot be adapted and we cannot weaken the hypothesis to µ ∈Mfull

σ−erg(BZ)
when K is a singleton.

Proof. Let A ⊃ B be the alphabet and F the CA associated to the sequence (wn)n∈N by Theorem 1.
Our aim is to provide an encoding of any configuration of AZ in BZ and a cellular automaton F ′
that behaves similarly to F after encoding.

Denote Ud ⊂ Bd the set of words of length d with prefix u, that do not contain u as subword
(except at the first letter), and that do not end with a prefix of u. #Ud −→

d→∞
∞, so for d large

enough, we can find an injection ϕ : A\B → Ud (encoding the auxiliary states), and we extend it
by putting ϕ = Id on B. For a finite word, we define ϕ(u1 . . . un) = ϕ(u1) . . . ϕ(un), and this can
be naturally extended further to configurations Φ : AZ 7−→ BZ by considering that ϕ(a0) starts on
the column zero. Notice that this encoding is not σ-invariant.

Let T ⊂ AZ be the set of configurations such that the word u does not appear on the main layer
(T is a subshift of finite type). Since u marks unambiguously the beginning of a word of ϕ(A\B),
the restriction Φ : T→ BZ is injective.

We can define locally a decoding Ψ : Φ(T) → T such that Ψ ◦ Φ = Id, by looking d cells to
the right for occurrences of u. If u appears, we are an output cell, that is, the image by ϕ of
a single letter b ∈ B (corresponding to (b,#,#,#,#,#) for b ∈ B in the previous construction);
otherwise, we belong in an auxiliary cluster, the image by ϕ of a letter A\B that occupy d cells
while containing one letter of output. See Figure 13 for an example.

0 0 1 1 0 1 1 1 0 0 0 1 1 1 0 1 0 0 1 0 0 1

Φ

0 0 1 a1 1 1 a2 1. . . . . .

Figure 13. Encoding of the auxiliary states with u = 101 and d = 3. In this case
Ud ⊂ 101 · A3 · 00.
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Intuitively, we want to build a cellular automaton that behaves similarly as the automaton de-
fined in Theorem 1, where elements (b,#,#,#,#,#) are represented by output cells and all other
elements by auxiliary clusters. However, Φ and Ψ are not σ-invariant, so Φ ◦F ◦Ψ is not a cellular
automaton. Instead, we build manually a cellular automaton on BZ that behaves in roughly the
same way as Φ ◦ F ◦Ψ.

Provided the neighbourhood is larger than [−4d, 4d], each cell can “read" the cluster in which it
belongs, and the three clusters to its right and left. At time 0, if a word u is not the prefix of a word
of Ud, it is replaced by a word bd and can never be created again. To avoid creating an auxiliary
cluster by mistake, we fix to this purpose a letter b ∈ B such that bd /∈ Ud. Similarly, auxiliary
clusters that are destroyed for any reason leave behind them output b cells.

Remark. For clarity, in all diagrams of this section, we suppose that B = {0, 1}, d = 3 (it would
be much larger in a real implementation) and we represent auxiliary clusters as blocks with layers,
instead of words from Bd. Also we fix b = 0 in the definition above.

The different parts of the construction are modified in the following way.
• I and W clusters, time counters, and Turing machines have the same behaviour as in the
previous construction. However, since the counters take more space, it is necessary to erase
3d cells to the left and right of each I cluster at time 0.

W
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W

W

W

1
1

1
0

1
0

1
1

0
1

1
1

1
1

0
1

1
1

1
0

1
0

????

1???

10??

101?

1011

1011100

main

copy

Figure 14. End of the copying process described in Figure 7, copying the word 1101.

• The tail of copying processes progresses to the left at speed one, and behaves normally as
long as it does not meet another auxiliary state (see Figure 14). When the process has
finished the copy, it is destroyed and leaves b cells behind.
• Formatting counters progress to the right at speed d. This is too fast to keep information
on the output layer, so the counter leaves behind output cells b defined above. Any other
signal it meets (e.g. copying process or length-measuring signal) is similarly erased.
• When close to a time counter, it may happen that the formatting counter cannot progress
by d cells exactly (see Figure 15). In this case, it is offset by less than d cells, and formatting
clusters separated by small offsets in this way are still considered to be the same counter for
the rule of the automaton. The subsequent comparison process is unchanged.
• Merging signals which determine length of segments also progress at speed d. To avoid
possible interactions with copying processes (similarly to the case of formatting counters),
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Figure 15. A formatting counter gets offset when entering the time counter area.
Notice the auxiliary clusters being replaced by output cells containing b = 0.
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Figure 16. Determination of length. Here d = 3, t0 = 8 and o = 1, for a measured
length of 13.

the determination of length starts only after the copy is finished. Thus a merging signal is
only offset when entering the time counter area. After bouncing off the right wall, it returns
to the left wall where its offset can be measured. If it takes t0 steps to return with an offset
of α, then the segment has length t0

2 · d + α (see Figure 16). This value is compared to n
and the rest of the process is not modified.

In this way, Propositions 9 and 10 still hold. We can check that at time t, with Tn ≤ t < Tn+1, the
copy process followed by the process of determination of length for segments of size n+ 1 still take
less than Tn+1 − Tn steps. Furthermore, the frequency of auxiliary states is multiplied by a fixed
constant d. Hence the proof in Section 3.5.3 can be adapted, and the theorem follows. �
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5. Problems solved with this construction

In this section, we use Theorem 1 to solve various problems, starting with the characterisation of
reachable limit measures and connected µ-limit measure sets. We then consider the disconnected
case, the case when auxiliary states are not allowed, Césàro mean convergence and consequences of
these results for the decidability of asymptotic properties of cellular automata.

5.1. Characterisation of reachable µ-limit measures set
5.1.1. The connected case
Reciprocals of the computable obstructions described in Section 2 follow directly from Theorem 1.

Corollary 1. Let ν ∈ M∆2-comp
σ (BZ) be a limit-computable measure. There is an alphabet A ⊃ B

and a cellular automaton F : AZ → AZ such that for any µ ∈Mfull
σ−erg(AZ), one has F t∗µ −→

t→∞
ν.

Proof. Combine Proposition 1 with the second point of Theorem 1. �

Corollary 2. Let K ⊂ Mσ(BZ) be a compact, Π2-computable and connected (Π2-CCC) subset of
Mσ(BZ). There is an alphabet A ⊃ B and a cellular automaton F : AZ → AZ such that for any
µ ∈Mfull

σ−mix(AZ), one has V(F, µ) = K.

This is in particular a full characterisation of limit measures and connected µ-limit measures sets
that are reachable from some computable initial measure µ ∈Mσ(AZ).

Proof. Combine Proposition 6 with the first point of Theorem 1. �

For both of these statements, a rate of convergence is given in Theorem 1, and this rate depends
partly of the quality of the approximation of the target measure or the target set by a uniformly
computable sequence of computable measures supported by periodic orbits.

Open question 1. Can the rate of convergence be improved, or can we prove that this is the best
possible rate?

The following corollary is the counterpart of Corollary 2 using Theorem 2. Corollary 1 does not
have a counterpart since its proof uses the second point of Theorem 1.

Definition 15. A word u ∈ A∗ is said to be not charged by a set K ∈ Mσ(AZ) if for all ν ∈ K,
ν([u]) = 0.

Corollary 3. Let K ⊂ Mσ(BZ) be a non-empty Π2-CCC subset of Mσ(BZ) that does not charge
a word u ∈ B∗. Then there is a cellular automaton F : BZ → BZ such that for any measure
µ ∈ Mfull

σ−mix(BZ), V(F, µ) = K. In particular, any limit-computable measure which does not have
full support can be obtained by this way.

Proof. Since K does not charge u, we can assume without loss of generality that no word in the
uniformly computable sequence (wn)n∈N associated to K by Proposition 6 contain u as subword.
Indeed, if it is not the case, we replace every instance of u by some other word v. This transformation
has no impact on V((wn)n∈N) since u does not appear in it. Thus Theorem 2 applies. �

We leave open in particular the case of limit measures with full support which can happen only
if F is surjective. For Corollaries 3 and 6, solving this case would imply to characterise the possible
asymptotic behaviours of surjective automata. In this case a similar construction seems difficult
since the state W which appear only in the initial configuration cannot be coded.

Open question 2. Which sets of measures can be reached at the limit by surjective cellular au-
tomata?
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5.1.2. Towards the non-connected case

In Corollary 2 the µ-limit measures set is assumed to be connected. Indeed, in the construction of
Theorem 1, each word wn is copied progressively on each segment, so that we reach the closure of
an infinite polygonal path which is connected. However, non-connected µ-limit measures sets also
have some obstructions. For example, if V(F, µ) is finite, we have the following proposition.

Proposition 12. Let F : AZ → AZ be a cellular automaton and µ ∈Mσ(AZ) such that V(F, µ) is
finite. Then F∗ induces a cycle on V(F, µ).

Proof. Let d = min{dM(ν, ν ′) : ν, ν ′ ∈ V(F, µ) with ν 6= ν ′} > 0 and consider ν ∈ V(F, µ). It is
possible to extract a sequence (ni)i∈N such that dM(Fni∗ µ, ν) < d

3 and dM(Fni+1
∗ µ, ν) > 2d

3 . Since
dM(Fn∗ µ,V(F, µ)) −→

n→∞
0 and B(ν, d3) ∩ V(F, µ) = {ν}, we have dM(Fni∗ µ, ν) −→

i→∞
0. By continuity

of F∗, one has dM(Fni+1
∗ µ, F∗ν) −→

i→∞
0.

One deduces that for all ν ∈ V(F, µ) there exists ν ′ ∈ V(F, µ) such that F∗ν = ν ′. So there is
k ∈ N such that V(F, µ) = {ν0, . . . , νk−1} and F∗νi = νi+1 where the addition is modulo k. �

Furthermore, if µ is computable, then V(F, µ) is Π2-computable and every isolated point is ∆2-
computable. In particular if V(F, µ) is finite, every point is ∆2-computable. We exhibit some
examples of more sophisticated behaviours based on the construction in Theorem 1. The first one
is a family of cellular automata where V(F, µ) is a finite set of connected components mapped by
some periodic CA, which is a partial reciprocal of Proposition 12. The second one is a family of
cellular automata where V(F, µ) has an infinite number of connected components.

Example 3 (Finite set of connected components). Suppose K = {ν0, . . . , νk−1} ⊂ Mσ(BZ) is a
finite set of σ-invariant limit-computable measures such that Gνi = νi+1 for some periodic cellular
automaton G : BZ → BZ (Gp = Id for some p ∈ N). Then there is an alphabet A ⊃ B and a cellular
automaton F : AZ → AZ such that V(F, µ) = K for µ ∈Mfull

σ−erg(AZ). Indeed, let F be the cellular
automaton satisfying F t∗µ → ν0 obtained by Theorem 1, and consider the cellular automaton that
applies G on the main layer and applies the local rule of F once every k steps. Since G is periodic,
the sample produced by the process of copy stay near form {ν0, . . . , νk−1}.

The same idea holds if K is a finite union of Π2-CCC sets which are mapped by a periodic cellular
automaton G : BZ → BZ.

Example 4 (Infinite set of connected components). We give a sketch of a modification of the
construction of Theorem 1 to obtain examples of cellular automata where V(F, µ) has an infinite
number of connected components. This is the first such example to our knowledge. The construction
uses the firing squad cellular automaton introduced by Mazoyer [Maz96] FFS : BZFS → BZFS, which
has the following properties:

• the alphabet contains 4 states
{
F , , , O

}
⊂ BFS;

• if x[0,n] = O
n−1 then F 2n

FS (x)[0,n] = F
n+1;

• the state F does not appear in (F tFS(x)j)(t,j)∈[0,n]×[0,2n−1].

Consider a uniformly computable sequence (Ki)i∈N of disjoint Π2-CCC subsets ofMσ(BZ). There
is a uniformly computable sequence of words (wn)n∈N of B∗ such that V((wn)n∈N =

⋃
i∈NKi. Define

w′n = wn × |wn| ∈ (B × BFS)∗ and consider the cellular automaton F : AZ → AZ given by
Theorem 1 which produces V((w′n)n∈N), with A ⊃ B × BFS. We modify F to obtain F̃ in the
following way.

• at time Tn, when the copy of wn is initiated, we initialise a counter on another layer to count
the length k of the segment;
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• at time t = Tn+1 − 2k, the state O appears on the left border of each segment (this is a
computable number and the time counter keeps track of current time);
• All F symbols are immediately transformed into symbols.

This requires the segments to be shorter than Tn+1 − Tn cells, but the probability that [0, l]
belongs to such a segment tends to 1 as time tends to infinity (Proposition 9). Furthermore, the
state F appears only at times (Tn)n∈N. Therefore, in those segments, F̃∗µ approximates the
measure δ̂wn × δ̂ F

at time Tn+1 and the measure δ̂wn × δ̂ at time Tn+1 + 1.

For an initial measure µ ∈ Mfull
σ−mix(AZ), one has V(F̃ , µ) = (

⋃
iKi)× δ̂ F

∪ K′ for some K′ ⊂

Mσ

(
B ×

(
BFS \ { F }

)Z). In particular, V(F̃ , µ) has an infinite number of connected components.

Open question 3. Is it possible to characterise all compact subsets ofMσ(AZ) that can be reached
as µ-limit measures set of some cellular automaton when µ is computable?

5.2. Convergence in Cesàro mean
In this section, by adapting the enumeration (wn)n∈N, we obtain similar results on V ′(F, µ), the
set of limit points for the Cesàro mean sequence. It is easy to prove that V ′(F, µ) is nonempty,
connected and included in the convex hull of V(F, µ).

Corollary 4. Let B be a finite alphabet and K′ ⊂Mσ(BZ) a Π2-CCC set. There exist an alphabet
A ⊃ B, and a cellular automaton F : AZ → AZ such that for any µ ∈ Mfull

σ−mix(AZ), one has
V ′(F, µ) = K′.

This a full characterisation of sets that can be reached from some initial measure µ ∈Mcomp
σ (AZ)

as µ-limit measures set in Cesàro mean. This corollary is a consequence of the following stronger
result, where we have control over both V(F, µ) and V ′(F, µ).

Corollary 5. Let B be a finite alphabet and K′ ⊂ K ⊂ Mσ(BZ) two Π2-CCC sets. There exist an
alphabet A ⊃ B and a cellular automaton F : AZ → AZ such that for any µ ∈ Mfull

σ−mix(AZ), one
has:

• V(F, µ) = K;
• V ′(F, µ) = K′.

This is a full characterisation of pairs of connected subsets (K,K′) such that K′ ⊂ K that can be
reached from some initial measure µ ∈Mcomp

σ (AZ) in this way.

Proof. We use notations from the proof of Proposition 6. Notably (wn)n∈N and (w′n)n∈N are the
uniformly computable sequences of words associated to K and K′, respectively, and Vk and Vt

k are
defined with regard to K.

We define a new sequence of words (w′′n)n∈N in the following manner, using a similar method as
Proposition 6. For n ∈ N, let in ≤ n be the maximal value such that one can find a path wn =
u0, u1, . . . , ul = w′n, ul+1, . . . , ul′ = wn+1 with u1, . . . ul−1, ul+1, . . . , ul′ ∈ V t

in
and dM(uk, uk+1) ≤

4b(in) for all k ∈ [0, l′].
Let Pn : {0, . . . , pn} → Vt

in
be such a path. Since Vt

in
⊂ A≤in+1, this path is of length pn ≤

2|A|in+1 ≤ 2|A||wn|+1 < 2|A|n+1.

For i ∈ [|A|n2
, |A|(n+1)2 ], we define:

- if i < |A|n2
+ pn, w

′′
i = Pn(i− |A|n2

);
- otherwise, w′′i = w′n.
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and let F be the CA associated to (w′′n)n∈N by Theorem 1. Since all elements of (wn)n∈N appear,
we can prove as in Proposition 6 that V(F, µ) = V((w′′n)n∈N) = K.

0 T|A|i2 T|A|i2+pi
T|A|(i+1)2

A

w′i−1

B C

w′i

Figure 17. Intuitively, we prove A+B � C, then B � A.

We have
|A|n2

+ pn

|A|(n+1)2 − (|A|n2 + pn)
<

|A|n2+1

|A|(n+1)2 − |A|n2+1
−→
n→∞

0.

In other words, the subset [0, |A|n2
+ pn] is (asymptotically) of negligible density in [0, |A|(n+1)2 ].

Since Ti+1 − Ti = qb
√
ic (where q is defined in Section 3.3.2) is an increasing sequence, the subset

[0, T|A|n2+pn
] is of negligible density in [0, T|A|(n+1)2 ]. This means that, putting tn+1 = T|A|(n+1)2 ,

d(ϕFtn+1
(µ), δ̂w′n+1

) −→
n→∞

0.

Furthermore, notice that for x, y ∈ R+, when y ≤
√
x, we have b

√
x+ yc ≤ b

√
xc + 1 and

b
√
x− yc ≥ b

√
xc − 1. Thus :

T|A|n2+pn
− T|A|n2 < q|A|

n2

2 +1 · 2|A|n+1.

T|A|n2+pn
> T|A|n2 − T|A|n2−|A|n

2
2
> q|A|

n2

2 −1 · |A|
n2

2 ,

and therefore
T|A|n2+pn

− T|A|n2
T|A|n2+pn

−→
n→∞

0.

This means that, putting t′n = T|A|n2+pn
, d(ϕFt′n(µ), δ̂w′n) −→

n→∞
0.

To sum up, we have two sequences of times t0 < t′0 < · · · < tn < t′n < . . . such that, for all n ∈ N,
the Cesàro mean sequence (ϕFt (µ))t∈N is (asymptotically) close to δ̂w′n between times tn and t′n,
and is close to δ̂w′n+1

at time tn+1. Furthermore, between times t′n and tn+1, ϕFt (µ) is by definition

a convex combination of ϕFt′n(µ) and δ̂w′n+1
, and thus it is close to the segment [δ̂w′n , δ̂w′n+1

]. We
conclude that asymptotically, the sequence is close to V((w′n)n∈N), and thus its set of limit points
is K′. �

Open question 4. Is it possible to extend Corollary 5 when K′ is not included in K?

Using Example 3 we can only provide some examples where V(F, µ) ∩ V ′(F, µ) = ∅.
This result has a counterpart with no auxiliary states, using Theorem 2.

Corollary 6. Let K′ ⊂ K ⊂Mσ(BZ) two nonempty Π2-CCC sets that both do not charge the same
word u ∈ B∗. Then there exists a cellular automaton F : B → B such that for any µ ∈Mfull

σ−mix(AZ),
• V(F, µ) = K;
• V ′(F, µ) = K′.
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5.3. Undecidability consequences
We give an undecidability result extending a result of Delacourt on µ-limit sets [Del11].

Corollary 7 (Rice theorem on µ-limit measures sets). Let P be a nontrivial property on non-empty
Π2-CCC sets of Mσ(BZ) (i.e. not always or never true). There is no algorithm that can decide,
given an alphabet A and a CA F : AZ → AZ, whether V(F, µ) satisfies P for µ ∈Mfull

σ−mix(BZ).

Proof. We proceed by reduction to the halting problem. Since P is nontrivial, let K1 and K2

be two Π2-CCC sets that satisfies and does not satisfy P , respectively. By Proposition 6, there
exists two uniformly computable sequences of words (wn)n∈N, (w

′
n)n∈N ∈ (A∗)N such that K1 =

V((wn)n∈N),K2 = V((w′n)n∈N).
Now let TM be a Turing machine. Define the sequence (w′′n)n∈N in the following way.
• If TM halts on the empty input in less than n steps, w′′n = wn.
• Otherwise, w′′n = w′n.

This sequence is computable by simulating n steps of the Turing machine and outputting the
corresponding word. Therefore, we can use the previous construction to build a CA F such that
V(F, µ) = V((w′′n)n∈N). If TM halts on the empty input, then w′′n = wn for n large enough;
otherwise, w′′n = w′n for n large enough. Thus, V(F, µ) satisfies P if and only if TM halts. �

In Corollary 7 the alphabet is considered as an input of the problem. A similar result with a
fixed alphabet requires to use the construction of Section 4.

Corollary 8. Let B be an alphabet, µ ∈ Mfull
σ−mix(BZ), u ∈ B∗, and P be a nontrivial property on

non-empty Π2-CCC sets that do not charge u. There is no algorithm that can decide, given a CA
F : BZ → BZ, whether V(F, µ) satisfies P .

A direct extension would not be possible. If λ is the uniform Bernoulli measure, the problem
of whether V(F, λ) contains only the uniform Bernoulli measure is equivalent to the surjectivity of
F , which is decidable [AP72]. In the non-probabilistic setting, the only decidable property about
the asymptotic behaviour of CA is surjectivity [GR10]. However, the question of which nontrivial
properties on limit measures and µ-limit measures sets with full support are decidable remains open.

Corollaries 7 and 8 extend naturally for a single limit and the Cesàro mean sequence.

5.4. Computation on the set of measures
In this section, we modify the construction to perform computation on the space of probability
measures, that is, we want the µ-limit measures set to be a function of the initial measure; this
requires to keep some information in the construction. When the initial measure is not computable,
we can use this information as a “source” of noncomputability to reach µ-limit measures sets that
would be unreachable otherwise.

5.4.1. Computation with oracle

It is possible to construct an arithmetical hierarchy for computability of measures. More precisely,
a measure is ∆1-computable if it is computable and a measure µ is ∆n-computable for n ≥ 2 if
there exists a computable function f : A∗ × Nn−1 → Q such that

µ([u]) = lim
in−1→∞

lim
in−2→∞

. . . lim
i1→∞

f(u, i1, . . . , in−1) ∀u ∈ A∗.

Similarly as Proposition 3, if µ is ∆n-computable and F t∗µ −→
t→∞

ν then ν is ∆n+1-computable.
In the same way, one can introduce naturally the notion of Πn-computable closed set. If µ is
∆n-computable then V(F, µ) is Πn+1-computable.
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In fact, the obstructions shown in Section 2 can be generalised to obstructions on µ 7−→ V(F, µ),
including cases where the initial measure is not necessarily computable, by considering computability
with access to an oracle µ ∈Mσ(AZ). In all the following, we fix a subsetM⊂Mσ(AZ).

A Turing machine with oracle in M has the same behaviour as a classical Turing machine,
except that an oracle µ ∈M is fixed prior to computation. The machine can query the oracle at any
time during the computation by writing u ∈ A∗ and n ∈ N on an special additional oracle tape
and entering a special oracle state. At this step, the content of the oracle tape is considered as the
oracle input and, after one step, the contents of the oracle tape are replaced by an approximation
of µ([u]) up to an error 2−n and the computation resumes.

Let X,Y two countable sets. A function f : M× X → Y is computable with oracles in
M if there exists a Turing machine with oracle in M which takes as input x ∈ X and returns
y = f(µ, x) ∈ Y , up to reasonable encoding.

Definition 16. A function ϕ :M−→Mσ(BZ) is computable with oracles inM if there exists
a computable function with oracles in M f : M× N −→ B∗ such that |ϕ(µ) − δ̂f(µ,n)| ≤ 2−n.
This is an extension of the previous definition where the image is not countable, hence the abuse of
notation.

A sequence of functions (fn :M×Mσ(AZ) −→ R)n∈N is a uniformly computable sequence
of computable functions with oracles in M if:

• there exists a :M× N× N×A∗ −→ Q computable with oracles inM such that∣∣∣fn(µ, δ̂w)− a(µ, n,m,w)
∣∣∣ ≤ 1

m
for all µ ∈M, w ∈ A∗ and n,m ∈ N;

• there exists b :M× N −→ Q computable with oracles inM such that dM(ν, ν ′) < b(µ,m)
implies |fn(µ, ν)− fn(µ, ν ′)| ≤ 1

m for all µ ∈M and n,m ∈ N.
Let K be the set of compact subsets of Mσ(BZ). Defining the computability of a function

Ψ : M −→ K can be done in various ways, similarly as in Proposition 4. For example, Ψ is
Π2-computable if the distance function µ, ν 7−→ dΨ(µ)(ν) is Σ2-computable with oracles inM.

The proofs of Section 2 can be adapted in this framework. For any cellular automaton F on AZ:
• µ 7−→ F∗µ is computable with oracles inMσ(AZ) (equivalent to Proposition 3);
• µ 7−→ V(F, µ) and µ 7−→ V ′(F, µ) are Π2-computable with oracles in Ms(AZ) (equivalent
to Proposition 5);
• if Ψ : M −→ K is a Π2-computable function with oracles in M and if every element of

Ψ(M) is connected, then there exists a computable function f :M×N −→ A∗ with oracles
in M such that Ψ(µ) = V((f(µ, n))n∈N), where V((f(µ, n))n∈N) is the closure of the limit
points of the polygonal path (equivalent to Proposition 6).

5.4.2. Towards a reciprocal
In this section, we give a partial reciprocal to these obstructions. To use the initial measure µ ∈
Mσ(AZ) as an oracle, we need to keep some information from the initial configuration. We adapt
the original construction in the following way:

Each segment keeps a sample of the initial configuration, using the frequency of patterns inside
this sample as an oracle in the computation. We need to ensure that the frequency of a pattern
u ∈ Ak in this sample is close to µ([u]) with a high probability. For this, we use Theorem III.1.7
of [Shi96] applied on a measure µ ∈ Mfull

σ−mix(AZ) that ensures we have an exponential rate of
convergence for every length. Formally, for any k,m, n ∈ N, c > 0:

µ

({
x ∈ AZ : max

u∈Ak
{|µ([u])− Freq(u, x[0,n])|} ≥ ε

})
≤ (k +m)ψ(m)

n
k

(n
k

+ 1
)Card(A)k

2−
ncε2

4k .
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However, in our construction, we are unable to keep all information from the initial configuration
since the formatting process destroys information in the segment. In all the following, we will only
keep information about the density of I symbols, and the reached µ-limit set of measures depends
on this parameter only. The same method could be adapted to keep information about longer words,
only considering the positions of I symbols.

Theorem 3. Let Ψ : Mfull
σ−mix({0, 1}Z) → K be a Π2-computable function where K is the set of

compact connected subsets of Mσ(BZ). Assume that if µ, µ′ ∈ Mfull
σ−mix({0, 1}Z) are such that

µ([1]) = µ′([1]), we have Ψ(µ) = Ψ(µ′).
Then there exists an alphabet A ⊃ B and a cellular automaton F : AZ → AZ such that for all

µ ∈ Mfull
σ−mix(AZ), we have V(F, µ) = Ψ(πµ) where π is the 1-block map defined by π(x)i = 1 when

xi = I , and π(x)i = 0 otherwise.

Notice that since only one density is considered, it would be equivalent in this case to consider
a Π2-computable function with oracles in R and define a function R → K. We kept the statement
more technical to be consistent with the general case.

Proof. Let f :Mfull
σ−mix({0, 1}Z)×N −→ A∗ be a computable function with oracles inMfull

σ−mix({0, 1}Z)
such that Ψ(µ) = V((f(µ, n))n∈N) and consider the associated Turing machine with oracle.

Let F be the cellular automaton defined in Theorem 1 that simulated the Turing machine corre-
sponding to ((f(µ, n))n∈N). Of course we need to specify the behaviour of the automata when the
machine performs an oracle query.

We add a new layer Aoracle in which each segment at time t stores the frequency of the state I
in this segment at time 0. To do that, we modify the construction in the following way:

• We subdivide the layer Aoracle in two parts, on which each wall W keeps on its left:
– the first counter for the number of I symbols that have been destroyed in its left

segment;
– the second counter for the length of this segment, 0 if the segment is not formatted.

• Another counter accompanies each formatting counter, measuring the length of the segment
as it progresses.
• The second counter is initialised as 0. When the time counter attached to this wall makes a
comparison with an initialised formatting counter (the comparison returns the result “=”),
the second counter stores the length of the segment. It may take the value 0 again if it
merges with a non-formatted segment (see Figure 18).
• When a wall is destroyed by a merging process, it sends to its right an oracle signal at
speed 1 containing the information stored in its oracle counters. Such a signal should not
cross a formatting counter, so it is slowed down if necessary.
• When a wall’s counters are (c1, c2) and a signal (c′1, c

′
2) comes from its left, there are three

cases:
– If c2 = 0, the left segment cannot be formatted; the signal cannot come from an

initialised wall and can be safely ignored. The counters does not change.
– If c2 6= 0, the left segment has been formatted and all false signals erased. Thus

the information comes from an initialised wall. The new number of I symbols is
c′′1 = c1 + c′1 + 1 to take the merging into account.
∗ If c′2 = 0, the segment just merged with a non-formatted segment and c′′2 = 0;
∗ otherwise c′′2 = c2 + c′2.

The counters take the values (c′′1, c
′′
2).

See Figure 18. We remark that if the length of the segment is k, the information can be
coded in space log(k), and it is possible to actualise the values before another signal can
come from the left.
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Figure 18. Each wall has its counter displayed when its value changes. Slanted
thick lines are formatting counters, dotted lines are signals transmitting information.

• If two symbols I are too close in the initial configuration, they are destroyed by the
bootstrapping process (see Section 3.2.1). If a I is in a group of I separated by two
cells or less, the rightmost I sends a formatting counter and the leftmost one starts a time
counter. Thus a group of I separated by two cells or less behave as a single symbol for
initialisation purposes. Each I symbol except the leftmost one is transformed immediately
into an oracle signal (1, d), where d is the distance to the nearest I to its left. The other
cells present initially are erased.
• The Turing machine simulation described in Section 3.3.2 can be adapted to simulate a
Turing machine with oracle. When there is an oracle query for the value of µ([ I ]) with
precision 2−i at time t ∈ [Tn, Tn+1], there are two possibilities:
– if n−

1
6 ≤ 2−i, the Turing machine uses the information stored in the oracle layer to

return the frequency of I on the segment at time 0, and this corresponds to an
approximation of µ([ I ]) with sufficient precision;

– if n−
1
6 > 2−i, the computation stops, and the last word successfully computed is output.

The same thing happens until a time when enough information is available.
Let us check that V(F, µ) = Ψ(π∗µ) for µ ∈Mfull

σ−mix(AZ). It is clear that the density of auxiliary
states tends to 0, so if the sample approximates correctly µ([ I ]), the sequence of words (wn)n∈N
produced by the cellular automaton correspond to (f(µ, n))n∈N up to some repetition. Thus we
only need to prove that the probability that a cell belongs to a segment whose sample corresponds
to a “bad” approximation tends to 0 when t tends to ∞. Recall that ΓTn[i,j] = {x ∈ AZ | [i, j] is a
segment at time Tn}.

Bn = µ
({
x ∈ AZ : x0 belongs in a segment with a “bad” sample at time Tn

})
=

∑
i<0,j>0

µ
({
x ∈ ΓTn[i,j] : |µ([ I ])− Freq( I , x[i,j])| > n−

1
6

})
=

∑
k>0

k · µ
({
x ∈ ΓTn[0,k] : |µ([ I ])− Freq( I , x[0,k])| > n−

1
6

})
,
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by σ-invariance. By restricting ourselves to n ≤ k ≤ Kn, and for any m ∈ N large enough that
ψµ(m) < 1:

Bn ≤ µ
(

ΓTn0,≥Kn

)
+

Kn∑
k=n

k · µ
({
x ∈ AZ : |µ([ I ])− Freq( I , x[0,k])| > n−

1
6

})
≤ µ

(
ΓTn0,≥Kn

)
+K2

n(1 +m)ψµ(m)n (n+ 1)Card(A) 2−
c
4
n

2
3

−→
n→∞

0.

The result follows. �

This result may seem surprising since the same cellular automaton has very different asymptotic
behaviours depending on the initial measure.

Open question 5. Can Theorem 3 be extended to characterise functions Ψ :Mfull
σ−mix({0, 1}Z)→ K

that are realisable as the action of a cellular automaton F in the sense that for all µ, V(F, µ) = Ψ(µ)?
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