
µ-Limit Sets of Cellular Automata from a Computational

Complexity Perspective

L. Boyera, M. Delacourtc,⇤, V. Poupetd, M. Sablike, G. Theyssierb

a
SAMM, Université Paris 1, 90 rue de Tolbiac, 75 634 Paris Cedex 13, France

b
LAMA, Université de Savoie, CNRS, 73 376 Le Bourget-du-Lac Cedex, France

c
CMM, Universidad de Chile, CNRS, Av. Blanco Encalada 2120, Santiago, Chile

d
LIRMM, Université Montpellier 2, CNRS, 161 rue Ada, 34 095 Montpellier Cedex 5, France

e
LATP, Université de Provence, CNRS, 39, rue Joliot Curie, 13 453 Marseille Cedex 13, France

Abstract

This paper is about µ-limit sets of cellular automata, i.e. sets of configurations
made of words which have a positive probability to appear arbitrarily late in the
evolution, starting from an initial µ-random configuration. More precisely, we
investigate the computational complexity of these sets and of decision problems
concerning them. Our main results are: first, that such a set can have a ⌃

0

3

-
hard language, second that it can contain only ↵-complex configurations and
third that any non-trivial property concerning these sets is at least ⇧

0

3

-hard.
We also prove various complexity upper bounds, study some restriction of these
questions to particular classes of cellular automata, and study different types of
(non-)convergence of the probability of appearance of a word in the evolution.

Key words: cellular automata; µ-limit sets; Rice theorem; arithmetical
hierarchy.

1. Introduction

A cellular automaton (CA) is a complex system defined by a local rule which
acts synchronously and uniformly on the configuration space. These simple mod-
els have a wide variety of different dynamical behaviors, in particular interesting
asymptotic behaviors.

In the dynamical systems context, it is natural to study the limit set of a
cellular automaton: it is defined as the set of configurations that can appear
arbitrarily far in time. This set captures the longterm behavior of the CA and
has been widely studied since the end of the 1980s. Given a cellular automaton,
it is difficult to determine its limit set. Indeed it is undecidable to know if
it contains only one configuration [Kar92] and more generally, any nontrivial

⇤Corresponding author (mdelacourt@dim.uchile.cl)
1Research partially supported by the FONDECYT Postdoctorado Proyecto 3130496 and

by grant ’Agence Nationale de la Recherche ANR-09-BLAN-0164’

Preprint submitted to Elsevier September 27, 2013

ar
X

iv
:1

30
9.

67
30

v1
 [

cs
.D

M
]

26
 S

ep
 2

01
3

mdelacourt@dim.uchile.cl

property of limit sets is undecidable [Kar94]. Another problem is to characterize
which subshift can be obtained as limit set of a cellular automaton. This was
first studied in detail by Lyman Hurd [Hur87], and significant progress have been
made since [Maa95, FK07] but there is still no characterization. The notion of
limit set can be refined if we consider the notion of attractor [Hur90a, Kůr03].

However, these topological notions do not correspond to the empirical point
of view where the initial configuration is chosen randomly, that is to say chosen
according a measure µ. That’s why the notion of µ-attractor is introduced
by [Hur90b]. Like it is discussed in [KM00] with a lot of examples, this notion is
not satisfactory empirically and the authors introduce the notion of µ-limit set.
A µ-limit set is a subshift whose forbidden patterns are exactly those, whose
probabilities tend to zero as time tends to infinity. This set corresponds to the
configurations which are observed when a random configuration is iterated.

As for limit sets, it is difficult to determine the µ-limit set of a given cellular
automaton, indeed it is already undecidable to know if it contains only one
configuration [BPT06], and as for limit sets, every nontrivial property of µ-
limit sets is undecidable [Del11]. In [BDS10], it was shown that large classes of
subshifts such as transitive sofic subshifts can be realized as µ-limit sets.

This paper aims at pushing techniques already used in [BDS10, Del11] to
their limits in order to characterize the complexity of µ-limit sets and associ-
ated decision problems. The main contribution is to show that the complexity
of µ-limit sets can be much higher than that of limit sets. This fact may seem
counter-intuitive given that limit sets take into acount worst-case initial con-
ditions whereas µ-limit sets restrict to µ-typical initial configurations, thus ex-
cluding possibly complex behaviors. However our proofs show that: first, some
self-organization can be achieved from random initial configurations in order to
initiate more or less arbitrarily chosen computations; second, the probabilistic
conditions involved in the definition of µ-limit sets allow in fact to encode more
complexity in the decision problem of whether a word is accepted in the µ-limit
language or not.

This article, after a section dedicated to definitions, is organized as follows :

• in Section 3 we give the detail of a generic construction we will use many
times. It is similar to the ones in [BDS10, Del11] but presented as a
ready-to-use tool (see Lemma 3.7).

• in Section 4 we give bounds on the complexity of the language of the µ-
limit set, which in general case is ⌃

3

-hard, then we show that this bound
can be reached. We also give a cellular automaton whose µ-limit contain
only ↵-complex configurations.

• in Section 5, we deal with properties of µ-limit sets. First we show that
every nontrivial property is at least ⇧

3

-hard. Then we investigate the
complexity of µ-nilpotency for different classes of CA.

• in Section 6 we discuss convergence issues. In particular the type of con-
vergence: general limsup, Cesaro mean limit, simple convergence. We also
show evidence of some late (non-recursive) convergence phenomena.

2

In the recent work [dMS13], similar constructions (with fairly different im-
plementation details) are used, mainly to prove reachability results concerning
limit probability measures obtained by iterating a CA from simple initial mea-
sures. Among other results, the set of measures that can be obtained as a simple
limit is completely caracterized, and moreover, it is proven that any set of mea-
sures following a necessary computability condition and a natural “topological”
condition can be achieved as a set of limit points of a sequence of measures
obtained by iteration of a CA from a simple initial measure. This gives an in-
teresting complementary point of view to the one adopted in the present paper,
the link being that the µ-limit set is the closure of the union of supports of
limits points of the sequence of measures obtained by iterations. However, the
translation of these results into the setting of µ-limit sets is somewhat artificial,
and, in any case, it does not give the complexity lower bounds established in
this paper.

2. Definitions

2.1. Words and Density

For a finite set Q called an alphabet, denote Q⇤
=

S
n2N Qn the set of all

finite words over Q. The length of u = u
0

u
1

. . . u
n�1

is |u| = n. We denote
QZ the set of configurations over Q, which are mappings from Z to Q, and for
c 2 QZ, we denote c

z

the image of z 2 Z by c. Denote � the translation over
the space of configurations : 8c 2 QZ, 8z 2 Z,�(c)

z

= c
z+1

. For u 2 Q⇤ and
0 i j < |u|, define the subword u

[i,j]

= u
i

u
i+1

. . . u
j

; this definition can be
extended to a configuration c 2 QZ as c

[i,j]

= c
i

c
i+1

. . . c
j

for i, j 2 Z with i j.
The language of a configuration c 2 QZ is defined by

L(c) = {u 2 Q⇤
: 9i 2 Z such that u = c

[i,i+|u|�1]

}.

This notion extends naturally to any set of configuration S ✓ QZ by taking the
union. An important category of sets of configurations is that of subshift. A
subshift is a set of configuration which is translation invariant and closed for
the product topology on QZ. Equivalently, they are sets defined by languages;
a set S ✓ QZ is a subshift if there is a language L of forbidden words defining
S, i.e.

S = {c : L(c) \ L = ;}.
Subshifts are the core objects of symbolic dynamics [LM95]. Among the

different kinds of subshifts, we will consider effective subshifts, i.e. those such
that the forbidden language can be chosen recursively enumerable.

For every u 2 Q⇤ and i 2 Z, define the cylinder [u]
i

as the set of config-
urations containing the word u in position i that is to say [u]

i

= {c 2 QZ
:

c
[i,i+|u|�1]

= u}. If the cylinder is at the position 0, we just denote it by [u].
For all u, v 2 Q⇤ define |v|

u

the number of occurences of u in v as:

|v|
u

= card{i 2 [0, |v|� |u|] : v
[i,i+|u|�1]

= u}

3

For finite words u, v 2 Q⇤, if |u| < |v|, the density of u in v is defined as
d
v

(u) = |v|u
|v|�|u| . For a configuration c 2 QZ, the density d

c

(v) of a finite word v
is:

d
c

(v) = lim sup

n!+1

|c
[�n,n]

|
v

2n+ 1� |v| .

These definitions can be generalized for a set of words W ⇢ Q⇤, we note |u|
W

and d
c

(W). We can give similar definitions for semi-configurations (indexed by
N) too.

2.2. Cellular Automata

Definition 2.1 (Cellular automaton). A cellular automaton (CA) is a triple
A = (QA, rA, �A) where QA is a finite set called set of states or alphabet, rA 2 N
is the radius of the automaton, and �A : Q2rA+1

A ! QA is the local rule.

The configurations of a cellular automaton are the configurations over QA.
A global behavior is induced and we will note A(c) the image of a configuration
c given by: 8z 2 Z,A(c)

z

= �A(cz�r

, . . . , c
z

, . . . , c
z+r

). Studying the dynamic
of A is studying the iterations of a configuration by the map A : QZ

A ! QZ
A.

When there is no ambiguity, we will note Q, r and � for QA, rA, �A.
A state a 2 QA is said to be permanent for a CA A if for any u, v 2 Qr

A,
�(uav) = a.

2.3. Measures

We denote by M(QZ
) the set of Borel probability measures on QZ. By

Carathéodory extension theorem, Borel probability measures are characterized
by their value on cylinders. A measure is given by a function µ from cylinders
to the real interval [0, 1] such that µ(QZ

) = 1 and

8u 2 Q⇤, 8z 2 Z, µ([u]
z

) =

X

q2Q

µ([uq]
z

) =

X

q2Q

µ([qu]
z�1

)

A measure µ is computable if there exists some computable f : Q⇤ ⇥Q ! Q
(where Q is the set of states) with

8" > 0, 8u 2 Q⇤,
��µ([u])� f(u, ")

�� "

A measure µ is said to be translation invariant or �-invariant if for any
measurable set E we have µ(E) = µ(�(E)).

Besides, µ is �-ergodic if for any �-invariant measurable set E we have
µ(E) = 0 or µ(E) = 1. Finally, we say µ has full support if µ([u]) > 0 for any
word u.

Definition 2.2 (Uniform Bernoulli measure). For an alphabet Q, the uniform

Bernoulli measure µ on configurations over Q is defined by:

8u 2 Q⇤, i 2 Z, µ([u]
i

) =

1

|Q||u|

4

Through this paper, in case no additional precision is given, µ will refer to
the uniform Bernoulli measure.

For a CA A = (Q, r, �) and u 2 Q⇤, we denote for all n 2 N, Anµ([u]) =

µ (A�n

([u])).

Definition 2.3 (Generic configuration). A configuration c is said to be weakly

generic for an alphabet Q and a measure µ if there exists a constant M such
that, for any word u 2 Q⇤, 1

M

µ([u]) d
c

(u) Mµ([u]). If, moreover, any word
has density µ([u]), the configuration is said to be generic.

Remark 2.1. The set of generic configurations has measure 1 in QZ. Which
means that a configuration that is randomly generated according to measure µ
is a generic configuration.

2.4. µ-Limit Sets

A µ-limit set is a subshift associated to a cellular automaton and a proba-
bility measure [KM00]. They are defined by their language as follows.

Definition 2.4 (Persistent set). For a CA A, define the persistent set L
µ

(A) ✓
Q⇤ by: 8u 2 Q⇤:

u /2 L
µ

(A) () lim

n!1
Anµ([u]

0

) = 0.

Then the µ-limit set of A is ⇤

µ

(A) =

�
c 2 QZ

: L(c) ✓ L
µ

(A)

.

Remark 2.2. Two µ-limit sets are therefore equal if and only if their languages
are equal.

Definition 2.5 (µ-nilpotency). A CA A is said to be µ-nilpotent if ⇤
µ

(A) =

{aZ} for some a 2 QA or equivalently L
µ

(A) = a⇤.

The question of the µ-nilpotency of a cellular automaton is proved undecid-
able in [BPT06]. The problem is still undecidable with CA of radius 1 and with
a permanent state.

Definition 2.6 (Set of predecessors). Define the set of predecessors at time n
of a finite word u for a CA A as Pn

A(u) =
�
v 2 Q|u|+2rn

: An

([v]�rn

) ✓ [u]
0

.

The following lemma translates the belonging to the µ-limit set in terms of
density in images of a weakly generic configuration.

Lemma 2.1. Given a CA A, a �-invariant measure µ 2 M(QZ
) and a finite

word u, for any weakly generic configuration c:

u /2 L
µ

(A) () lim

n!+1
dAn

(c)

(u) = 0

Proof. Let M be such that, for any word u 2 Qn, 1

M

µ([u]) d
c

(u) Mµ([u]).

dAn
(c)

(u) = d
c

(Pn

A(u)) =
X

v2P

n
A(u)

d
c

(v)

5

X

v2P

n
A(u)

1

M
µ([v]) dAn

(c)

(u)
X

v2P

n
A(u)

Mµ([v])

1

M

X

v2P

n
A(u)

µ([v]) dAn
(c)

(u) M
X

v2P

n
A(u)

µ([v])

1

M
µ(A�n

([u])) dAn
(c)

(u) Mµ(A�n

([u]))

1

M
Anµ([u]) dAn

(c)

(u) MAnµ([u])

This concludes the proof.

Example 2.1. We consider here the “max” automaton A
M

: the alphabet contains
only two states 0 and 1. The radius is 1 and �AM (x, y, z) = max(x, y, z).

The probability to have a 0 at time t is the probability to have 0

2t+1 on the
initial configuration, which tends to 0 when t ! 1 for the uniform Bernoulli
measure, so 0 does not appear in the µ-limit set. And finally ⇤

µ

(A
M

) = {11

1}.
The limit set of a cellular automaton is defined as ⇤(A) =

T
i2N Ai

(QZ
), so

⇤(A
M

) = (

1
10

⇤
1

1
)[(

1
0

1
)[(

1
10

1
)[(

1
01

1
). Actually, we can prove that

this limit-set is an example of limit-set that cannot be a µ-limit set.

3. Construction Toolbox

3.1. Initialization: Counters and Segments

In this section we will describe a general technique that can be used to
construct particular µ-limit sets. We want to build a “protected” area in a cone
of the space-time diagram (the area between two signals moving in opposite
directions) and make sure that nothing from the outside can affect the inside of
the cone.

This construction will be used extensively throughout the article.

3.1.1. General Description

The idea is to use a special state * that can only appear in the initial
configuration (no transition rule produces this state). This state will produce a
cone in which a construction will take place. On both sides of the cone, there
will be unary counters that count the “age of the cone”.

The counters act as protective walls to prevent the exterior from affecting
the construction. Any information, appart from another counter, is erased. If
two counters collide, they are compared and the youngest has priority (it erases
the older one and what comes next). Because the construction is assumed to be
generated by a state * on the initial configuration, no counter can be younger
since all other counters were already present on the initial configuration.

The only special case is when two counters of the same age collide. In this
case they both disappear and a special delimiter state # is written.

6

3.1.2. The Younger, the Better

The * state produces 4 distinct signals. Two of them move towards the left
at speed 1/4 and 1/5 respectively. The other two move symmetrically to the
right at speed 1/4 and 1/5.

Each couple of signals (moving in the same direction) can be seen as a unary
counter where the value is mostly encoded in the distance between the two of
them, this will be discussed later. As time goes by the signals move apart.

Note that signals moving in the same direction (a fast one and a slow one)
are not allowed to cross. If such a collision happens, the slower signal is erased.
A collision cannot happen between signals generated from a single * state but
could happen with signals that were already present on the initial configuration.
Collisions between counters moving in opposite directions will be explained later
as their careful handling is the key to our construction.

Because the * state cannot appear elsewhere than on the initial configura-
tion and counter signals can only be generated by the * state (or be already
present on the initial configuration), a counter generated by a * state is at all
times the smaller possible one: no two counter signals can be closer than those
that were generated together. Using this property, we can encapsulate our con-
struction between the smallest possible counters. We will therefore be able to
protect it from external perturbations: if something that is not encapsulated
between counters collides with a counter, it is erased. And when two counters
collide we will give priority to the youngest one.

3.1.3. Dealing with collisions

Collisions of signals are handled in the following way:

• nothing other than an outer signal can go through another outer signal
(in particular, no “naked information” not contained between counters);

• when two outer signals collide they move through each other and compar-
ison signals are generated as illustrated by Figure 1:

– on each side, a signal moves at maximal speed towards the inner

border of the counter, bounces on it (C and C 0) and goes back to the
point of collision (D);

– the first signal to come back is the one from the youngest counter
and it then moves back to the outer side of the oldest counter (E)
and deletes it;

– the comparison signal from the older counter that arrives afterwards
(D0) is deleted and will not delete the younger counter’s outer border;

– all of the comparison signals delete all information that they en-
counter other than the two types of borders of counters.

7

Figure 1: The bouncing signal must arrive (point E) before the older counter moves through
the younger one (point F).

Counter Speeds. It is important to ensure that the older counter’s outer border
is deleted before it crosses the younger’s inner border. This depends on the
speeds s

o

and s
i

of the outer and inner borders. It is true whenever s
o

� 1�si
si+3

.
If the maximal speed is 1 (neighborhood of radius 1), it can only be satisfied if

s
i

<
p
5� 2 ' 0.2360

This means that with a neighborhood of radius 1 the inner border of the counter
cannot move at a speed greater than (

p
5�2). Any rational value lower than this

is acceptable. For simplicity reasons we will consider 1/5 (and the corresponding
1/4 for the outer border of the counter). If we use a neighborhood of radius k,
the counter speeds can be increased to k/5 and k/4.

Exact Location. Note that a precise comparison of the counters is a bit more
complex than what has just been described. Because we are working on a
discrete space, a signal moving at a non integer speed does not actually move
at each step. In particular, in the case of radius 1, it stays on one cell for a few
steps before advancing, but this requires multiple states.

In such a case, the cell of the signal is not the only significant information.
We also need to consider the current state of the signal: for a signal moving at
speed 1/n, each of the n states represents an advancement of 1/n, meaning that
if a signal is located on a cell c, depending on the current state we would consider
it to be exactly at the position c, or (c+1/n), or (c+2/n), etc. By doing so we
can have signals at rational non-integer positions, and hence consider that the
signal really moves at each step.

When comparing counters, we will therefore have to remember both states of
the faster signals that collide (this information is carried by the vertical signal)
and the exact state in which the slower signal was when the maximal-speed

8

signal bounced on it. That way we are able to precisely compare two counters:
equality occurs only when both counters are exactly synchronized.

The Almost Impregnable Fortress. Let us now consider a cone that was pro-
duced from a * state on the initial configuration. As it was said earlier, no
counter can be younger that the ones on each side of this cone. There might be
other counters of exactly the same age, but then these were also produced from
a * state and we will consider this case later and show that it is not a problem
for our construction.

Nothing can enter this cone if it is not preceded by an outer border of a
counter. If an opposite outer border collides with our considered cone, compar-
ison signals are generated. Because comparison signals erase all information but
the counter borders, we know that the comparison will be performed correctly
and we do not need to worry about interfering states. Since the borders of the
cone are the youngest possible signals, the comparison will make them survive
and the other counter will be deleted.

Note that two consecutive opposite outer borders, without any inner border
in between, are not a problem. The comparison is performed in the same way.
Because the comparison signals cannot distinguish between two collision points
(the vertical signal from O to D in Figure 1) they will bounce on the first they
encounter. This means that if two consecutive outer borders collide with our
cone, the comparisons will be made “incorrectly” but this error will favor the
well formed counter (the one that has an outer and an inner border) so it is
not a problem to us.

Evil Twins. The last case we have to consider now is that of a collision between
two counters of exactly the same age. Because the only counters that matters to
us are those produced from the * state, the case we have to consider is the one
where two cones produced from a * state on the initial configuration collide.

According to the rules that were descibed earlier, both colliding counters are
deleted. This means that the right side of the leftmost cone and the left part
of the rightmost cone are now “unprotected” and facing each other. A delimiter
state # is then written and remains where the collision happened, as illustrated
in Figure 2.

⇤⇤⇤⇤⇤⇤

#

#

#
#

#

#

Figure 2:

9

A # state is said to be acceptable, if it has been written during the collision
of counters created by * .

Lemma 3.1. There exists a constant K
c

such that if two acceptable # are

distant of k, they appeared before time k ⇥K
c

.

Proof. Given an initial configuration c, consider two acceptable # at positions x
and x+k for x 2 N which appear respectively at times t

1

2 N and t
2

2 N. They
were produced by the collision of counters created by * states. Considering the
speed s

1

of the outer border of a counter, there exists "
1

, "
2

2 {0, 1} such that
c
x�s1t1 = c

x+s1t1+"1 = c
x+k�s1t2 = c

x+k+s1t2+"2 = * .
As an acceptable # can only be produced by signals coming from consecutive

* , it is required that x+s
1

t
1

+"
1

 x+k�s
1

t
2

. Then, we have k � s
1

(t
1

+ t
2

).
Denote K

c

=

1

s1
. We proved that t

1

 kK
c

(respectively t
2

 kK
c

).

Each produced # needs to ensure that it has neighbors on each side. To
detect neighbors, it sends a signal to the left and waits for a similar signal from
the right. The speed of these signals must be s

i

or smaller. When a # receives
such a signal, it becomes activated.

Definition 3.1 (Segment). A segment is the set of cells between two consecutive
acceptable # .

When the left # of a segment becomes activated, the segment itself is said
to become activated.

This is essential since most cells will belong to segments, as stated by the
following lemma.

Lemma 3.2. For any generic configuration c, the probability for a cell at time

t to be outside activated segments tends to 0 when t grows.

Proof. Consider a predecessor uav (with |u| = |v|) at time 0 of such a state.
Necessarily, either u or v does not contain any subword in * Q⇤

A * . This con-
cludes the proof.

We will see in the next sections what happens to the segments. The idea is
to allow computation in each segment; but in order to get arbitrarily large space
for computation, some delimiters will be erased to pool the available space of
many segments. In broad outline, each segment will contain a computation done
by one Turing machine that has access only to the space inside the segment. We
will make sure that most segments eventually merge with another one, which
means most segments become arbitrarily large through time.

Merging means that the # delimiter between two segments is erased, and
hence a new larger segment replaces the previous ones. A segment will be
called successor when it has been created by a merging, then all the segments
it replaces are its ancestors. If a segment is not a successor, it will be called
initial. For each merging, at some step, which depends on the merging process,
the new segment becomes activated.

10

3.2. Computation inside segments

In the next sections of this article, we will use many times an automaton
with counters, and we will add some computation inside segments. For each
result we will prove with this technique, we will describe the computation that
has to be run in segments. But there are general ideas and constraints that will
be respected in every case. Consider an automaton that contains a copy of our
cellular automaton with counters and segments, to describe the computation in
a segment of length n, we require that:

• the computation and writing of the result are achieved by the head of a
Turing machine launched when the segment becomes activated;

• there are two layers for the machine, one for computation, one for writing;
formally this is achieved using a cartesian product of alphabet Q

c

⇥Q
o

;

• the computation itself uses only i = O(log n) consecutive cells, even if these
cells are not necessarily always the same through the whole computation;
formally the computation alphabet Q

c

contains a special blank state b and
at most O(log n) cells of the segment have a computation state different
from b.

• the Turing machine of a segment writes only once in the writing layer of
each cell, from the left to the right, using the alphabet Q

o

for the output
of the machine;

• when some segments merge together, nothing is erased on the writing
layer, it will be covered step by step by the new output; the now inside #
are replaced by a special state (b, €), € being a state never written by
the Turing machine.

For any segment v at time t, we denote w
t

(v) the content of v. In what
follows, couples (b, a) where a 2 Q

o

will often be assimilated to a.
Therefore, for any v and t, w

t

(v) is the concatenation of two subwords: the
beginning of the result of the computation in the segment, and the end of the
results written by its predecessors, which may contain € states. One of those
two parts may be empty.

3.3. Synchronous Merging Process

Now, let us describe the dynamics of segments among themselves. In partic-
ular we will specify particular times when merging can happen, independently
from the computation performed inside each segment. We will fix a lower bound
on the acceptable size of a segment, and at these specific times, any segment that
is smaller than this bound will merge. For this purpose we need to synchronize
all the segments. As counters compute the time since the initial configuration,
we will keep this information in segments. Therefore, time since the initial
configuration is a knowledge shared by every segment. With such a protocol,
mergings are many to one and not only two to one. We now describe the au-
tomaton A

s

which behaves as explained with counters and segments.

11

3.3.1. Synchronization

When a # is created by the collision of two counters, their common value
of time is written in base K, for some K � 2, on each side of the # . Hence, the
age of each segment is written on both its sides. And every such K-ary counter
keeps computing time. As any segment is delimited by acceptable # , this age
is the same for all of them and is stored within dlog

K

(t)e cells on each side.
At time t, a segment will be admissible if its length n is such that dlog

K

(t)e
b
p
nc. To test this condition, segments will measure their own length. This is

achieved by sending a signal from the left delimiter to the right one and back.
The signal will count the length in base K, then b

p
nc is computed and written

on both sides of the segment. Now each segment knows its age and its size.
Denote t

i

= Ki for all i 2 N. We allow segments to merge at time t
i

for any
i 2 N. As dlog

K

(t)e remains unchanged between t = t
i

and t = t
i+1

for any i,
each segment has to decide before t = t

i

if i + 1 b
p
nc. If not, the segment

decides to merge.

3.3.2. Colors

As we have determined specific times for mergings, computation will not be
ended in large segments, and this could lead to difficulties. To avoid having
too many such segments, we use a trick to rarefy mergings of a lot of segments
together. Each segment will be colored in B or R, and each # will have a bit
of additional information. These bits on the delimiters will let us give colors to
successor segments. Therefore, we have two delimiter states #

0

and #
1

that
replace the unique # . When the information of this bit is not relevant, we will
still speak of # for #

0

or #
1

indistinctly. The special state * is replaced by
four states *

B

0

, *
R

0

, *
B

1

and *
R

1

. Then, the initial segment generated by a
state *

R

i

is R colored and B colored otherwise. And the bit i of some state
*

C

i

is transmitted to the delimiter #
i

that it produces on its left as shown on
Figure 3. The color of a segment is remembered on both its extremities.

⇤1⇤1⇤1⇤0⇤1⇤0

#

#1

#1

#1
#0

#1

#0

Figure 3:

3.3.3. Merging

For some i 2 N, each segment has to decide whether it will need to merge
at time t

i

(if it is smaller than (i + 1)

2). If so, it checks whether its neighbors
want to merge too, and what colors they wear. Then the rules to choose which
neighbor it will merge with, are the following:

12

• if none of its neighbors wants to merge, it merges with the left one,

• if one only among its neighbors wants to merge, it merges with that one,

• if both want to merge, it merges with one having the other color if possible,
and in case of indecision, with the left neighbor.

Then each # delimiter between a segment and the segment it wants to
merge with is erased and replaced by a € . New segments are created between
the remaining # . The color of the new segment is determined by the bit of the
leftmost # erased inside it: if this bit was 0, then the segment is R colored, and
else B. Synchronous mergings are illustrated on Figure 4.

#1#0#1#1#1#1#0#1#0#0#1#0#0#1

�

� �

�

� � �

�

�

�

Figure 4:

Remark 3.1. To prepare itself, a segment that needs to merge before t
i+1

(sup-
pose we are at timestep t = t

i

) has to:

• compute its length n, which needs 2n timesteps;

• compute (i+ 1)

2 which takes time polynomial in i;

• compare both, linear time;

• check its neighbors: n timesteps (if we suppose they have achieved their
own computations).

A segment needs to merge if n (i + 1)

2, each of these steps requires
only polynomial time in i, and for large enough i (large enough time), this is
achieved in less than (t

i+1

� t
i

) timesteps. So each segment that needs to merge
has enough time to decide it before the merging step t

i+1

. Other segments
declare nothing to their neighbors, meaning they do not want to merge.

So mergings can concern:

• either many segments that all want to merge,

• or one that wants to merge and one that does not.

13

In this synchronous merging process, a segment contains the writing and
computing layers, and time counters on each side of the segment.
Remark 3.2. 1. For any i 2 N, after time t

i

, each segment is larger than i2.

2. If two segments exactly merge at time t
i

, i 2 N, at least one of them is
smaller than i2.

3. If three or more segments merge together at time t
i

, i 2 N, they are all
smaller than i2.

4. On the images of a generic configuration by A
s

, colors’ distribution of the
segments remains random according to µ through time.

Proof. Distribution of * states is random according to µ on the initial con-
figuration, hence colors’ distribution is random too over initial segments. And
when segments merge, the color of the new one is chosen independently from the
ancestors’ or neighbors’ one. Therefore, the distribution remains random.

3.3.4. µ-limit sets

The following proposition is obvious :

Proposition 3.3. # /2 L
µ

(A
s

)

Proof. Take a generic configuration c, the density ↵
t

of cells outside segments
at time t tends to 0. For any i 2 N, the size of any segment at t � t

i

is i2 at
least. Therefore, the density of # states is dAt

s(c)
(#) ↵

t

+

1

i

2 , which tends to
0. We conclude thanks to Lemma 2.1.

In the following sections, we will use this automaton and include computa-
tions in the segment. We will need to characterize the µ-limit set of such an
automaton. To simplify this study, we will prove that we can look at some par-
ticular segments only. Indeed, it is much easier to know what contain segments
that have finished their computation. Hence we consider the following notion:

Definition 3.2. For all i 2 N, a segment is said to be acceptable at time
t
i

 t < t
i+1

if its size is less than Ki/4. For a configuration c, we will denote
S
t

(c), the set of acceptable segments that appear in At

s

(c).

Remark 3.3. As the size of acceptable segments is bounded, the set of all accept-
able segments at time t 2 N for all configurations is finite. Denote it S

t

. Note
that S

t

= S
t

(c) for any generic configuration c and any full-support measure.
The following lemma shows that acceptable segments tend to cover the whole

image configurations.

Lemma 3.4. Starting from an initial generic configuration c :

P
x2Z

⇥
9a, b 2 Z, a x b,At

(c)
[a,b]

2 S
t

⇤
����!
t!+1

1

14

Proof. Consider a generic configuration c.
Consider time t

i

 t < t
i+1

for large enough i (such that Ki/4 �K(i�1)/4 �
2i2 and Ki/4 > 2i2). If a segment is larger than Ki/4 at time t, then it is
necessarily:

(a) either a segment that did not merge.

(b) either the successor of two segments exactly.

(c) either an initial large segment.

(d) or a segment produced by the merging of more than three segments.

Consider a case (b) segment of length k, the size of at least one of the
segments that merged was less than i2. The other segment was then necessar-
ily larger than Ki/4 � i2 � K(i�1)/4. This means that this segment was not
acceptable before t

i

.
We consider the chain of non acceptable predecessors in case (a) or (b)

of the segment at time Kj , j i. The oldest segment of this chain is either
case (c) or case (d): there exists h i minimal such that at time Kj , for all
h j i, one predecessor at least of the segment is larger than Kj/4.

This predecessor was too large, and hence did not want to merge, so it
merged with at most one small segment at each t

j

. If this predecessor’s size at
t
h

was l, its size at t
i

is k l +
P

i

j=0

j2.
There exists i

0

such that 8i � i
0

,
P

i

0

j2 1

2

Ki/4, therefore, as l +
P

i

0

j2 �
k � Ki/4, we have l � 1

2

Ki/4 and k � l 1

2

Ki/4. Hence, the segment’s size
doubled at most between steps h and i.

Therefore non acceptable segments come from case (c) or case (d) and have
at most doubled.

We consider now two different cases only:

(i) initial large segments and their successors.

(ii) segments produced by the merging of many segments and their successors.

Denote d
i

the probability for a cell to be in a case (i) non acceptable segment
at time t

i

, and e
i

the probability for a cell to be in a case (ii) non acceptable
segment at time t

i

.

Claim 3.5. The probability d
i

for case (i) segments tends to 0.

Proof. Denote q the number of states of A
s

. An initial segment of length m
is produced by three * distant from l

1

and l
2

, with (l
1

+ l
2

)/2 = m. So

its probability of apparition is less than 4

q

⇣
q�4

q

⌘
l1

4

q

⇣
q�4

q

⌘
l2

4

q

. Considering
the 2m possibilities for the choice of l

1

and l
2

, the probability is less than
2m
⇣

4

q

⌘
3

⇣
q�4

q

⌘
2m

.
As the size of such a segment doubled at most since its creation, we consider

initial segments of length at least 1

2

Ki/4. And the current size is less than twice

15

the size of the initial segment. Therefore the density induced by those segments
is:

d
i

X

m� 1
2K

i/4

2m

2m

✓
4

q

◆
3

✓
q � 4

q

◆
2m

!

d
i

 4

✓
4

q

◆
3 X

m� 1
2K

i/4

m2

✓
q � 4

q

◆
2m

And d
i

!
i!1 0.

Claim 3.6. The probability e
i

for case (ii) segments tends to 0.

Proof. Consider a segment of size m successor of more than 3 segments. If the
merging happened at time t

h

, all the predecessors of it were smaller than h2,
or they would not have merged together. So p =

m

h

2 segments at least have
merged. Now consider the colors of these segments. Due to the merging rules,
they prefer to merge with a segment of the opposite color, and if not possible
on their left, so the colors’ distribution among them was:

R(RB)

rRp�2r�1, (RB)

rRp�2r, R(RB)

rBp�2r�1 or (RB)

rBp�2r

(or symmetrically if starting with B) for some r 2 N. So the distribution is
determined by its shape (among eight possible shapes), r p/2 and its length.
Therefore the probability of such a succession of colors is less than 4

m

h

2 2
� m

h2 .
Now we consider all case (ii) segments at time t

i

. As precedently, their size
is at most 2m and they were created at time t

h

with a size m � 1

2

Ki/4. So the
corresponding density is:

e
i

X

hi

X

m� 1
2K

i/4

2m

✓
4m

h2

2

� m
h2

◆

e
i

 i
X

m� 1
2K

i/4

2m
⇣
4m⇥ 2

�m
i2

⌘

And e
i

!
i!1 0.

Finally, thanks to these two claims, we proved that the probability for a cell
to be in an acceptable segment tends to 1.

We show now that, given an automaton designed this way, its µ-limit set
depends only on the content of the acceptable segments at times (t

i

� 1)

i2N.

Lemma 3.7. Given a generic configuration c and u 2 Q⇤
, we have :

16

• if 9" > 0, 8i
0

2 N, 9i � i
0

, 8s 2 S
ti , dwti+1�1(s)

(u) � " then u 2 L
µ

(A);

• if 8" > 0, 9i
0

2 N, 8i � i
0

, 8s 2 S
ti , dwti+1�1(s)

(u) " then u /2 L
µ

(A).

Proof. Let u 2 Q⇤.
First suppose that 9" > 0, 8i

0

2 N, 9i � i
0

, 8s 2 S
ti , dwti+1�1(s)

(u) � ".
Thanks to Lemma 3.4, there exists i

0

2 N, such that

8i � i
0

, 8x 2 Z, P
x2Z

⇥
9a, b, a x b,Ati

(c)
[a,b]

2 S
ti

⇤
� 1/2

The hypothesis of the lemma allows us to find i
j+1

� i
j

+ 1, j � 1 such that
with ⌧

j

= t
ij+1

� 1, we get :

8s 2 S
tij

, d
w⌧j (s)

(u) � "

Finally, 8j � 0, dA⌧j
(c)

(u) � "/2 and thanks to Lemma 2.1, we conclude
that u 2 L

µ

(A).

Now if 8" > 0, 9i
0

2 N, 8i � i
0

, 8s 2 S
ti , dwti+1�1(s)

(u) ", take some " > 0.
Lemma 3.4 concerns acceptable segments, and with the same arguments, we
can generalize it to acceptable segments successors only of acceptable segments.
Denote ⌃

t

this set of acceptable segments successors of acceptable segments
only at time t. For some T 2 N :

8t � T, P
x2Z

⇥
9a, b 2 N, a x b,At

(c)
[a,b]

2 ⌃

t

⇤
� 1� "

Due to the hypothesis, there exists i
0

2 N, such that t
i0 � T and 8i �

i
0

, 8s 2 S
ti , dwti+1�1(s)

(u) < ". For a segment s of length k at time t
i+1

� t �
t
i

, i � i
0

, we can write w
t

(s) = v
1

v
2

where, except for the values of time and
length :

• v
1

is a prefix of w
ti+1�1

(s);

• v
2

is a suffix of w
ti(s), that is a concatenation of words written in accept-

able segments at time t
i

� 1.

In the word v
2

at time t, due to the construction, there can be some states
€ that replaced the # erased during the merging step at t

i

. In any case, the
density of u in s is lower than the density of u in acceptable segments at time
t
j

� 1, j � i
0

.
Therefore, dAt

(c)

(u) (1� d) + d.d
1

where :

• d � 1� " is the probability for a cell to be in a segment of ⌃;

• d
1

 " is the density of u in acceptable segments.

Finally dAt
(c)

(u) !
t

0.

Corollary 3.8. For any word u in Q⇤\Q⇤
o

, u /2 L
µ

(A).

17

4. Building complex µ-limit sets

4.1. Complexity upper-bounds

Before giving examples of complex µ-limit sets, let’s establish some upper
bounds.

A word w is a wall for a CA F if for any c, c0 2 [w]
0

we have:

1. if c
z

= c0
z

for any z < 0 then F t

(c)
z

= F t

(c0)
z

for any z < 0 and any t � 1

2. if c
z

= c0
z

for any z � |w| then F t

(c)
z

= F t

(c0)
z

for any z � |w| and any
t � 1

It is well-known that a one-dimensional CA F has equicontinuous points if
and only if it has walls [Kůr97].

The following proposition is a generalization of theorem 1 of [BPT06] to a
broader class of measures.

Proposition 4.1. Let µ be a �-ergodic measure with full support and F a CA

admitting w as a wall. Then L
µ

(F) is exactly the set of words occuring in the

(temporal) period of the orbit of some (spatially) periodic configuration of period

wu for some u, formally:

v 2 L
µ

(F) () 9t, p � 1, v
1

, v
2

, u such that

⇢
F t

�
!

(wu)!
�
=

!

(v
1

vv
2

)

!

and,

F p

�
!

(v
1

vv
2

)

!

�
=

!

(v
1

vv
2

)

!

Proof. First, consider some word v occuring in the period of the orbit of !

(wu)!

as in the proposition. Then, for each k � 0, we have [wuw] ✓ F�t�kp

�
[v

1

vv
2

])

because w is a wall for F . Hence F t+kpµ([v]) � µ([wuw]) > 0 because µ has
full support, which shows v 2 L

µ

(F).
Suppose now that v 2 L

µ

(F). By definition there is " > 0 and a sequence
(t

n

) such that, for all n, F tnµ([v]) � ". Consider for any k � 0 the set:

X
k

=

[

�kik

[w]
i

The union X = [
k�0

X
k

has measure 1 because µ is �-ergodic, X is �-invariant,
[w]

0

✓ X and µ has full support. Moreover the sequence X
k

is increasing, so
there is k

0

such that µ(X
k0) > 1� "

2

. By �-invariance of µ we deduce that the
set

Y = �k0+|w|
(X

k0) \ ��k0�|v|�1

(X
k0)

is such that µ(Y) > 1� ". Hence, for any n, F�tn
([v]) \ Y 6= ;. We deduce that

there is some sub-sequence (t
np) such that, for some i < |w| and j > |v|, and for

any p, F�tnp
([v]) \ [w]

i

\ [w]
j

6= ; (recall that � is the “left” shift). Using the
fact that w is a wall, we conclude that v occurs in the (temporal) period of the
orbit of some (spatially) periodic configuration of period wu for some u.

Theorem 4.2. Let A be any CA and µ a translation invariant measure. We

have the following upper bounds:

18

• if µ is computable then L
µ

(A) is a ⌃

0

3

arithmetical set;

• if µ is �-ergodic with full support and A has equicontinuity points, then

L
µ

(A) is recursively enumerable.

Proof. Since µ is computable by some function f : A⇤ ⇥Q ! Q, there is a com-
putable function g : A⇤ ⇥ Q ⇥ N ! Q such that for any ", any t 2 N and any
u: ��Atµ([u]

0

)� g(u, ", t)
�� ".

Indeed, it is sufficient to compute A�t

(u) and sum f(v, "0) for all elements v of
this set and a computably small enough "0. Then, from the definition of L

µ

(A)

we have
u 62 L

µ

(A) , 8" > 0, 9t
0

, 8t � t
0

, g(u, ", t) ".

Therefore L
µ

(A) is ⌃

0

3

.
Now suppose that µ is �-ergodic with full support and that A has equicon-

tinuous points. By hypothesis A admits some wall w (see [Kůr97]). Therefore
Proposition 4.1 ensures that L

µ

(A) is the set of words occuring in the (tempo-
ral) period of the orbit of some (spatially) periodic configuration of period wu
for some u. Since, the temporal cycle reached from a spatially periodic initial
configuration is finite and recursively bounded in the size of the spatial period,
L
µ

(A) is recursively enumerable.

4.2. ⌃

3

-hard example

Here we will prove that the µ-limit language of a cellular automaton can have
complexity ⌃

3

-hard. For that, with the help of the construction described in
Section 3, we will prove a reduction to a ⌃

3

-hard problem on Turing machines.

Definition 4.1. A Turing machine M is said to be co-finite (and we write
M 2 COF) when there exists i

0

2 N such that M halts on every input i � i
0

.

The following result was proved in [Odi99].

Theorem 4.3. The problem COF has complexity ⌃

3

-hard.

Now we can prove that :

Theorem 4.4. There exists a cellular automaton A such that L
µ

(A) is ⌃

3

-

complete.

Proof. We already know that this problem is ⌃
3

at most. We will use Lemma 3.7
to prove this theorem. Hence, the automaton will have the structure described
in Section 3 and we only have to consider the words w

ti(s) for i 2 N and
acceptable segments s.

Let us describe the computation inside segments. First consider a com-
putable enumeration f of N3, such that for any (j, k, l) 2 N3 there exist infinitely
many i 2 N with f(i) = (j, k, l). Let (�

n

)

n2N be a computable enumeration of
Turing machines.

19

In a segment at time t
i

, i 2 N with f(i) = (j, k, l), the idea is to simulate the
computation of �

j

on some sequence of consecutive inputs and fill the writing
layer of the segment differently whether the machine halts on each input in this
sequence or not. We will say that the sequence is successful if the machine does
halt on each input. Indeed saying that the machine is co-finite means that there
exists k 2 N such that all sequences {k, k+1, . . . , k+ l} are successful. Thus, we
will write a testimony (taking the form of a prefix of ($0 $ k

)

N) of the success of
a sequence starting at k. We will have to avoid writing a testimony for k more
than once for each l.

More formally, the computation will be the following :

• Compute (j, k, l) = f(i) and fill the writing layer of s with $ |s|.

• Compute i
0

= max{i0 < i, f(i0) = (j, k, l)}.

• At the same time, simulate the machine �
j

with successive inputs k, k +

1, . . . , k+ l. If one of these simulations does not halt, then stop the simu-
lation after Ki/2 steps. In this case, the triple (j, k, l) is said to be failed
at time t

i

.

• If the machine �
j

does halt on all these inputs before timestep Ki/2, then
denote ⌧ and � the exact time and space used for the whole computation.

• If ⌧ Ki0/2 and � i
0

, the whole computation already finished in
segments at time Ki0 so we do nothing and the segment is said to be
failed again.

• In the remaining case, write a prefix of ($0 j $1k $2)N in the writing layer
of s. This takes less than Ki/2 timesteps for acceptable segments. In this
case, the triple is said to be successful at time t

i

.

Note that as the space used for computation depends only on i, the result
of the computation is the same for all segments at some given time.

Consider the word u
j

= $0 j $1 , we will prove that :

u
j

2 L
µ

(A) , �
j

2 COF

Claim 4.5. �
j

2 COF) u
j

2 L
µ

(A)

Proof. First suppose that �
j

2 COF for some j 2 N. In this case, there
exists k 2 N such that 8l � k, �

j

halts on input l. This means that for any
(j, k, l), l 2 N, there exists i 2 N such that f(i) = (j, k, l) and Ki/2 timesteps
are enough to simulate �

j

on inputs k, k + 1, . . . , k + l and verify that it halts
in each case. Thus every triplet (j, k, l), l 2 N is successful for some i

l

2 N.
Hence, at time t

il+1

� 1, a prefix of ($0 j $1k $2)N is written in every accept-
able segment. For l, and thus i

l

, large enough, the density of the word u
j

in
every w

til+1�1

(s) for every acceptable segment is larger than 1

2

1

|j|+|k| which is a
constant. The Lemma 3.7 allows us to conclude that u

j

2 L
µ

(A).

20

Claim 4.6. �
j

/2 COF) u
j

/2 L
µ

(A)

Proof. Here, with j fixed, if we take an infinite number of successful sequences
(j, k, l), they necessarily concern unbounded values of the starting point k. We
will use the fact that the density of u

j

decreases when k increases.
Suppose �

j

/2 COF for j 2 N. Take " > 0. For any i 2 N, if f(i) = (j0, k, l)
with j 6= j0, then for any acceptable segment s at time t

i

, u
j

is never written in
the segment and d

wti+1�1(s)
(u

j

) = 0.
There exists k

0

2 N, such that 1

|j|+|k0| < ". As �
j

is not co-finite, there
exists l

0

� k
0

such that �
j

does not halt on input l
0

. Thus, there are at most
l
0

2 triplets (j, k, l) 2 N3 with k k
0

and l l
0

. There exists i
0

2 N such that
for any triplet (j, k, l), k k

0

, l l
0

:

• either (j, k, l) is never successful;

• or there exists i < i
0

such that (j, k, l) is successful at time i.

Now consider an acceptable segment s at time i � i
0

.

• If f(i) = (j0, k, l), j0 6= j then we have d
wti+1�1(s)

(u
j

) = 0.

• If f(i) = (j, k, l), k � k
0

then d
wti+1�1(s)

(u
j

) 1

|j|+|k0| < ".

• If f(i) = (j, k, l), k k
0

, then d
wti+1�1(s)

(u
j

) = 0 since i � i
0

.

Finally, we can use the second case of Lemma 3.7 to conclude, and we proved
that if �

j

is not co-finite, u
j

/2 L
µ

(A).

4.3. Descriptive complexity

In this section we will use Lemma 3.7 to construct cellular automata whose
µ-limit sets are constrained to be in a specific subshift. We have the following
proposition:

Proposition 4.7. Given a non-empty effective subshift S over an alphabet ⌃,

there exists a CA whose µ-limit set is included in S.

Proof. Because the subshift S is effective, it can be characterized by a recursively
enumerable set of forbidden words. We will use Lemma 3.7 with a cellular
automaton who enumerates forbidden words and fills its segments with words
containing none of them.

The behavior of a segment of length n is as follows :

• After computing its own length it starts enumerating and storing forbid-
den words of S. This enumeration is allowed to use at most a space of
log n cells. When the space is exhausted, the enumeration stops and the
computed forbidden words are used for the next steps;

21

• All possible words of length log n over ⌃ are then enumerated in lexico-
graphical order until one is found that does not contain any of the forbid-
den words previously enumerated (there exists one because the subshift is
non-empty);

• The (log n)-long word containing no previously-found forbidden word is
copied n/ log n times to fill the whole segment, using a special $ symbol
as a delimiter between copies. All temporary computations are erased
and the segment remains in this state until it merges with another one at
which point the whole process starts again on a longer segment.

We now want to apply Lemma 3.7 to prove that the µ-limit set of this
automaton contains only configurations in S by showing that the µ-persistent
language contains only words in ⌃

⇤ and none of the forbidden words.
We first prove that the computations performed by the segment take at most

O(log n) space and O(n) time. Computing the length of the segment can be
done in linear time with a logarithmic set of computing cells that move through
the segment. Enumerating forbidden words and then finding a word of length
log n that contains none is done in logarithmic space too. Finally, copying the
word that was found can also be done in linear time using a logarithmic set of
computing cells that move across the segment. Moreover the $ states inserted
between copies appear with density O(log n/n) on a segment of length n.

According to Lemma 3.7, all this means that the µ-persistent language of
the automaton contains only words in ⌃

⇤.
Now let us consider a forbidden word w in the recursively enumerable set

that characterizes the subshift S. Given enough space a segment is bound to
enumerate w. This means that all long enough segments will enumerate w
during their initial enumeration computation and that w cannot be a factor of
the (log n)-long word that fills any of those long enough segments. The word w
can therefore not be in the persistent language either.

This all means that the µ-persistent language of the automaton is included
in ⌃

⇤ and contains none of the forbidden words of S, which means that all
configurations in the µ-limit set of the automaton are in S.

This proposition does not allow to describe the µ-limit set obtained, except
if the subshift is minimal. A subshift is said to be minimal ([LM95]) when it
does not contain a proper subshift. Hence the proposition implies that :

Corollary 4.8. Given a non-empty minimal effective subshift S, there exists a

cellular automaton whose µ-limit set is S.

We will see now how the previous proposition implies the existence of a
cellular automaton whose µ-limit set contains only configurations of high Kol-
mogorov complexity.

Definition 4.2. Given a recursive function f : {0, 1}⇤ ! {0, 1}⇤, the Kol-
mogorov complexity relative to f of a string x 2 {0, 1}⇤ is defined as K

f

(x) =
min{|y|, f(y) = x}.

22

As such, the definition of Kolmogorov complexity depends heavily on the
choice of the function f and it is not properly defined for words x such that
{|y| | f(y) = x} is empty. However, it can be shown that there exists a recursive
function U such that, for any recursive function f , there is a constant c

f

2 N
such that for any string x 2 {0, 1}⇤ we have K

U

(x) K
f

(x) + c
f

. This also
implies that K

U

(x) is properly defined for all x. The Kolmogorov complexity
of a string x is then defined as K(x) = K

U

(x) for some such additively optimal

U .
Informally, the Kolmogorov complexity of a word is the length of its shortest

possible description.
Definition 4.3 (↵-complexity). Given a constant ↵ > 0, a word of length n
on the alphabet {0, 1}⇤ is said to be ↵-complex if its Kolmogorov complexity is
greater than ↵n. A word that is not ↵-complex is said to be ↵-simple.
Corollary 4.9 (of Proposition 4.7). For any ↵ < 1, there exists a constant n

↵

and a cellular automaton whose µ-limit set contains only configurations whose

factors of length greater than n
↵

are all ↵-complex.

Proof. To use Proposition 4.7 we need to show that for some n
↵

the subshift of
configurations over {0, 1} that contain no ↵-simple word of length greater than
n
↵

is effective and non-empty.
As for the effectiveness, a word x is ↵-simple if and only if there exists y such

that U(y) = x and |y| ↵|x|. We can enumerate all such words by dovetailing
the computations of U(y) for all possible y and checking if the resulting word
is ↵-simple by comparing its length to that of the input y. Therefore the set of
↵-simple words {x, K(x) ↵|x|} is recursively enumerable, and so is the set of
such words of length greater than n

↵

.
The existence of n

↵

and a configuration containing no ↵-simple factor of
length greater than n

↵

is a consequence of the main result in [RU06] since there
exist at most 2↵n forbidden words of length n and complexity less than ↵n.

Corollary 4.10 (of Corollary 4.9). There exists a CA whose µ-limit set contains

only non-recursive configurations.

Proof. In a recursive configuration c, the word c
[0,n]

starting at position 0 and
of length n has complexity O

�
log(n)

�
. Therefore no recursive configuration can

be ↵-complex in the sense defined above. Corollary 4.9 concludes the proof.

As a last application of Proposition 4.7, we will show that the quasi-periodicity
of a µ-limit set can be highly non-trivial using a result of [BJ10]. A configuration
c is said quasi-periodic if any pattern occurring in c occurs in any large enough
pattern of c. Any subshift contains a quasi-periodic configuration [Bir12]. For
such configurations the quasi-periodicity can be quantified through the quasi-

periodicity function.
Definition 4.4. Let c be a quasi-periodic configuration. We associate to c the
quasi-periodic function ⇢

c

: N ! N defined by:

⇢
c

(n) = max

u2L(c),|u|=n

min{p : any pattern of size p of c contains u}

23

Corollary 4.11 (of Proposition 4.7). There exists a cellular automaton such

that for any quasi-periodic configuration c of its µ-limit set, the function ⇢
c

can

not be bounded by any recursive function.

Proof. It is a direct application of Proposition 4.7 with the effective subshift
obtained by corollary 3.4 of [BJ10].

5. Complexity of properties of µ-limit sets

5.1. A Rice theorem for µ-limit sets

In the case of the limit set of cellular automata, J. Kari[Kar94] proved a result
equivalent to Rice theorem, meaning that any non trivial property of limit sets
of cellular automata is undecidable. Using certain aspects of his technique, we
will prove here that any non trivial property of µ-limit sets of cellular automata
has a higher complexity than the negation of the problem of being co-finite for
a Turing machine. Since we will deal with different cellular automata in this
section, the considered measures will be the uniform ones on each alphabet.

5.1.1. Properties of µ-limit sets

Intuitively, a property of the µ-limit set is a property P which depends only
on the µ-limit set: if two CA have the same µ-limit set, then either both have
property P or none has property P. We use the same formalism as J. Kari
for limit sets. Consider a countable set X

↵

= {↵
0

,↵
1

, . . . ,↵
n

, . . . } of possible
states, that is, we will consider cellular automata whose sets of states is a finite
subset of X

↵

.

Definition 5.1. A property of µ-limit sets of cellular automata is a family
P ✓ P(XZ

↵

). A µ-limit set of some cellular automaton is said to have property
P if it is included in P.

For example, µ-nilpotency is given by the family {↵Z
i

, i 2 N}. We will talk
equivalently of properties of µ-limit sets and µ-limit languages, but a property
of cellular automata concerning the µ-limit set is not necessarily a property
of µ-limit sets. The surjectivity is the classical example to show that both
differ. Indeed surjectivity refers to the set of states of the automaton and not
necessarily only to those appearing in the µ-limit set. Note also that there is no
obvious relationship between properties of µ-limit sets and properties of limit
sets:

• nilpotency is a property of limit sets but not a µ-limit property (e.g. for
µ the uniform Bernoulli measure, any CA with a spreading state is µ-
nilpotent but can be nilpotent or not);

• conversely, µ-nilpotency is a property of µ-limit sets, but it is not known
whether it is a property of limit sets.

A property is said to be trivial when either it contains all µ-limit sets or
none.

24

5.1.2. Computing a weakly generic configuration

In order to prove this Rice theorem, we will need to be able to compute the
prefixes of some weakly generic configuration, we will then refer to the following
proposition proved in [FK77]:

Proposition 5.1. There exists a weakly generic configuration c
G

on the finite

alphabet X such that :

• there exist A,B > 0 such that for any l 2 N, u 2 X l

and L � |X|2l, we

have :

A|X|�l d
cG[0,L�1]

(u) B|X|�l

• the prefix of size n of c
G

can be computed in O(log n) space and O(n) time.

Remark 5.1. The property over the densities of prefixes can be extended to
images of c

G

by a cellular automaton, for k 2 N and L � 2k :

A/2dAk
(cG)

(u) dAk
(cG)[0,L�1]

(u) 2BdAk
(cG)

(u)

5.1.3. Construction

Theorem 5.2. Given a property P of µ-limit sets, either P is trivial or P is

⇧

3

-hard.

To prove this theorem, we will use a reduction to the problem of being
co-finite for a Turing machine which is ⌃

0

3

-complete.
The general idea of the proof is close to what J. Kari did for limit sets, using

the following proposition :

Proposition 5.3. Given a cellular automaton A and a Turing machine �, there

exists a cellular automaton B such that :

• if � 2 COF then ⇤

µ

(B) = ⇤

µ

(A);

• else ⇤

µ

(B) = QZ
A.

Using this property, whose proof will follow, we can prove Theorem 5.2.

Proof. Given some non trivial property P of µ-limit sets, consider a Turing
machine � and cellular automata A

1

and A
2

such that exactly one among A
1

and A
2

has property P. We consider they have a common alphabet, which is
always possible by increasing their alphabets if necessary. Suppose there is an
algorithm with oracle to decide P. First denote B

1

and B
2

the cellular automata
given by Proposition 5.3 for respectively � and A

1

and � and A
2

. Then using
our algorithm on B

1

and B
2

, we can decide if the answer is the same or not.
The first case corresponds necessarily to � /2 COF and the second to � 2 COF .
Thus, it is possible to decide with the same oracle whether � is co-finite. This
means that the oracle is at least ⌃

3

-hard.

Now we prove Proposition 5.3

25

Proof. The proof will have similarities with the one of Theorem 4.4
The CA B has the global structure of the automaton described in Section 3.

Let us describe the computation inside segments. First consider a computable
enumeration f of N2, such that for any (k, l) 2 N2 there exist infinitely many
i 2 N with f(i) = (k, l).

In a segment, the idea is to simulate the computation of � on some sequence
of consecutive inputs and fill the writing layer of the segment differently whether
the machine halts on each input in this sequence or not. We will say that the
sequence is successful if the machine does halt on each input. Indeed saying that
the machine is co-finite means that there exists k 2 N such that all sequences
{k, k+1, . . . , k+ l} are successful. Thus, we will write a testimony of the success
of a sequence starting at k. We will have to avoid writing a testimony for k
more than once for each l.

More formally, the computation will be the following in a segment s at time
t
i

:

• Compute (k, l) = f(i) and ⌫(i) = blog ic.

• Compute i
0

= max{i0 < i, f(i0) = (k, l)}.

• At the same time, simulate the machine � with successive inputs k, k +

1, . . . , k+ l. If one of these simulations does not halt, then stop the simu-
lation after Ki/2 steps. In this case, the couple (k, l) is said to be failed
at time t

i

.

• If the machine � does halt on all these inputs before timestep Ki/2, then
denote ⌧ and � the exact time and space used for the whole computation.

• If ⌧ Ki0/2 and � i
0

, the whole computation necessarily already
finished in segments at time Ki0 and again the couple (k, l) is said to be
failed at time t

i

.

• In failed segments, compute and write A⌫(i)

(c
G

)

[0,|s|�1]

in the writing layer
of the segment.

• In the remaining case, compute u
i

= c
G

[0,⌫(i)]

and v
i

= A⌫(i)

(c
G

)

[0,⌫(i)]

.
Then write a prefix of (u

i

vk
i

)

N in the writing layer of s. In this case, the
couple is said to be successful at time t

i

.

It is clear thanks to Proposition 5.1 that for i large enough the computation
is finished before t

i+1

� 1. Note as well that as the space used for computation
depends only on i, the result of the computation is the same for all segments at
some given time.

Clearly, thanks to Lemma 3.7, L
µ

(B) ✓ QZ
A.

Claim 5.4. If � 2 COF then ⇤

µ

(B) = QZ
A.

26

Proof. In this case, there exists k 2 N such that 8l � k, � halts on input l. This
means that for any (k, l), l 2 N, there exists i 2 N such that f(i) = (k, l) and
Ki/2 timesteps are enough to simulate � on inputs k, k+1, . . . , k+ l and verify
that it halts in each case. Thus every couple (k, l), l 2 N is successful at some
time t

il .
Hence, at time t

il+1

�1, in every acceptable segment, a proportion 1/k of the
segment is filled with some prefix of c

G

. Hence, for l, and thus i
l

, large enough,
the density of any word u 2 Q⇤

A in every w
til+1�1

(s) of an acceptable segment
s is larger than A

2k|QA||u| (with A from Proposition 5.1) which is a constant as
k is fixed. The Lemma 3.7 allows us to conclude that u 2 L

µ

(B).

Claim 5.5. If � /2 COF then ⇤

µ

(B) = ⇤

µ

(A).

Proof. Here, if we take an infinite number of successful sequences, they neces-
sarily concern unbounded values of the starting point k. We will use the fact
that the space covered by prefixes of an image of c

G

decreases when k increases.
Take " > 0.
There exists k

0

2 N, such that 1

k0
< ". As � is not co-finite, there exists

l
0

� k
0

such that � does not halt on input l
0

. There are less than l
0

2 couples
(k, l) 2 N2 with k k

0

and k + l l
0

. Denote i
0

the smallest integer such that
for each such (k, l) :

• either � does not halt on some input between k and k + l;

• or there exists i0 i
0

such that � halts on all these inputs within space i0

and total time Ki

0
/2.

Thus, when f(i) = (k, l) with i � i
0

and k k
0

, the couple (k, l) is failed
and the writing layer of s contains a prefix of A⌫(i)

(c
G

).
Now consider an acceptable segment s at time i � i

0

with f(i) = (k, l).

• If k � k
0

then (k, l) is successful but the space covered by copies of u
i

is
less than 2

k0
< 2".

• If k k
0

, then (k, l) is failed and the writing layer of s contains a prefix
of A⌫(i)

(c
G

).

Finally, thanks to Remark 5.1 and the second case of Lemma 3.7, we conclude
that L

µ

(B) = L
µ

(A).

As a consequence of this proof, we have that :

Proposition 5.6. If ⌃ is the µ-limit set of a CA, then it is the µ-limit set of

a CA using the design of the construction of Section 3.

27

Indeed, to prove the theorem, we used a simulation of some CA inside seg-
ments, showing that it did not modify the µ-limit set. It can be achieved for
any CA, thus any µ-limit set can be reached this way.

In the next section, we will deal more specifically with µ-nilpotency. We
leave open the question of properties of higher complexity. For example, being
a shift of finite type, a sofic shift or containing a weakly generic configura-
tion. . . In particular, it is not known whether there exist properties of arbitrary
high complexity.

5.2. µ-nilpotency

Recall that a CA is µ-nilpotent if and only if its µ-limit set is a singleton.

Proposition 5.7. Let µ be a computable measure. The set of µ-nilpotent CA

is ⇧

0

3

.

Proof. If a CA is µ-nilpotent then the only configuration in the µ-limit set is
necessarily of the form !q! for some state q. Hence, µ-nilpotency is equivalent
to the following property:

8" > 0, 9t
0

, 8t � t
0

, 9q
0

, F tµ(q
0

) � 1� "

Since µ is computable and the number of state of a CA is finite, the predicate
“9q

0

, F tµ(q
0

) � 1� "” (depending on t, F and ") is recursive, which concludes
the proof.

The following theorem is a direct consequence of the Rice Theorem (5.2)
proved earlier.

Theorem 5.8. Let µ be the uniform measure on the fullshift, the problem of

being µ-nilpotent for a cellular automaton is ⇧

0

3

-complete.

Proposition 5.9. Let µ be a �-ergodic measure of full support. Then we have:

• the set of µ-nilpotent CA with a persistent state is co-recursively enumer-

able;

• the set of µ-nilpotent CA with equicontinuous points is ⌃

0

2

.

Proof. Using Proposition 4.1, not being µ-nilpotent is equivalent to the existence
of different words of same size in the temporal period of some spatially periodic
configuration containing a wall. For CA with a persistent state, it is sufficient
to test with a wall made of r adjacent persistent states (r being the radius).
Hence we can recursively enumerate CA with a persistent state and a pair of
different words as said above. The first item of the Proposition follows.

For CA with equicontinuous points, the additional difficulty is that we don’t
know a priori which word is a wall. Testing this costs an additional quantifier.
Formally, a CA is µ-nilpotent with an equicontinuous point if and only if

9w, q
0

�
8z, t R(w, z, t) ^ 8v R0

(q
0

, w, v)
�

where predicates R and R0 are recursive and such that:

28

• R(w, z, t) checks that w is a wall up to time t and position z and �z (see
definition in Section 4.1)

• R0
(q

0

, w, v) checks that periodic configuration wv converges to the q
0

-
uniform configuration (exponential time bound is enough to check)

The second item of the Proposition follows.

The definition of µ-nilpotency has been chosen analogously as the definition
of nilpotency. But in the case of nilpotent CA, we can show that the limit set
contains either a unique uniform configuration or an infinite number of distinct
configurations. As this property is false for µ-limit sets, a notion of weak µ-

nilpotency can be defined. The most natural way is to say a CA is weakly µ-
nilpotent when its µ-limit set is finite. Still, some refinements can be considered,
such as µ-limit sets containing only uniform configurations or the shift-orbit of
one unique periodic configuration.

In terms of complexity, the alphabet being finite, the second definition (only
uniform configurations) is equivalent to classical µ-nilpotency. Thanks to Rice
Theorem, other ones are at least as complex, but we need other quantifiers to
describe the finite µ-limit set.

6. Types of convergence towards the limit

6.1. Simple convergence

By definition words which are not in the µ-limit language are those whose
probability goes to zero as time increases. However, this probability does not
always converge for words which are in the µ-limit language. As a consequence,
contrary to the limit set, the µ-limit set is generally changed when taking iterates
of a given CA.

Theorem 6.1. There exist F such that F and F 2

do not have the same µ-limit

set.

Proof. We consider the uniform Bernoulli measure. To construct such a F it is
sufficient to use the counter construction from Section 3, i.e. the initialization
step of our main construction techniques. We just use the trick of unary counters
to build a growing uniform “protected area” alternating between two states: all
black (odd steps), or all white (even steps). We keep the same collision rule
described in Section 3:

• when two areas of different ages collide, the older is destroyed by the
younger;

• when two areas of same age collide, they simply merge (it is possible since,
having the same age, they have the same uniform content).

We say a cell is synchronized at time t
0

if for any t � t
0

it is black when t is
odd and white when t is even. Then, using a simplified version of Lemma 3.2,
we can prove the following:

29

Claim. Starting from a generic configuration, the density of
cells which are synchronized at time t goes to 0 when t grows.

It follows that F 2 is µ-nilpotent whereas the µ-limit set of F contains two
configurations: the “all black” and the “all white”.

We say that a CA is simply convergent for µ if the probability of appearence
of a word u converges for any u, i.e.

8u 2 A⇤, 9↵ 2 R, 8" > 0, 9t
0

, 8t � t
0

:

��Atµ([u]
0

)� ↵
�� ".

Examples of simply convergent CA are µ-nilpotent CA. Indeed, the proba-
bility of apparence of any word goes to 0 except for one word of each size for
which it necessarily goes to 1.

If F is simply convergent for µ then, for any t � 1, F t is simply convergent
and F and F t have the same µ-limit set. The Theorem 6.1 above gives an
example of CA which is not simply convergent.

As shown by the following theorem, the simple convergence asumption sim-
plifies the µ-limit set as well as some decision problems on it (to be compared
to Theorems 4.4 and 5.8).

Theorem 6.2. Let µ be a computable translation invariant measure.

• if A is simply convergent for µ then L
µ

(A) is a ⌃

0

2

set;

• there exists a ⇧

0

2

predicate that characterizes µ-nilpotent CA among simply

convergent CA;

• the set of simply convergent CA is ⇧

0

3

and it is Pi
3

-hard when µ is the

uniform bernouilli measure.

Proof. If A is simply convergent for µ, we have the following characterization
of L

µ

:
u 2 L

µ

, 9t
0

, 9", 8t > t
0

: F tµ([u]
0

) > ".

We deduce the first item of the theorem.
A is not µ-nilpotent exactly when there are two different words of equal size

in L
µ

. With the hypothesis of simple convergence, it can be written:

9u, v, |u| = |v|, u 6= v, 9t
0

, 9"
u

, 9"
v

, 8t > t
0

: F tµ([u]
0

) > "
u

^ F tµ([v]
0

) > "
v

and the second item of the theorem follows directly.
To show the third item, let us first remark that simple convergence can be

expressed by a ⇧

0

3

formula saying that the sequence of probabilities of apparence
along time of each word is a Cauchy sequence:

8u 2 A⇤, 8" > 0, 9N, 8p, q > N :

��Apµ([u]
0

)�Aqµ([u]
0

)

�� ".

Finally, for ⇧

0

3

-hardness it is sufficient to verify that a subset of the CA con-
structed in the proof of Proposition 5.3 are either µ-nilpotent (hence simply

30

convergent), or not simply convergent. More precisely, in the construction, con-
sider a µ-nilpotent CA A (L

µ

(A) = $ ⇤ for some special state $). If you take
a machine � /2 COF , then B is µ-nilpotent as shown in Claim 5.5. In the other
case, with � 2 COF , we still have lim sup

t

F tµ([$]
0

) = 0. Indeed, you get the
result with a sequence of steps (t

j

)

j

where f(j) = (j, 0). Hence, as in this case
L
µ

(A) = Q⇤
A (Claim 5.4), the convergence cannot be simple.

Complexity considerations allows to prove that some µ-limit sets are impos-
sible to obtain with simple convergence. We currently do not know any direct
proof of this fact.

Corollary 6.3. There exists a CA whose µ-limit set can not be the µ-limit set

of any simply convergent CA.

Proof. By Theorem 4.4 there exists a ⌃

0

3

-hard µ-limit set. However, Theorem 6.2
shows that simply convergent CA produce µ-limit sets which are only ⌃

0

2

.

6.2. Cesaro mean

Other definitions could be considered for µ-limit sets, in particular the Cesaro
mean could be used.

Definition 6.1 (Cesaro-persistent set). For a CA A, we define the Cesaro-

persistent set C
µ

(A) ✓ Q⇤ by: 8u 2 Q⇤:

u /2 C
µ

(A) () lim

n!1

X

kn

Akµ([u]
0

) = 0.

Then the µ-Cesaro-limit set of A is ⇤C
µ

(A) =

�
c 2 QZ

: L(c) ✓ C
µ

(A)

.

All the theorems proved thanks to Lemma 3.7 still hold with Cesaro mean.
Indeed, the second point is unchallenged by the change of definition, and for the
first point, we obtain the result with a slight modification of the proof. Take
K = 3 for example and at time t

i

, i 2 N, allow Ki timesteps for computation
and do nothing for Ki more timesteps. Thus, Lemma 3.7 holds with Cesaro
mean, as well as all further constructions. In this case µ-Cesaro limit set and
µ-limit set are equal, and it proves (with Proposition 5.6) that any µ-limit set
can be the µ-Cesaro-limit set of a CA.

We can also prove that any µ-Cesaro-limit set of a CA is the µ-limit set
of another one. The idea of the proof is similar to the one of Proposition 5.6,
but instead of filling segments with some part of the image of a weakly generic
configuration, we fill it with a concatenation of parts of the first images of this
configuration : (Ak

(c
G

))

k⌫(i)

at time t
i

with ⌫(i) small enough. We hence have
:

Proposition 6.4. For µ the uniform Bernoulli measure, the sets of µ-limit sets

and µ-Cesaro-limit sets are equal.

31

Whether the µ-limit and µ-Cesaro-limit sets of a given CA are equal is a
natural question and as we will see with the help of a previous example, the
answer is negative. Clearly ⇤C

µ

is included in ⇤

µ

for any CA but the converse
is false. Indeed if we consider the automaton used to prove 4.4, and decide to
write over the segment only at the end of the computation time, the Cesaro
mean will erase the result of the computation from its µ-Cesaro-limit set. Thus
:

Proposition 6.5. There exists a cellular automaton whose µ-language is ⌃

3

-

complete and which is µ-Cesaro nilpotent.

6.3. Non-recursive convergence time

Here we want to point out the fact that convergence to the µ-limit language
may actually be really late, in particular the next proposition states that the
convergence rate may be slower than any recursive function.

Proposition 6.6. Given an enumeration of Turing machines, denote T
m

(k)
the halting time of machine m 2 N on input k 2 N. If m does not halt on k,
T
m

(k) = 0.

There exists a cellular automaton F (with 0 2 Q
F

) such that :

• 8n 2 N, 9t
n

� max

k,m

{T
m

(k) : k n,m n} , F tnµ([0]) � 1

2n

;

• 0 /2 L
µ

(F).

Proof. To prove it we use again the construction of Section 3, and nearly the
same construction as described in the proof of Theorem 4.4. We consider at
time t

i

, i 2 N some couple (instead of a triple) f(i) = (j, k) 2 N2 given by
the enumeration f , and try to finish the computation of machine j with input
k. Each couple (j, k) is said to be successful for the smallest i such that the
computation halts, and failed otherwise. In the particular case of a successful
couple, we now write a prefix of the configuration

�
1

max (j,k)�1

0

�N. Each time
a couple is failed, the segment is filled with 1.

Thus 0 has density 1

n

in the writing layers of segments only when the sim-
ulation of the machine halts for the first i = f(j, k) with n = max{j, k}, and 0

otherwise. The two points of the result are now easily verified.
For the first point, given n 2 N, consider (k

0

,m
0

) such that T
m0(k0) =

max

k,m

{T
m

(k) : k n,m n}. When (k
0

,m
0

) is successful, the density of the
word 0 in acceptable segments is larger than 1

n

. For n large enough, these
segments cover enough space to let us conclude.

For the second point, given n 2 N, there exists i
0

2 N such that after i
0

,
acceptable segments have enough time to finish the computation of any machine
j n with input k n, if it ever halts. Then, there is i

1

� i
0

such that all
couples (j n, k n) have been enumerated between i

0

and i
1

. Thus, after i
1

the density of the word 0 is less than 1

n

in these segments.

32

7. Recap of results

In this section µ denotes the uniform Bernoulli measure. First we give com-
parative recap of complexity of properties or problems concerning limit sets and
µ-limit sets.

Problem or property Limit Set µ-Limit Set

Being a singleton

⌃

0

1

-complete
(see [Kar92])

⇧

0

3

-complete
(see Thm. 5.8)

Any non-trivial property

⌃

0

1

-hard
(see [Kar94])

⇧

0

3

-hard
(see Thm. 5.2)

Worst-case language

⇧

0

1

-complete
(see [Hur87])

⌃

0

3

-complete
(see Thm. 4.4)

Simplest configuration always uniform can be ↵-complex
(see Cor. 4.9)

Simplest quasi-periodicity always periodicity can be not recursively bounded
(see Cor. 4.11)

Below is a recap on how the complexity of some problems is affected by
adding hypothesis on the input CA.

Type of input CA Worst L
µ

µ-Nilpotency

General case

⌃

0

3

-complete
(see Thm. 4.4)

⇧

0

3

-complete
(see Thm. 5.8)

Equicontinuous

⌃

0

1

(see Thm. 4.2)
⌃

0

2

(see Prop. 5.9)

Simply convergent

⌃

0

2

(see Thm. 6.2)
⇧

0

2

(see Thm. 6.2)

We left some questions open in previous sections, but a few general ones
remain. As shown in [dMS13] it is certainly possible to generalize the results
obtained here for large sets of measures (which was not the purpose of the
present paper). In this context, it becomes relevant to consider the particular
case of surjective CA. Indeed, as the uniform bernoulli measure is preserved
by surjective CA, the µ-limit set is the fullshift, but for another measure, the
question is open.

Naturally, the extension of these results can be discussed for higher dimen-
sions. In particular, some of them should be reached given an equivalent con-
struction in higher dimensions.

References

[BDS10] Laurent Boyer, Martin Delacourt, and Mathieu Sablik. Construction
of µ-limit sets. In JAC, pages 76–87, 2010.

33

[Bir12] G. D. Birkhoff. Quelques théor‘emes sur le mouvement des systèmes
dynamiques. Bulletin de la Société Mathématique de France, 1912.

[BJ10] Alexis Ballier and Emmanuel Jeandel. Computing (or not) quasi-
periodicity functions of tilings. In JAC, pages 54–64, 2010.

[BPT06] Laurent Boyer, Victor Poupet, and Guillaume Theyssier. On the com-
plexity of limit sets of cellular automata associated with probability
measures. In MFCS, pages 190–201, 2006.

[Del11] Martin Delacourt. Rice’s theorem for -limit sets of cellular automata.
In ICALP (2), pages 89–100, 2011.

[dMS13] Benjamin Hellouin de Menibus and Mathieu Sablik. Characterisation
of sets of limit measures after iteration of a cellular automaton on an
initial measure. CoRR, abs/1301.1998, 2013.

[FK77] Harold Fredricksen and Irving J. Kessler. Lexicographic compositions
and debruijn sequences. J. Comb. Theory, Ser. A, 22(1):17–30, 1977.

[FK07] Enrico Formenti and Petr Kůrka. A search algorithm for the maximal
attractor of a cellular automaton. In STACS, pages 356–366, 2007.

[Hur87] Lyman P. Hurd. Formal language characterizations of cellular au-
tomaton limit sets. Complex Systems, 1:69–80, 1987.

[Hur90a] Mike Hurley. Attractors in cellular automata. Ergodic Theory and

Dynamical Systems, 10:131–140, 2 1990.

[Hur90b] Mike Hurley. Ergodic aspects of cellular automata. Ergodic Theory

and Dynamical Systems, 10:671–685, 11 1990.

[Kar92] J. Kari. The Nilpotency Problem of One-dimensional Cellular Au-
tomata. SIAM Journal on Computing, 21:571–586, 1992.

[Kar94] J. Kari. Rice’s theorem for the limit sets of cellular automata. Theo-

retical Computer Science, 127:229–254, 1994.

[KM00] P. Kůrka and A. Maass. Limit Sets of Cellular Automata Associated to
Probability Measures. Journal of Statistical Physics, 100(5-6):1031–
1047, 2000.

[Kůr97] Petr Kůrka. Languages, equicontinuity and attractors in cellular au-
tomata. Ergodic Theory and Dynamical Systems, 17:417–433, 3 1997.

[Kůr03] P. Kůrka. Topological and symbolic dynamics. Société Mathématique
de France, 2003.

[LM95] D. Lind and B. Marcus. An introduction to symbolic dynamics and

coding. Cambridge University Press, 1995.

34

[Maa95] Alejandro Maass. On the sofic limit sets of cellular automata. Ergodic

Theory and Dynamical Systems, 15:663–684, 7 1995.

[Odi99] Piergiorgio Odifreddi. Classical Recursion Theory. Studies in Logic
and the Foundations of Mathematics. North Holland, 1999.

[RU06] Andrey Yu. Rumyantsev and M. A. Ushakov. Forbidden substrings,
kolmogorov complexity and almost periodic sequences. In STACS,
pages 396–407, 2006.

35

	1 Introduction
	2 Definitions
	2.1 Words and Density
	2.2 Cellular Automata
	2.3 Measures
	2.4 -Limit Sets

	3 Construction Toolbox
	3.1 Initialization: Counters and Segments
	3.1.1 General Description
	3.1.2 The Younger, the Better
	3.1.3 Dealing with collisions

	3.2 Computation inside segments
	3.3 Synchronous Merging Process
	3.3.1 Synchronization
	3.3.2 Colors
	3.3.3 Merging
	3.3.4 -limit sets

	4 Building complex -limit sets
	4.1 Complexity upper-bounds
	4.2 3-hard example
	4.3 Descriptive complexity

	5 Complexity of properties of -limit sets
	5.1 A Rice theorem for -limit sets
	5.1.1 Properties of -limit sets
	5.1.2 Computing a weakly generic configuration
	5.1.3 Construction

	5.2 -nilpotency

	6 Types of convergence towards the limit
	6.1 Simple convergence
	6.2 Cesaro mean
	6.3 Non-recursive convergence time

	7 Recap of results

