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MULTIDIMENSIONAL EFFECTIVE S-ADIC

SUBSHIFTS ARE SOFIC.

Nathalie Aubrun and Mathieu Sablik

ABSTRACT. In this article we prove that multidimensional effective S-adic sys-
tems, obtained by applying an effective sequence of substitutions chosen among

a finite set of substitutions, are sofic subshifts.

Communicated by

Introduction

Let A be a finite alphabet. A d-dimensional subshift T ⊂ AZd is a closed
and shift-invariant set of configurations, where the shift is the natural action

of Zd on the configurations space AZd . With a combinatorial point of view,
one can equivalently define subshifts by excluding configurations that contain
some forbidden finite patterns. Depending on the conditions imposed on this set
of forbidden patterns, it is possible to define several classes of subshifts. The
simplest one is the class of subshifts of finite type (also called SFT), where the
set of forbidden finite patterns may be chosen finite. A larger class is the one of
sofic subshifts, which are images of SFT under a factor map. These two classes
are defined locally and they are well understood in dimension 1.

A way to construct minimal aperiodic subshifts is to consider subshifts gener-
ated by a fix point of substitution, introduced in dimension one by Thue [Thu06]
and generalized to higher dimensions. These subshifts constitute the class of the
substitutive subshifts. More precisely, for a substitution s one can consider the
subshift T{s} where the allowed patterns are given by iterations of the substitu-
tion s on a letter of A, or the set T′{s} of configurations which have pre-images by

arbitrarily many iterations of s. Of course T{s} ⊂ T′{s}. In dimension 1 the class

of substitutive subshifts and the class of sofic subshifts are disjoint except for triv-
ial cases: substitutive subshifts have low complexity [Pan84], while the only sofic
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subshifts with low complexity are periodic. In the multidimensional framework
the situation is different since all substitutive subshifts are sofic. This result is a
generalization to any substitution satisfying some weak condition (rectangular
2-dimensional substitution satisfying property A, see Theorem 4.5 of [Moz89])
of the original construction of aperiodic tilings [Rob71].

A possible generalization of the construction of substitutive subshifts is to
consider S-adic subshifts, which were introduced by S. Ferenczi in the one-
dimensional setting [Fer96]. Given a finite set of substitutions S , and a sequence
S ∈ S N, we define the subshifts TS and T′S where the iterations of the differ-
ent substitutions are given by the sequence S. This class of subshifts is studied
in dimension 1 and, under some conditions on the set S , it is shown that the
complexity is low [Fer96, Dur00]. It is thus natural to wonder if there exist sofic
S-adic subshifts in higher dimensions. If the set of substitutions S has the unique
derivation property, an argument of cardinality shows that the class of S-adic
multidimensional subshifts is not included in the class of sofic subshifts. Indeed
the class of sofic subshifts is countable, since there are countably many SFT
and countably many factor maps. There are uncountably many ways to choose
an infinite sequence of S , but each class of conjugacy is countable since there
are countably many conjugateness. Thus there are uncountably many different
non-conjugate S-adic multidimensional subshifts. The purpose of this article is
to show that S-adic subshifts which are sofic are exactly those for which the
sequence S is effective. More generally we characterize the set S ⊂ S N such that
TS =

⋃
S∈STS is a sofic subshift. The set S ⊂ S N must be effectively closed,

that is to say there exists a recursively enumerable sequence (wk)k∈N of elements
of S ∗ such that S ∈ S if and only if S[0,|wk|−1] 6= wk for all k ∈ N.

The main idea of the proof is to use the result by S. Mozes which proves
that a substitutive subshift is sofic in the case where the substitution is not
deterministic and satisfies property A (Theorem 4.5 of [Moz89]). This means
that each time one wants to use a substitution, it is possible to choose a rule
among a set of substitutions S . However, contrary to the S-adic subshifts, at
each level of iteration different substitutions of S may appear. The aim of
the proof is to synchronize these substitutions, and in that purpose we need
to introduce a one dimensional effective subshift which codes the sequence of
substitutions. This effective subshift can be realized by a 3-dimensional sofic
subshift thanks to the result of M.Hochman [Hoc09] or by a 2-dimensional sofic
subshift thanks to the improvement obtained by [DRS09] or [AS11].
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1. Definition and classical properties

1.1. Notion of subshift

Let A be a finite alphabet and d be a positive integer. A configuration x is an

element of AZd . Let U be a finite subset of Zd, we denote by xU the restriction
of x to U. A Zd-dimensional pattern is an element p ∈ AU where U ⊂ Zd is
finite, U is the support of p, which is denoted by supp(p). A pattern p of support
U ⊂ Zd appears in a configuration x if there exists i ∈ Zd such that p = xi+U,
and in this case we write p < x.

We define a topology on AZd by endowing A with the discrete topology, and

considering the product topology on AZd . For this topology, AZd is a compact
metric space on which Zd acts by translation via σA – that will be denoted by
σ if there is no ambiguity on the alphabet considered – defined for every i ∈ Zd
by

σiA :

(
AZd −→ AZd

x 7−→ σiA(x) such that σiA(x)u = xi+u ∀u ∈ Zd

)
.

The Zd-action (AZd , σ) is called the fullshift. If T ⊂ AZd is a closed σ-invariant
subset, the Zd-action (T, σ) is a subshift.

Let F be a set of finite patterns, we define the subshift of forbidden patterns
F by

TF =
{
x ∈ AZ

d

: ∀p ∈ F, p does not appear in x
}
.

It is well known that every subshift can be defined by this way [LM95]. Let T
be a subshift. If there exists a finite set F of forbidden patterns such that T =
TF , then T is a subshift of finite type. If there exists a recursively enumerable
set F of forbidden patterns – a set of patterns that can be enumerated by a
Turing machine – such that T = TF , then T is an effective subshift.

1.2. Factor and projective subaction

Let (T ⊂ AZd , σA) and (T′ ⊂ BZd , σB) be two d-dimensional subshifts. A
factor map is a continuous function π : T→ T′ such that π ◦ σA = σB ◦ π. If T
is an SFT, then π(T) ⊂ BZ is a subshift called a sofic subshift. In dimension 1,
sofic subshifts are well understood, in particular because they possess a good
representation with finite automata (see [LM95] for a complete survey).

Let G be a sub-group of Zd finitely and freely generated by u1,u2, . . . ,ud′

(d′ ≤ d). Let T ⊆ AZd be a subshift, the projective subdynamics – or projective
subaction – of T according to G is the subshift of dimension d′ defined by
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SAG (T) = {y ∈ AZd
′

: ∃x ∈ T such that ∀i1, . . . , id′ ∈ Zd
′
,

yi1,...,id′ = xi1u1+···+id′ud′}.

This notion was originally introduced in [JKM07]. In [PS10] the authors use
this definition of projective subaction, considering Z2 as a lattice and restricting
subshifts to Ze1 where e1 is the first canonical vector of Zd. They show that any
1-dimensional sofic subshift with positive entropy can be obtained as the projec-
tive subaction of a 2-dimensional SFT, and give some examples of subshifts that
cannot be obtained that way. But the complete characterization of projective
subactions of 2-dimensional SFT remains an open problem. Such a complete
characterization was obtained by Hochman [Hoc09] if we allow factor maps in
addition to projective subactions: the class of subshifts obtained by factor maps
and projective subactions of SFT is exactly the class of effective subshifts. The
original proof contains a construction that realizes any 1-dimensional effective
subshift inside a 3-dimensional SFT. This construction has been simultaneously
improved by two different techniques [AS11, DRS10] to get any 1-dimensional
effective subshift inside a 2-dimensional SFT.

Theorem 1 ([Hoc09, AS11, DRS10]). Any effective subshift of dimension d
can be obtained with factor and projective subaction operations from a subshift
of finite type of strictly higher dimension.

2. Substitutive and S-adic subshifts

In this section we present substitutions, substitutive subshifts and S-adic sub-
shifts.

2.1. Substitutions

Let n = (n1, . . . , nd) ∈ Nd and k = (k1, . . . , kd) ∈ Nd, we define n + k =
(n1 +k1, . . . , nd+kd) ∈ Nd, n⊗k = (n1.k1, . . . , nd.kd) ∈ Nd and ni = n⊗· · ·⊗n
with i factors. Given k = (k1, . . . , kd), we denote by Uk the rectangle [0; k1] ×
[0; k2]× · · · × [0; kd]. We say that i is smaller (resp. strictly smaller) than j if for
every 1 ≤ l ≤ d, one has il ≤ jl (resp. il < jl). We denote it by i ≤ j (resp.
i < j).

Let A be a finite alphabet, we define the set of rectangular pattern P =⋃
k∈Nd AUk . An (A, d)-multidimensional substitution of size k(s) : A → Nd is

a function s : A → P, such that for all a ∈ A, we have supp(s(a)) = Uk(s)(a)
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with k(s)(a) = (ks1(a), . . . , ksd(a)). An (A, d)-multidimensional substitution is non

degenerate if k
(s)
l (a) ≥ 1 for every l ∈ [1; d] and every a ∈ A.

Let p ∈ AUk be a rectangular pattern with finite support Uk ⊂ Z2. We would
like to apply a substitution s on this rectangular pattern p so that the result is
also a rectangular pattern. Consider a bidimensional substitution, and suppose
it has constant size, that is to say the function k(s) is constant or equivalently
the support of the images of a letter by the substitution does not depend on
the letter. Take a partitioning of the support Uk with unit squares, and apply
the linear transformation that inflates each unit square by (λ1, λ2), you will
obtain another partitioning of a bigger support U(λ1·k1,λ2·k2) by rectangles of
size (k1, k2), so that if two unit squares share an edge (resp. a vertex), then so
do their inflated rectangles.

But if the substitution does not have constant size, the situation is more
complicated since some overlaps or holes may appear. We would like to only
consider substitutions applied on patterns that do not create such degenerate
cases, which corresponds to the following notion of compatibility. We say that the
substitution s is compatible with the pattern p (resp. with the configuration x) if
for all i = (i1, . . . , id) ∈ Uk and j = (j1, . . . , jd) ∈ Uk (resp. i = (i1, . . . , id) ∈ Zd
and j = (j1, . . . , jd) ∈ Zd) such that il = jl for one l ∈ [1; d], one has ksl (pi) =
ksl (pj).

Example 1. Let A be the two elements alphabet A = {◦, •} and s be the
two-dimensional substitution whose rules are

◦ 7→ ◦ ◦
◦ ◦ and • 7→ ◦ ◦

• ◦ .

For instance, the substitution s acts on the pattern p described below

s : p =
◦ • •
• ◦ ◦ 7→ s(p) =

◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ • ◦ • ◦
◦ ◦ ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦ ◦

.

Consider now the substitution s′ whose rules are

◦ 7→ ◦ ◦
◦ ◦ and • 7→ ◦ ◦ •

• ◦ ◦ .

The substitution s′ is not compatible with the pattern p since the pattern s′(p)
is not a rectangular pattern – it contains holes.

s′(p) =

◦ ◦ ? ◦ ◦ • ◦ ◦ •
◦ ◦ ? • ◦ ◦ • ◦ ◦
◦ ◦ • ◦ ◦ ? ◦ ◦ ?

• ◦ ◦ ◦ ◦ ? ◦ ◦ ?
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However, the substitution s′ acts on the pattern p′ described below

s′ : p′ =
• ◦
• ◦ 7→ s(p) =

◦ ◦ • ◦ ◦
• ◦ ◦ ◦ ◦
◦ ◦ • ◦ ◦
• ◦ ◦ ◦ ◦

.

The reader may have noticed that the notion of compatibility defined above
imposes actually more constraints on the partition by rectangles than just avoid-
ing holes and overlaps. We say that a partition of Zd – or a finite region of Zd –
with rectangles is a rigid partition if rectangles are edge-to-edge, that is to say
the vertex of a rectangle can only intersect another rectangle at a vertex. By
definition, if you have a rigid partition of Zd by rectangles, it suffices to know
rectangles along a diagonal to deduce the whole partition (see Figure 1).

Suppose now that the substitution s is compatible with the configuration x.
Assume that the pattern s(x(0,...,0)) appears in position (0, . . . , 0) in s(x), is it

possible to deduce the positions of the patterns s(xi) in s(x) for every i ∈ Zd ?
For a given i = (i1, . . . , id) ∈ Zd, this position depends on the sequence of
positions of all the patterns s(x(j1,j2,...,jd)), for j` between 0 and k`, hence we
can define it recursively. This is the goal of following function ϕ, and which uses
the fact that a rigid partition is entirely determined by one of its diagonals.

Let (k(n))n∈Z be a sequence of d-dimensional vectors with entries in the nat-
urals. We define the function

ϕ(k(n))n∈Z :

(
Zd → Zd
i 7→ (ϕ1(i1), ϕ2(i2), . . . , ϕd(id))

)
where ϕl(0) = 0, ϕl(r) =

∑r−1
j=0(k(j))l if r ≥ 0 and ϕl(r) =

∑−1
j=r(k

(j))l if r < 0

for every l ∈ [1; d]. This function ϕ(k(n))n∈Z provides a way to distort the grid Zd
in order to obtain a rigid partition of Zd with rectangles (see Figure 1).

Given a substitution s compatible with a configuration x ∈ Zd, we can now
describe the new configuration s(x) thanks to the auxiliary function ϕ (see Fig-
ure 2). Define

φ(x,s) = ϕ(k(s)(x(n,...,n)))n∈Z .

If the substitution s is compatible with the configuration x and if p is a pattern
of x, the substitution s acts on p and we obtain a pattern s(p) whose support is

supp(s(p)) =
⋃

i∈supp(p)

Uk(s)(pi) + φ(x,s)(i)
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k(2)=(2, 1)

Figure 1. An example of sequence (k(n))n∈Z of 2-dimensional vectors with

entries in the naturals and the function ϕ(k(n))n∈Z that define a rigid par-
tition of Z2. The sequence (k(n))n∈Z represents the sizes of the rectangles

of the rigid partition.

and such that

∀i ∈ supp(p),∀j ∈ supp(s(pi)), s(p)φ(x,s)(i)+j = s(pi)j.

So the substitution s can easily be extended to a function on configura-

tions s∞ :

(
AZd → AZd

x 7→ s(x)

)
such that if the substitution s is compatible

with the configuration x ∈ AZd , then the configuration s∞(x) is defined by
s(p)φ(x,s)(i)+j = s(pi)j for all i ∈ Zd and j ∈ supp(s(xi)).
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x = N

0

0

•

3

−2

s−→

σ(3,−2) σφ
(x,s)(3,−2)

s(N)

s(•)

N
•

0

0

−3

2
s−→

s(N)

s(•)

Figure 2. If the configuration x is compatible with the substitution s, then

one can define the function φ(x,s) = ϕ(k(s)(x(n,...,n)))n∈Z which verifies

s ◦ σi(x) = σφ
(x,s)(i) ◦ s(x).

Auxiliary function φ can also be seen as a way to express how substitutions
commute in a certain sense with the shift σ. This is expressed by Proposition 2
and illustrated in Figure 2.

Proposition 2. One has s ◦ σi(x) = σφ
(x,s)(i) ◦ s(x) for all i ∈ Zd.

P r o o f. Let i, j ∈ Zd. By definition of φ, one has the two following properties

• there exist j′, j′′ ∈ Zd such that j = φ(x,s)(j′) + j′′ with j′′` ∈ [0, φ(x,s)(j′ +
e`)` − φ(x,s)(j′)` − 1], where e` is the `th canonical vector of Zd, and
‖j′‖ ≤ ‖j‖;
• φ(x,s)(i + j) = φ(x,s)(i) + φ(σi(x),s)(j).

Then one has (see Figure 2 for an example)
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[
s ◦ σi(x)

]
j

=
[
s(σi(x))

]
φ(σi(x),s)(j′)+j′′

= [s(xi+j′)]j′′

with j = φ(σi(x),s)(j′) + j′′ and j′′` ∈ [0, φ(σi(x),s)(j′ + e`)` − φ(σi(x),s)(j′)` − 1] for
all ` ∈ [1, d]. Thus[

s ◦ σi(x)
]
j

= [s(x)]φ(x,s)(i+j′)+j′′ = [s(x)]
φ(x,s)(i)+φ(σi(x),s)(j′)+j′′

=
[
σφ

(x,s)(i) ◦ s(x)
]
j
.

�

2.2. Composition of substitutions

Consider now that one wants to apply not only one but a finite set of sub-
stitutions on a (finite or infinite) pattern p. We first define how to compute the
composition of two or more substitutions. Let s, s′ be two substitutions. We say
that s′ is compatible with s if for any letter a, the pattern s(a) is compatible
with s′. If s′ is compatible with s, we can thus define the composition s′ ◦ s
such that the image of a letter a by s′ ◦ s is the pattern s′(s(a)). For a sequence
of substitutions S[k;n] = (sk, . . . , sn), one defines by induction the substitution

Ŝ[k;n]:

• Ŝ[n;n] = sn;

• Ŝ[k;n] = sk ◦ Ŝ[k+1;n] if k < n and sk is compatible with Ŝ[k+1;n](a) for all
a ∈ A.

Note that with this definition, substitutions are applied by decreasing index –

substitution s0 is actually the last to be applied in Ŝ[0;n]. This reverse order could
seem a bit surprising at first sight, but doing this we ensure that the sequence

of finite patterns Ŝ[0;n](a) will converge for every letter a ∈ A.

Let S be a finite set of (A, d)-multidimensional substitutions. We present the

two classical points of view to make S act on the set of configurations AZd . In
the first one, the set S acts on a configuration x via a sequence of substitutions
S = (si)i∈N ∈ S N, and at iteration i the substitution si is applied to every letter
in x (see Section 2.3). In the second one, the set S acts on a configuration x
in a non uniform way, that is to say at each iteration the applied substitution
depends on the position in x (see Section 2.4).

2.3. S-adic subshifts

Let S be a finite set of (A, d)-multidimensional substitutions and let S ∈ S N

be a sequence of substitutions. We want to define how this sequence acts on a
letter a ∈ A. The principle is that at in the i-th iteration, the substitution s0 is
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applied to the whole pattern s1 ◦ · · · ◦ si(a). We define the following two S-adic
subshifts based on this action of S on letters of A

TS =
{
x ∈ AZd : ∀p < x, ∃a ∈ A,∃n ∈ N, p < Ŝ[0;n](a)

}
T′S =

{
x ∈ AZd : ∀n ∈ N, ∃y ∈ AZd ,∃i ∈ Zd, Ŝ[0;n](y) = σi(x)

}
.

The first subshift TS will be called the sub-pattern S-adic subshift. The set TS

corresponds to a symbolic dynamics approach, since it is defined in terms of
allowed patterns. The sequence of substitutions S produces patterns, that are

the Ŝ[0;n](a) for any letter a ∈ A, and these patterns are seen as the allowed
patterns of the subshift TS – the fact that TS is a subshift is obvious. The
second subshift T′S will be called the limit S-adic subshift, and this time the

idea is to consider only configurations x ∈ AZ2

for which it is possible to find
a pre-image of any order under the sequence of substitutions S. The study of
T′S can be justified under a dynamical point of view: it can be seen as the shift
closure of the limit set ⋂

n∈N
Ŝ[0;n]

(
AZd

)
.

Note that writing the set T′S as below gives a direct proof that it is a subshift –
closed and shift-invariant.

These two subshifts TS and T′S are actually almost the same. First notice that
the inclusion TS ⊂ T′S always holds. Take some configuration x in TS. Then by
compactness, for every integer n ∈ N, one can construct some configuration y

such that x = Ŝ[0;n](y).

Moreover it can be proven, but we will not do it here since it is not the
goal of this article, that if the substitutions are all primitive – every letter will
eventually appear in the pattern created by iteration of any substitution on any
letter – the two subshifts are equal. If one substitution in S is not primitive,
one can easily construct example in which the reciprocal inclusion does not hold
(see Example 2). And even in the general case, the two subshifts do not differ
that much: the set T′S \TS is always countable – again we do not give the proof
here.

Example 2. Let s be the first substitution of Example 1. Then if we choose
S = {s} and so S = sN, the two S-adic subshifts defined above are in this case

TS =
{
◦Z2
}

and T′S =
{
◦Z2
}
∪
{
σi(x•), i ∈ Z2

}
where the configuration x• is such that x(i,j) = • if and only if (i, j) = (0, 0).

Indeed, x• is in the subshift T′S – x• is a fixed-point of s – but not in the subshift
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TS, since the central pattern x[−1;0]×[−1;0] appears neither in a Ŝ[0;n](•) nor in

a Ŝ[0;n](◦).

2.4. Non-deterministic substitutions

Let S be a finite set of d-dimensional substitutions on alphabet A, and

x ∈ AZd be a configuration. In the previous section we have seen that one
substitution s ∈ S can be applied on x – provided s is compatible with x – to

get a new configuration s(x) ∈ AZd . With this formalism, the same substitution s
is applied to any letter a that appears in x, so that we could roughly speaking say
that the set of substitutions S acts in a uniform way on configurations. But we
could also imagine that different substitutions are applied to letters, depending
on the position of the letters. In other words, some substitution si ∈ S is applied
on the letter xi, which means that we do not apply one substitution on x, but a

configuration of substitutions living in S Zd .

For a finite set U ⊂ Zd, we consider the pattern of substitutions s ∈ S U. We
say that the pattern of substitutions s ∈ S U is compatible with a pattern p ∈ AU

if for all i = (i1, . . . , id) ∈ U and j = (j1, . . . , jd) ∈ U such that il = jl for one
l ∈ [1; d], one has ksil (pi) = k

sj
l (pj). Compatibility thus means that the pattern

of substitutions s transforms p into a rigid partition of some finite rectangular
region of Zd with rectangles si(pi) for i ∈ U.

If the pattern of substitutions s ∈ S Uk is compatible with a pattern p ∈ AUk

that appears in a configuration x, it acts on p and we obtain the pattern s(p)

• whose support is supp(s(p)) =
⋃

i∈supp(p)

Uksi (pi) +φ(x,s)(i), since each letter

pi generates a patterns with support Uksi (pi) shifted by φ(x,s)(i) ;

• and such that ∀i ∈ supp(p),∀j ∈ supp(si(pi)), s(p)φ(x,s)(i)+j = si(pi)j (see

Figure 3).

Example 3. Let S = {sa, sb, sc, sd} be a set of two-dimensional substitutions
on the alphabet A = {◦, •} defined by the following rules

sa : ◦ 7→ ◦ ◦
◦ ◦ and • 7→ ◦ ◦

• ◦ , sb : ◦ 7→ ◦ • ◦
◦ • ◦ and • 7→ ◦ ◦ ◦

• ◦ ◦

sc : ◦ 7→
◦ ◦
• ◦
◦ •

and • 7→
◦ ◦
◦ •
• •

, sd : ◦ 7→
• • •
• • •
◦ ◦ ◦

and • 7→
◦ ◦ ◦
◦ ◦ ◦
• • •

.

Then given the pattern p pictured below, the patterns of substitutions s and
s′ are compatible with p and we can define the patterns s(p) and s′(p), while
the pattern of substitutions s′′ is not – on the bottom right sd(◦) is of height 3
while sa(◦) is of height 2.

10



MULTIDIMENSIONAL EFFECTIVE S-ADIC SUBSHIFTS ARE SOFIC.

s

0
0

3

2

p

0
0

3

2 =

0
0

i

j

s(p)

Figure 3. A pattern of substitutions s compatible with a pattern p that

appears in position (0, 0) in some configuration x. On the picture, coordi-

nates i and j are defined by φ(x,s)((3,2)) = (i, j).

p =
◦ • • •
• • ◦ ◦ , s =

sa sa sb sa
sc sc sd sc

, s′ =
sc sd sd sc
sa sb sb sa

, s′′ =
sa sa sb sa
sc sc sd sa

s(p) =

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ • ◦ • ◦ ◦ • ◦
◦ ◦ ◦ ◦ • • • ◦ ◦
◦ • ◦ • • • • • ◦
• • • • ◦ ◦ ◦ ◦ •

, s′(p) =

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ •
◦ • • • • • • • • •
◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦
• ◦ • ◦ ◦ ◦ • ◦ ◦ ◦

We define the set of S -patterns by induction. An S -pattern of level 0 is an
element of A, and p is an S -pattern of level n+ 1 if there exists an S -pattern
p′ ∈ AU of level n and a pattern of substitutions s ∈ S U compatible with p′

such that s(p′) = p. Of course the support of each S -pattern is rectangular.
The S -patterns lead us to define TS , the sub-pattern subshift generated by the
set of substitutions S

TS =
{
x ∈ AZd : ∀p < x, p is a sub-pattern of an S -pattern

}
.

Suppose that s ∈ S Zd is an infinite pattern of substitutions and x ∈ AZd

is a configuration. We denote by s(x) the configuration in AZd obtained if one
applies si on xi for every i ∈ Zd. We thus define T′S the limit subshift generated
by the set of substitutions S as follows

T′S =
{
x ∈ AZd : ∀n ∈ N,∃y ∈ AZd ,∃(s0, . . . , sn−1) ∈

(
S Zd

)n
,

11
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∃i ∈ Zd, s0 ◦ · · · ◦ sn−1(y) = σi(x)
}
.

This subset of configurations is obviously shift-invariant, and writing it as a
limit set as we did for T′S provides a simple proof that it is also closed.

Remark . A compactness argument leads to the inclusion TS ⊆ T′S , one also
has TS ⊆ TS and T′S ⊆ T′S for any sequence S – it corresponds to the particular
case where patterns of substitutions si contain a single substitution si.

2.5. Subshift generated by a set of S-adic sequences

Let S ⊂ S N be a subset of S-adic sequences. We are interested in the sets

TS =
⋃
S∈S

TS and T′S =
⋃
S∈S

T′S.

These sets are shift-invariant. We can consider the product topology on S N,
for this topology S N is compact. In the following proposition, we show that if
S ⊂ S N is closed then TS and T′S are closed. In this case TS and T′S are called
respectively the sub-pattern S-adic subshift and the limit S-adic subshift.

Proposition 3. Let S ⊂ S N be a closed set. Then TS and T′S are subshifts.

P r o o f. The proof is only realized for TS, the same arguments hold for T′S. Let

(xi)i∈N be a sequence of element of TS which converges toward x ∈ AZd , it is
possible to assume that xi[−i,i]d = x[−i,i]d for all i ∈ N. We want to show that

x ∈ TS. By definition, for all i ∈ N, xi ∈ TSi where Si = si0s
i
1 · · · sin · · · ∈ S.

By compactness of S, the sequence (Si)i∈N admits an adherence value S =
s0s1 · · · sn · · · ∈ S. Leaving to take a subsequence, it is possible to assume that

si0s
i
1 · · · sii = s0s1 · · · si = Ŝ[0;i] for all i ∈ N. Thus for i ∈ N, every sub-pattern

p < x[−i,i]d = xi[−i,i]d appears as sub-pattern of Ŝ[0;i](a) for a ∈ A. We deduce

that x ∈ TS ⊂ TS. �

A set S ⊂ S N is effectively closed if there is a sequence of words (wn)n∈N
on the alphabet S enumerated by a Turing machine such that S ∈ S if and

only if Ŝ[0,|wn|−1] 6= wn for all n ∈ N. This means that there exists an algorithm
with the following behaviour: it loops forever on a sequence that belongs to the
effectively closed set, but ends in finite time on other sequences. This definition
is standard in recursive analysis [Wei00]. Note that an effectively closed set of
sequences of substitutions my contain some non computable sequences.

If S = {S} is a singleton, then S is effectively closed if and only if S is an
effective sequence.

12
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3. Realization by sofic subshifts

We prove that multidimensional S-adic subshifts given by an effective se-
quence of substitutions are sofic.

3.1. Mozes’ theorem and property A

In [Moz89] Mozes studied non deterministic multidimensional substitutions,
and proved that provided a non deterministic substitution satisfies a good prop-
erty – called property A, defined below – then the subshift generated is sofic.

All substitutions we consider here are deterministic since the substitutions
rules are given by a function. Nevertheless this formalism provides a way to
study non deterministic substitutions. Given s a non deterministic substitution,
if a letter a ∈ A has two patterns p1, p2 as images, one replaces s by s1 and
s2, where s1 has the same substitution rules as s without the rule a → p2, and
s2 has the same substitutions rules as s without the rule a → p1. By iterating
this process, we can transform a non deterministic substitution into a set finite
S of deterministic substitutions, so that the subshift called (Ω,Z2) by Mozes is
exactly the subshift TS .

We say that a set of substitutions S is of type A, or has property A, if it
satisfies the following condition. Let p = u0 ◦ · · · ◦ uk(a) be an S -pattern,
where pattern substitutions ui are chosen among S , and l a 2× · · · × 2 pattern
that appears in p. Suppose there exists a sequence of patterns of substitutions
s0, . . . , sn compatible with the 2 × · · · × 2 pattern l that produce a sequence
of patterns l0 = l, l1 = s0(l0), . . . , ln = sn(ln−1). Then it is possible to find a
sequence of patterns of substitutions s′0, . . . , s

′
n compatible with the pattern p

such that the blocks that derive from l in p0 = p, p1 = s′0(p0), . . . , pn = s′n(pn−1)
are exactly l0, l1, . . . , ln (see Figure 4). It is possible that the composition of
substitution rules chosen for l is not compatible with the pattern p, and in
this case it has to be possible to find another sequence of substitution rules
compatible with p and such that the the blocks that derive from l are exactly
the l0 = l, l1, . . . , ln.

Remark . This property A for sets of substitutions is actually not very restric-
tive. For instance any set of substitutions S such that for every substitution
s ∈ S , the support of s(a) is the same for any a ∈ A, has the property A.
Moreover, if the set S is reduced to a single deterministic substitution s, then
S is of type A.

Theorem 4 ([Moz89]). Let S be a set of non degenerate deterministic multi-
dimensional substitutions – all letters are mapped to a pattern of size at least 2
in all directions – that possesses property A. Then the subshift TS is a sofic.
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a ∈ A

p = u0 ◦ · · · ◦ uk(a)

s0 ◦ · · · ◦ sn(l) v

l v p

s′0 ◦ · · · ◦ s′n(p)

Figure 4. A set of substitutions S having property A.

In the sequel results are proven for the subshift TS only, but remain the same
for the subshift T′S if we admit that Mozes’ result generalizes to T′S . Proof of
Theorem 4 can actually be adapted, without new ideas, to get almost the same
result for T′S – the only difference is that the set of substitutions S is no longer
required to have property A.

Addendum (to Theorem 4). Let S be a set of deterministic multidimensional
substitutions. Then the subshift T′S is sofic.

We give here some elements to adapt Mozes’ result. This sketch of a proof
is addressed to readers already familiar with Mozes’ proof, others may skip this
part.

P r o o f. We first give some ideas of the proof of Theorem 4. Then we will explain
how it can be adapted to get a proof of its addendum.

Let S be a set of substitutions of type A. Mozes constructs a sofic subshift
Σ such that TS is a factor of Σ. The subshift Σ contains a grid that ensures
that a configuration x is in the sofic subshift Σ if and only if one can find, for

any n ∈ N, a sequence of infinite patterns of substitutions s0, . . . sn−1 ∈ S Zd , a
configuration yn and i ∈ Zd such that s0 ◦ · · · ◦ sn−1(yn) = σi(x). In Σ all the yn
are coded in a hierarchical structure. Let Q be the set of 2×· · ·×2 patterns that
appear in an S -pattern. There is an additional condition, that we call condition

14
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Q: any 2× · · · × 2 pattern that appears in any configuration yn has to be in Q.
So both type A condition and Q condition are made to ensure that any pattern
that appears in a configuration x also appears in an S -pattern.

This construction works: given a configuration x ∈ TS it is easy to construct
a configuration y ∈ Σ that encodes x and all its pre-images. Reciprocally given a
pattern p that appears in a configuration x ∈ Σ, one can find a sequence of finite
patterns of substitutions (s0, . . . , sn−1) such that p appears in s0 ◦ · · · ◦ sn−1(p′),
where p′ is either a letter or appears in a 2 × · · · × 2 pattern. If p′ is a letter
then p appears in an S -pattern. Otherwise, p′ appears in a 2× · · · × 2 pattern
that appears itself in an S -pattern – thanks to condition Q –, hence property
A ensures that p also appears in an S -pattern, that is to say generated by one
letter a (see Figure 4). So any pattern appearing in x appears in an S -pattern.

The difference between the subshifts TS and T′S is that we remove the
condition that forces a pattern appearing in a configuration x to occur in an S -
pattern – and of course we still require that x has a pre-image of any order by
S . Hence property A is no longer needed, and if we adapt Mozes’ construction
by replacing the set Q by the set of all the 2 × · · · × 2 patterns, then T′S is a
factor of the sofic subshift obtained. This proves the corollary.

�

3.2. Effective S-adic subshifts are sofic

Let S ∈ S N, of course one has TS ⊂ TS , but there is no immediate reason for
TS to be also sofic. Moreover there are only countably many sofic subshifts but as
stated in the Introduction there are uncountably many different non-conjugate
S-adic subshifts, thus there exist non-sofic S-adic subshifts.

Theorem 5. Let S be a finite set of non degenerate multidimensional substi-
tutions and S ⊂ S N be effective closed. Then T′S is sofic. If S has property A,
then TS is sofic.

Remark . We only present the proof that TS is sofic. The proof is similar for
T′S, one just needs to replace TS by T′S in the proof.

P r o o f. We now assume that d = 2, the proof is similar for d ≥ 3. Let S be a
finite set of non degenerate (A, 2)-substitutions, we define A′ = A×S 2. To every
s ∈ S we associate a (A′, 2)-substitution s̃ with same support as represented in
Figure 5.

All these substitutions s̃ form a set S̃ = {s̃ : s ∈ S }. Let S = (si)i∈N ∈
S N be an effective sequence, we can thus consider the effective sequence S̃ =

(s̃i)i∈N ∈ S̃ N. The aim of substitutions s̃ is to keep a record of the sequence of
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substitutions that have previously been applied, to ensure that the same substi-
tution is used everywhere on a given level. An s̃-pattern can be divided into nine
zones (see Figure 5). The border zones are used to transfer information contain-
ing both the last substitution applied, but also the sequence of all substitutions
previously applied. Note that in this construction, it is crucial to consider only
non degenerate substitutions.

Example 4. Let S be the set of 2-dimensional substitutions on the alphabet

A = {◦, •} defined in Example 3. In Figure 5 where S̃ = (s̃d, s̃a, s̃a, . . . ) applied
on the letter •, one can find on the second coordinate of the bottom line – or third
coordinate of the rightmost column – of the patterns s2(•) = s̃a(•), s1 ◦ s2(•) =
s̃a ◦ s̃a(•), s0 ◦ s1 ◦ s2(•) = s̃ds̃as̃a(•), . . . the sequence of substitutions already
applied appears.

One considers π : A′Zd → AZd the letter-to-letter block map which keeps the

letter of A and πV : A′Zd → S Zd (resp. πH : A′Zd → S Zd) the letter-to-letter
block map which keeps the substitution sV ∈ S (resp. sH ∈ S ) of an element
(a, sV , sH) ∈ A′.

Claim 1: TS = π
(
TS̃
)

where S̃ = {s̃ : s ∈ S}.
Proof: This is straightforward, since the alphabet A′ contains alphabet A, and

substitution s̃ restricted to alphabet A is exactly substitution s. 3 Claim 1

Consequently, it is sufficient to prove that TS̃ is sofic.

Claim 2: The subshift Σ = SAZ×{0}
(
πV (TS̃)

)
is effective.

Proof: The class of effective subshifts is closed under factor, but also under
projective subaction. This follows from the fact that projective subactions are
special cases of factors of subactions. Indeed, Theorem 3.1 and Proposition 3.3
of [Hoc09] establish that symbolic factors and subactions preserve effectiveness.
Thus it is sufficient to prove that TS̃ is an effective subshift.

Let (wn)n∈N be the effective sequence of word such that S = S N \ ∪n[wn]

where [wn] = {S ∈ S N : Ŝ[0,|wn|−1] = wn}. One has

TS =
⋂
n∈N

{
x ∈ AZ2

: Ŝ[0,|wn|−1](a) with a ∈ A and Ŝ[0,|wm|−1] 6= wm, ∀m ≤ n
}
.

Thus TS is defined as an intersection of subshift of finite type where the
forbidden patterns are given recursively. One deduces that it is an effective
subshift. 3 Claim 2

By Theorem 1 there exists a 2-dimensional subshift of finite type TΣ on an

alphabet B and a factor πΣ : BZd → S Zd such that

16



MULTIDIMENSIONAL EFFECTIVE S-ADIC SUBSHIFTS ARE SOFIC.

s̃
:

(a
,s
V
,s
H

)
7→

(s
(a

) (
0
,k
s 2
(
a
)
)
,
s
,
s
H

)
(s

(a
) (

1
,k
s 2
(
a
)
)
,
s
,
s
H

)
.
.
.

(s
(a

) (
k
s 1
(
a
)
−

1
,k
s 2
(
a
)
)
,
s
,
s
H

)
(s

(a
) (

k
s 1
(
a
)
,k
s 2
(
a
)
)
,
s
V
,
s
H

)

(s
(a

) (
0
,k
s 2
(
a
)
−

1
)
,
s
,
s
)

(s
(a

) (
k
s 1
(
a
)
,k
s 2
(
a
)
−

1
)
,
s
V
,
s
)

. . .
(s

(a
) (
i
,j

)
,
s
,
s
)

{ 1
≤
i
≤
k
s 1
(a

)
−

1
1
≤
j
≤
k
s 2
(a

)
−

1

. . .

(s
(a

) (
0
,1

)
,
s
,
s
)

(s
(a

) (
k
s 1
(
a
)
,1

)
,
s
V
,
s
)

(s
(a

) (
0
,0

)
,
s
,
s
)

(s
(a

) (
1
,0

)
,
s
,
s
)

.
.
.

(s
(a

) (
k
s 1
(
a
)
−

1
,0

)
,
s
,
s
)

(s
(a

) (
k
s 1
(
a
)
,0

)
,
s
V
,
s
)

(•
,s

3
,s

3
)

s̃
2
7−→

(◦
,s

2
,s

3
)

(◦
,s

3
,s

3
)

(•
,s

2
,s

2
)

(◦
,s

3
,s

2
)

s̃
1
7−→

(◦
,s

1
,s

3
)

(◦
,s

2
,s

3
)

(◦
,s

1
,s

3
)

(◦
,s

3
,s

3
)

(◦
,s

1
,s

1
)

(◦
,s

2
,s

1
)

(◦
,s

1
,s

1
)

(◦
,s

3
,s

1
)

(◦
,s

1
,s

2
)

(◦
,s

2
,s

2
)

(◦
,s

1
,s

2
)

(◦
,s

3
,s

2
)

(•
,s

1
,s

1
)

(◦
,s

2
,s

1
)

(◦
,s

1
,s

1
)

(◦
,s

3
,s

1
)

s̃
0
7−→

(•
,
s
0
,
s
3
)

(•
,
s
0
,
s
3
)

(•
,
s
1
,
s
3
)

(•
,
s
0
,
s
3
)

(•
,
s
0
,
s
3
)

(•
,
s
2
,
s
3
)

(•
,
s
0
,
s
3
)

(•
,
s
0
,
s
3
)

(•
,
s
1
,
s
3
)

(•
,
s
0
,
s
3
)

(•
,
s
0
,
s
3
)

(•
,
s
3
,
s
3
)

(•
,
s
0
,
s
0
)

(•
,
s
0
,
s
0
)

(•
,
s
1
,
s
0
)

(•
,
s
0
,
s
0
)

(•
,
s
0
,
s
0
)

(•
,
s
2
,
s
0
)

(•
,
s
0
,
s
0
)

(•
,
s
0
,
s
0
)

(•
,
s
1
,
s
0
)

(•
,
s
0
,
s
0
)

(•
,
s
0
,
s
0
)

(•
,
s
3
,
s
0
)

(◦
,
s
0
,
s
0
)

(◦
,
s
0
,
s
0
)

(◦
,
s
1
,
s
0
)

(◦
,
s
0
,
s
0
)

(◦
,
s
0
,
s
0
)

(◦
,
s
2
,
s
0
)

(◦
,
s
0
,
s
0
)

(◦
,
s
0
,
s
0
)

(◦
,
s
1
,
s
0
)

(◦
,
s
0
,
s
0
)

(◦
,
s
0
,
s
0
)

(◦
,
s
3
,
s
0
)

(•
,
s
0
,
s
1
)

(•
,
s
0
,
s
1
)

(•
,
s
1
,
s
1
)

(•
,
s
0
,
s
1
)

(•
,
s
0
,
s
1
)

(•
,
s
2
,
s
1
)

(•
,
s
0
,
s
1
)

(•
,
s
0
,
s
1
)

(•
,
s
1
,
s
1
)

(•
,
s
0
,
s
1
)

(•
,
s
0
,
s
1
)

(•
,
s
3
,
s
1
)

(•
,
s
0
,
s
0
)

(•
,
s
0
,
s
0
)

(•
,
s
1
,
s
0
)

(•
,
s
0
,
s
0
)

(•
,
s
0
,
s
0
)

(•
,
s
2
,
s
0
)

(•
,
s
0
,
s
0
)

(•
,
s
0
,
s
0
)

(•
,
s
1
,
s
0
)

(•
,
s
0
,
s
0
)

(•
,
s
0
,
s
0
)

(•
,
s
3
,
s
0
)

(◦
,
s
0
,
s
0
)

(◦
,
s
0
,
s
0
)

(◦
,
s
1
,
s
0
)

(◦
,
s
0
,
s
0
)

(◦
,
s
0
,
s
0
)

(◦
,
s
2
,
s
0
)

(◦
,
s
0
,
s
0
)

(◦
,
s
0
,
s
0
)

(◦
,
s
1
,
s
0
)

(◦
,
s
0
,
s
0
)

(◦
,
s
0
,
s
0
)

(◦
,
s
3
,
s
0
)

(•
,
s
0
,
s
2
)

(•
,
s
0
,
s
2
)

(•
,
s
1
,
s
2
)

(•
,
s
0
,
s
2
)

(•
,
s
0
,
s
2
)

(•
,
s
2
,
s
2
)

(•
,
s
0
,
s
2
)

(•
,
s
0
,
s
2
)

(•
,
s
1
,
s
2
)

(•
,
s
0
,
s
2
)

(•
,
s
0
,
s
2
)

(•
,
s
3
,
s
2
)

(•
,
s
0
,
s
0
)

(•
,
s
0
,
s
0
)

(•
,
s
1
,
s
0
)

(•
,
s
0
,
s
0
)

(•
,
s
0
,
s
0
)

(•
,
s
2
,
s
0
)

(•
,
s
0
,
s
0
)

(•
,
s
0
,
s
0
)

(•
,
s
1
,
s
0
)

(•
,
s
0
,
s
0
)

(•
,
s
0
,
s
0
)

(•
,
s
3
,
s
0
)

(◦
,
s
0
,
s
0
)

(◦
,
s
0
,
s
0
)

(◦
,
s
1
,
s
0
)

(◦
,
s
0
,
s
0
)

(◦
,
s
0
,
s
0
)

(◦
,
s
2
,
s
0
)

(◦
,
s
0
,
s
0
)

(◦
,
s
0
,
s
0
)

(◦
,
s
1
,
s
0
)

(◦
,
s
0
,
s
0
)

(◦
,
s
0
,
s
0
)

(◦
,
s
3
,
s
0
)

(◦
,
s
0
,
s
1
)

(◦
,
s
0
,
s
1
)

(◦
,
s
1
,
s
1
)

(•
,
s
0
,
s
1
)

(•
,
s
0
,
s
1
)

(•
,
s
2
,
s
1
)

(•
,
s
0
,
s
1
)

(•
,
s
0
,
s
1
)

(•
,
s
1
,
s
1
)

(•
,
s
0
,
s
1
)

(•
,
s
0
,
s
1
)

(•
,
s
3
,
s
1
)

(◦
,
s
0
,
s
0
)

(◦
,
s
0
,
s
0
)

(◦
,
s
1
,
s
0
)

(•
,
s
0
,
s
0
)

(•
,
s
0
,
s
0
)

(•
,
s
2
,
s
0
)

(•
,
s
0
,
s
0
)

(•
,
s
0
,
s
0
)

(•
,
s
1
,
s
0
)

(•
,
s
0
,
s
0
)

(•
,
s
0
,
s
0
)

(•
,
s
3
,
s
0
)

(•
,
s
0
,
s
0
)

(•
,
s
0
,
s
0
)

(•
,
s
1
,
s
0
)

(◦
,
s
0
,
s
0
)

(◦
,
s
0
,
s
0
)

(◦
,
s
2
,
s
0
)

(◦
,
s
0
,
s
0
)

(◦
,
s
0
,
s
0
)

(◦
,
s
1
,
s
0
)

(◦
,
s
0
,
s
0
)

(◦
,
s
0
,
s
0
)

(◦
,
s
3
,
s
0
)

Figure 5. On the left the definition of new substitutions s̃. On the right an example.
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Σ = SAZ×{0} (πΣ (TΣ)) .

Note that the fact that d ≥ 2 is crucial here, since the previous statement is
not true for d = 1.

If we consider a configuration of the subshift T
S̃

defined in Section 2.4,
any substitution that appears in the set S may be chosen, provided it is still
compatible with the configuration. But on each level, different substitutions
may appear, which does not fit the definition of an S-adic subshift. To solve this
problem we synchronize substitutions so that the same substitution is everywhere
consistently used on a given level. To do that we need to ensure that for any
configuration x ∈ T

S̃
, the same substitution appears in πV (x) on each row

(resp. in πH(x) on each column). This can be enforced by local rules, and we

thus define the subshift T̃
S̃

in the following way :

T̃
S̃

=
{
x ∈ T

S̃
: ∀(i, j) ∈ Z2, πH(x)(i,j) = πH(x)(i,j+1) and πV (x)(i,j) = πV (x)(i+1,j)

}
.

Obviously T̃
S̃
⊂ T

S̃
, and local rules added in T̃

S̃
ensure that substitutions

applied on a given level are synchronized. Moreover these local rules do not
impose more constraints on the substitutions: every sequence of substitutions

S̃ ∈ S̃ N can be obtained. We deduce that

T̃
S̃

=
⋃

S̃∈S̃ N

TS̃ ⊂ T
S̃

Finally we consider

TFinal =
{

(x, s) ∈ T̃
S̃
×TΣ : ∀(i, j) ∈ Z2, πV (x)(i,j) = πΣ(s)(i,j)

}
.

Thanks to Theorem 4, we know that the subshift T
S̃

is sofic, hence so is

T̃
S̃

since it is built by putting in more local rules into sofic subshift. Hence by
construction, TFinal is a sofic subshift. Consider the letter-to-letter factor map

πFinal : TFinal → A′Z
2

which keeps the letters of A′.
Claim 3: πFinal (TFinal) = TS̃.

Proof: Given a configuration x ∈ TS̃, it is easy to construct a corresponding
element in TFinal.

Reciprocally, suppose you are given a configuration xFinal ∈ TFinal. Replacing
substitutions in S by composition of two substitutions of S if necessary, we

assume that for all s ∈ S and all a ∈ A, k
(s)
1 (a),k

(s)
2 (a) ≥ 2. First the T̃

S̃
part

of xFinal ensures that πFinal(xFinal) is an element of one TS̃′ for some S̃′ ∈ S̃ N.

Secondly the condition that links the T̃
S̃

part with the TΣ part certifies that
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S′ ∈ S: all substitutions are periodically repeated, but substitution s0 is the

only one which is repeated at least twice systematically – since k
(s)
1 ,k

(s)
2 ≥ 2.

If we apply the same reasoning to a pre-image of xFinal by s0, we can find s1

and so on. At steep n, the words s0s1 . . . sn verifies [s0s1 . . . sn]∩S 6= ∅ and we
can find a pre-image of each patterns of xFinal by s0s1 . . . sn. 3 Claim 3

�

4. On the sequences of substitutions defining S-adic
subshifts that are effective

In Section 3 we proved that effective S-adic subshifts are sofic. A natural
question would be to wonder what conditions are imposed on the set of S-adic
sequences of substitutions that defines an S-adic subshift known to be effective.
We present here a reciprocal statement to Theorem 5.

Theorem 6. Let S be a finite set of substitutions and let S ⊆ S N be a closed
subset of S-adic sequences. If the S-adic subshift TS is non-empty and effective
(and in particular if TS is sofic) then S is effectively closed.

P r o o f. We describe an effective procedure that computes a sequence of words
(wn)n∈N on the alphabet S such that S ∈ S if and only if S[0,|wn|−1] 6= wn for
all n ∈ N. This procedure runs forever and produces successively some words
wn ∈ S ∗. The procedure is divided into different steps. For every integer n, the
nth step consists in rejecting some words w ∈ S ∗ of length |w| = n such that
no sequence in S starts with w. The principle is to obtain the subshift TS by
approaching it with a decreasing sequence of SFT that contains it.

For every integer n, the nth step of the algorithm computes F the n first for-
bidden patterns produced by the Turing machine M which defines the effective
subshift in view to produce the set P of all patterns of size [−kn, kn]d, where
k is the maximal size of the pattern of the substitution, where no pattern of
F appears. Then for all w ∈ Sm with m ≤ n and a ∈ A the algorithm check
whether ŵ(a) appears in the center of an element of P. If not, the word w is
returned by the procedure. Algorithm 1 describes this procedure.

Clearly if a word w is rejected by Algorithm 1 then it is not in the begging of

an element S ∈ S since no pattern of TS contains the pattern ŵ(a) = Ŝ[0,|w|−1](a)
for a ∈ A. The next Claim proof the reciprocal.

Claim 1: Let w = s0 . . . sm ∈ Sm+1. If S[0;k] 6= w for S ∈ TS then Algorithm 1
rejects w in finite time.
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Algorithm 1: Compute forbidden beginnings for sequences in S

n← 0, F ← ∅, N ← 1, P ← ∅;
k ← max

s∈S ,a∈A,1≤l≤d
k

(s)
l (a);

while n ≥ 0 do
F ← n first forbidden patterns of TS produced by M;

N ← kn;

P ← all patterns with support [−N,N ]d that do not contain any f ∈ F ;

for each s0 . . . sm ∈ Sm+1 with m+ 1 ≤ n do
for each a ∈ A do

if ∀p ∈ P, s0 ◦ · · · ◦ sm(a) does not appear in the center of p
then

Reject the word s0 . . . sm;

n← n+ 1;

Proof: Suppose that the Algorithm 1 does not reject w = s0 . . . sk. Then for every
integer n, there exists a pattern p ∈ P with support [−kn, kn] and a letter a ∈ A
such that the pattern s0◦· · ·◦sk(a) appears in the center of p. By a compactness
argument we get a configuration x ∈ TS such that x = s0 ◦ · · · ◦ sk(y) for some
other configuration y. Since S is effectively closed, it imposes the existence of
a sequence S in S such that S[0;k] = w which is a contradiction. 3 Claim 1

Claim 1 suffices to conclude the proof, thus Theorem 6 holds.

�
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[Pan84] J.-J. Pansiot. Complexité des facteurs des mots infinis engendrés par morphismes
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