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Abstract Topological dynamics of cellular automata (CA), inherited from classical
dynamical systems theory, has been essentially studied in dimension 1. This paper
focuses on higher dimensional CA and aims at showing that the situation is differ-
ent and more complex starting from dimension 2. The main results are the existence
of non sensitive CA without equicontinuous points, the non-recursivity of sensitiv-
ity constants, the existence of CA having only non-recursive equicontinuous points
and the existence of CA having only countably many equicontinuous points. They all
show a difference between dimension 1 and higher dimensions. Thanks to these new
constructions, we also extend undecidability results concerning topological classifi-
cation previously obtained in the 1D case. Finally, we show that the set of sensitive
CA is only 1'[8 in dimension 1, but becomes ES—hard for dimension 3.

Keywords Multidimensional cellular automata - Topological dynamics -
Complexity of decision problem

1 Introduction

Cellular automata were introduced by J. von Neumann as a simple formal model
of cellular growth and replication. They consist in a discrete lattice of finite-state
machines, called cells, which evolve uniformly and synchronously according to a
local rule depending only on a finite number of neighbouring cells. A snapshot of
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the states of the cells at some time of the evolution is called a configuration, and a
cellular automaton can be view as a global action on the set of configurations.

Despite the apparent simplicity of their definition, cellular automata can have very
complex behaviours. One way to try to understand this complexity is to endow the
space of configurations with a topology and consider cellular automata as classical
dynamical systems. With such a point of view, one can use well-tried tools from
dynamical system theory like the notion of sensitivity to initial condition or the notion
of equicontinuous point.

This approach has been followed essentially in the case of one-dimensional cel-
lular automata. P. Kdrka has shown in [10] that 1D cellular automata are partitioned
into two classes:

— &qu, the set of cellular automata with equicontinuous points,
— Sens, the set of sensitive cellular automata.

We stress that this partition result is false in general for classical (continuous) dy-
namical systems. Thus, it is natural to ask whether this result holds for the model of
CA in any dimension, or if it is a “miracle” or an “anomaly” of the one-dimensional
case due to the strong constraints on information propagation in this particular set-
ting. One of the main contributions of this paper is to show that this is an anomaly of
the 1D case (Sect. 3): there exist a class N of 2D CA which are neither in £, nor in
Sens~

Each of the sets &, and Se,s has an extremal sub-class: equicontinuous and ex-
pansive cellular automata (respectively). This allows to classify cellular automata in
four classes according to the degree of sensitivity to initial conditions. The dynamical
properties involved in this classification have been intensively studied in the litera-
ture for 1D cellular automata (see for instance [3, 4, 6, 10]). Moreover, in [5], the
undecidability of this classification is proved, except for the expansivity class whose
decidability remains an open problem.

In this paper, we focus on 2D CA and we are particularly interested in differences
from the 1D case. As said above, we will prove in Sect. 3 that there is a fundamental
difference with respect to the topological dynamics classification, but we will also
adopt a computational complexity point of view and show that some properties or
parameters which are computable in 1D are non recursive in 2D (Propositions 8 and 9
of Sect. 5). To our knowledge, only few dimension-sensitive undecidability results
are known for CA [2, 9]. However, we believe that such subtle differences are of
great importance in a field where the common belief is that everything interesting is
undecidable.

Moreover, we establish in Sect. 5 several complexity lower bounds on the classes
defined above and extend the undecidability result of [5] to dimension 2. Notably, we
show that each of the class &, S,ns and N is neither recursively enumerable, nor
co-recursively enumerable. This gives new examples of “natural” properties of CA
that are harder than the classical problems like reversibility, surjectivity or nilpotency
(which are all r.e. or co-r.e.).

Finally, we show two additional results advocating the importance of dimension in
topological dynamics: first, there are 2D CA having only a countable set of equicon-
tinuous points and, second, the set of sensitive CA raises from Hg in dimension 1 to
E?—complete in dimension 3. These results improve [13].
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2 Definitions

Let A be a finite set and M = Z¢ (for the d-dimensional case). We consider AM, the
configuration space of M-indexed sequences in .A.

If A is endowed with the discrete topology, AM is compact, perfect and totally
disconnected in the product topology. Moreover one can define a metric on AM com-
patible with this topology:

Vx,y € AM, de(x,y) = 2*mi“{||i”oo:xi?é)ﬁ iEM}.

Let U c M. For x € AM, denote xyy € AV the restriction of x to U. Let U ¢ M
be a finite subset, X is a subshift of finite type of order U if there exists F ¢ AY
such that x € X' <= x,,,+.u € F Vm € M. In other word, ¥ can be viewed as a tiling
where the allowed patterns are in F.

In this paper, we will consider tile sets and ask whether they can tile the plane or
not. In our formalism, a tile set is a subshift of finite type: a set of states (the tiles)
given together with a set of allowed patterns (the tiling constraints).

A cellular automaton (CA) is a pair (AM, F) where F : AM — AM is defined
by F(x)(m) = f((x(m + u))yev) for all x € AM and m € M where UC Z is a
finite set named neighbourhood and f : AV — A is a local rule. The radius of F is
r(F) =max{||u|l« : u € U}. By Hedlund’s theorem [8], it is equivalent to say that F’
is a continuous function which commutes with the shift (i.e. 6™ o F = F o ™ for all
m € M).

We recall here general definitions of topological dynamics used all along the arti-
cle. Let (X, d) be a metric space and F : X — X be a continuous function.

e x € X is an equicontinuous point if for all ¢ > 0, there exists § > 0, such that for
allye X,if d(x,y) <8 then d(F"(x), F"(y)) <¢e foralln € N.

o (X, F) is sensitive if there exists € > 0 such that for all § > 0 and x € X, there
exists y € X and n € N such that d(x, y) < § and d(F" (x), F"(y)) > €.

In the definition above about properties of topological dynamics, the dimension
of the cellular automaton considered do not appear explicitly. Whereas essentially
studied in dimension 1 in the literature, the present paper consider those properties
in any dimension. A first (trivial) approach to study topological dynamics properties
according to dimension is given by the following proposition through the notion of
canonical lift from dimension d to dimension d + 1. The canonical lift of a CA of
dimension d with neighbourhood U and local rule f is the CA of dimension d + 1,
of local rule f and of neighbourhood U’ obtained by adding a coordinate equal to 0
to each vector of U.

Proposition 1 Let F be a CA of dimension d and let F1 be its canonical lift to
dimension d + 1. Then we have the following:

— F has equicontinuous points if and only if F' has equicontinuous points;
— F is sensitive to initial conditions if and only if F' is sensitive to initial conditions.

Proof Straightforward. O
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This proposition essentially says that what can be “seen” in dimension d (concern-
ing some topological dynamics properties) can also be “seen” in dimension d + 1.
One of the main point of the present paper is to show that the converse is false: some
behaviours cannot be “seen” in low-dimensional cellular automata.

3 The Core Construction

In this section, we will construct a 2D CA which has no equicontinuous point and
is not sensitive to initial conditions. This is in contrast with dimension 1 where any
non-sensitive CA must have equicontinuous points as shown in [10] (such differences
according to dimension will be further discussed in Sect. 5).

The CA (denoted by F in the following) is made of two components:

— asolid component (almost static) for which only finite type conditions are checked
and corrections are made locally;

— a liqguid component whose overall behaviour is to infiltrate the solid component
and allow some particles to move left and to bypass solid obstacles.

The general behaviour of this cellular automaton can be seen as an ero-
sion/infiltration process. States from the solid component can be turned into liquid
state according to certain local conditions but the converse is impossible. Therefore
the set of solid states is decreasing (erosion process) until some particular kind of
configuration is reached (erosion result). Then, in such configurations, the particles
can bypass any sequence of obstacles and reach any liquid position (infiltration).

3.1 Definition

Formally, F has a Moore’s neighbourhood of radius 2 (25 neighbours) and a state
set A with 12 elements : A={U, D,0,1,|,%, <, —,./,\,,\, /'} where the
subset S ={1, |, 1, <, —, ./, \, \, '} corresponds to the solid component and
L ={U, D, 0} to the liquid component where 0 should be thought as the substratum
where particles made of elementary constituents U and D can move.

Let X's be the subshift of finite type of A defined by the set of allowed patterns
constituted by all the 3 x 3 patterns appearing in the following set of finite configu-
rations:

L L LLLLLLLCL
L LLLLLLLLEZL
LLLNV VIV LL
L L L1 1 1 <LL
L L L1 1 1<LL
L L L1 1 1< LL
LLcL/ 11 1rNLL
L LLLLLLLLCL
L LLLLLLLLEL

Intuitively, X's defines the ‘admissible’ solid obstacles, i.e. solid shapes that are
stable and no longer eroded in a liquid environment.
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Fig. 1 A particle separating
into two parts (U and D) to
bypass a solid obstacle (the
black region)

The local transition function of F can be sketched as follows:

— states from S are turned into 0’s if finite type conditions defining ¥'s are violated
locally and left unchanged in any other case;

— states U and D behave like a left-moving particle when U is just above D in a
background of 0’s, and they separate to bypass solid obstacles, U going over and D
going under, until they meet at the opposite position and recompose a left-moving
particle (see Fig. 1).

A precise definition of the local transition function of F is the following:

1. if the neighbourhood (5 x 5 cells) forms a pattern forbidden in X'g, then turn into
state 0;

2. else, apply (if possible) one of the transition rules depending only on the 3 x 3
neighbourhood detailed in Fig. 2;

3. in any other case, turn into state 0.

Note for instance, that any solid state surrounded by a valid neighbourhood is left
unchanged by F (second case of the definition above apply since the 3 first transitions
of Fig. 2 include all possible valid 3 x 3 neighbourhoods seen by a solid state).

3.2 Erosion and Infiltration

A configuration x is said to be finite if the set {z : x(z) # 0} is finite. The next lemma
shows that X' g attracts any finite configuration under the action of F. Moreover, after
some time, all particles are on the left of the finite solid part.

Lemma 1 (Erosion process) For any finite configuration x, there exists ty such that
Vt>1y: Fl(x) € Xs and, in F'(x), any occurrence of U or D is on the left of any
occurrence of any state from S.

Proof First, the set {z : x(z) € S} is finite and decreasing under the action of F'. More-
over, U and D states can only move left, or move vertically or disappear. Since the
total amount of vertical moves for U and D states is bounded by the cardinal of
{z:x(z) € S}, there is a time ¢ after which all U or D state are on the left of all
occurrences of states from S, and each U is above a D in a 0 background (the U D
particle is on the left of the finite non-0 region). From this time on, the evolution of
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~ ~
L L S S
reS L — T, S reS L — T, S r€eS S — T,
S S S
Qor S 0 0 0 0 0 0 0 0
S 0 — U, 0 — U, U — U,
S U 0 S U 0 S S |DorS
0 0 0 0 U |OorS 0 U
0 0 U —U, 0 0 S U, 0 0 — U,
0 Oor S S 0 0 S 0 0
S D 0 S D 0 S S |UorS
S 0 0 D, 0 0 D, D D,
Oor S 0 0 0 0 0 0 0 0
0 |[QorS| S 0 0 S 0 0
0 0 — D, 0 0 S =D, 0 0 S —D
0 0 0 0 D |(O0orS 0 D S
QorS|{0orS| U OQorS|0orS|0or S
Oor S 0 D D, Oor S 0 U —U
QorS|(0orS|0or S QorS|0orS| D

Fig. 2 Part of the transition rule of F (curved arrows mean that the transition is the same for any rotation
of the neighbourhood pattern by an angle multiple of 77/2)

cells in a state of S is governed only by the first case of the definition of F. There-
fore, after a certain time, finite type conditions defining X' are verified everywhere.
To conclude, it is easy to check that X's is stable under the action of F'. O

The following lemma states that finite configurations from X's consist of rectan-
gle obstacles inside a liquid background. Moreover, obstacles are spaced enough to
ensure that any position “sees” at most one obstacle in its 3 x 3 neighbourhood.

In the sequel we use notation South(-), East(-), West(-), North(-) for the
elementary translations in Z2.

Lemma 2 (Erosion result) Let x € Xs be a finite configuration. Then the set
X ={z €7Z?:x(z) € S} is a union of disjoint rectangles which are pairwise spaced

by at least 2 cells.
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Fig. 3 Definition of the path
(zn)n in the presence of
obstacles

Proof Straightforward from definition of Xg. O

An obstacle is a (finite) rectangular region of states from S surrounded by liquid
states.

The following lemma establishes the key property of the dynamics of F': particles
can reach any liquid position inside a finite field of obstacles from arbitrarily far away
from the field.

Lemma 3 (Infiltration) Let x € X5 be a finite configuration. For any zo € Z* such
that x(zp) = O there exists a path (z,) such that:

L. |Iznllooc — 00

2. 3ng, Vn > ng, if x, is the configuration obtained from x by adding a particle at
position z,, (precisely, x,,(z,) = U and x,,(South(z,)) = D) then (F" (x,))(z0) €
{U, D}.

Proof First, we suppose that x € X¥g N ({0} US)ZZ. Since x € X'g and x(z9) = 0,
then either x(South(zg)) = 0 or x(North(zg)) = 0 by Lemma 2. We will consider
only the first case since the proof for the second one is similar. Let (z,,) be the path
starting from z( defined as follows:

— If x(East(zy)) =0and x(South(East(z,))) =0 then z,+1 = East(zy).

— Else, position East(z,) and/or position South(East(z,)) belongs to an obstacle
P. Let a, b and c be the positions of the upper-left, upper-right and lower-right
outside corners of P and let p be its half perimeter. Then define z, 1, ..., Zntpt1
to be the sequence of positions made of (see Fig. 3):

— a (possibly empty) vertical segment from z, to a,

— the segment [a; b],

— a(possibly empty) vertical segment from b to z,,4 p+1 Where z,4 1 is the point
on [b; c] such that z,a + bzpy py1 = be.

@ Springer



700 Theory Comput Syst (2011) 48: 693-714

We claim that the path (z,) constructed above has the properties of the lemma. In-
deed, one can check that for each case of the inductive construction of a point z,,
from a point z,, we have:

= llzmlloo > llznllcos

— F™ " (x)(20) = U and F™~"(x,,)(South(z,)) = D.

The lemma is thus proved for x € X5 N ({0} US)Zz. It extends to any finite
x € Y5 because in such a configuration Lemma | ensures that after some time 7y
all occurrences of U and D are on the left of zp, whereas the path constructed above
is on the right of zo. More precisely, if x” is the configuration obtained from x by
replacing any liquid state by 0, and if (z,), is the path constructed for x’, then the
path (2;)+,)x fulfills the requirements of the lemma for x. g

3.3 Topological Dynamics Properties

The possibility to form arbitrarily large obstacles prevents F from being sensitive to
initial conditions.

Proposition 2 F is not sensitive to initial conditions.

Proof Let ¢ > 0. Let ¢, be the configuration everywhere equal to O except in the
square region of side 2[—loge] around the center where there is a valid obstacle.
Vy € AZZ, if d(y,ce) <e/4 then Vt >0, d(F'(c), F'(y)) < & since a well-formed
obstacle (precisely, a partial configuration that would form a valid obstacle when
completed by 0 everywhere) is unalterable for F provided it is surrounded by states
in L (see the 3 first transition rules of case 2 in the definition of the local rule): this is
guarantied for y by the condition d(y, ¢;) < ¢/4. g

The erosion and infiltration process described above ensures that particles can cir-
culate everywhere in the liquid part of finite configurations. This is the key ingredient
of the following proposition.

Proposition 3 F has no equicontinuous points.

Proof Assume F has an equicontinuous point, precisely a point x which verifies
Ve>0,38:Vy,d(x,y) <8§=Vt,d(F'(x), F'(y)) <e.

Suppose that there is zo such that x(z9) =0 and let e = 2~ lzolleo=1 "We will show
that the hypothesis of x being an equicontinuous point is violated for this partic-
ular choice of ¢. Consider any § > 0 and let y be the configuration everywhere
equal to O except in the central region of radius —log[§] where it is identical to
x. Since y is finite, there exists fo such that y, = F0(y) € X g (by Lemma 1). More-
over, Lemma 1 guaranties that for any positive integer , F'(y+)(zo) = x(z0) = 0.
Applying Lemma 3 on y; and position zg, we get the existence of a path (z,)
allowing particles placed arbitrarily far away from z( to reach the position z¢ af-
ter a certain time. For any sufficiently large n, we construct a configuration y’ ob-
tained from y by adding a particle at position z,,. By the property of (z,), we have:
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F"(y)(z0) # F"(y')(z0) and therefore d(F"(y), F"(y')) > ¢. Since, if n > —log[§7,
both y and y’ are in the ball of center x and radius 8, we have the desired contradic-
tion.

Assume now that Vz, x(z) € S. There must exist some position zg such that
x(zo) € S\ {1} (it is straightforward to check that the uniform configuration every-
where equal to 1 is not an equicontinuous point). It follows from the definition of ¥'g
that zo belongs to a forbidden pattern for X's (any solid state different from 1 must
have a liquid state in its neighbourhood). Therefore F (x)(z9) = 0 and we can use the
reasoning of the previous case of this proof on configuration F (x).

Finally, if Vz, x(z) # 0 and 3z, x(z9) € {U, D} then necessarily F(x)(z9) = 0 and
the first reasoning of the proof can be applied. g

4 Variations
4.1 Adding Wang Tile Constraints

The first variation on F' we consider is to add some tiling constraints to the solid
component.

More precisely, for any tile set 7, we define a 2D CA F; which is identical to F
except for the following modifications:

e the solid state 1 is replaced by the set 7 so that the state set of F; is A; =
{U,D,0,],1, <, —, ./, N\, \\, [/} Ut where the solid component is the sub-
set Sc={,1, <, =,/ '\, }U7 and the liquid component is also £ =
{U,D,0};

— the sub-shift of ‘admissible’ obstacles now becomes X'r ; defined by the set of
allowed patterns constituted by all the 3 x 3 patterns appearing in the following set
of finite configurations:

LLLLLLLLLEL
LLLLLLLLLEL
LLLNY IV LL
L L L—> T T T <= [ [
L L L—> T T T < [ [
L L L—> T T T < [, [
LLL/SY T INLL
LLLLLLLLLEL
LLLLLLLLLECL

with the additional condition that two adjacent cells in a state from 7 must fulfills
the tiling constraints involved in the tile set t.

The behaviour of F; is similar to that of F replacing X's by X' ;. More precisely:

1. if the neighbourhood (5 x 5 cells) forms a pattern forbidden in X'r ;, then turn
into state O;

2. else, apply (if possible) one of the transition rules depending only on the 3 x 3
neighbourhood detailed in Fig. 2 (replacing S by S;);
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3. in any other case, turn into state 0.

As for F, the erosion/infiltration mechanism prevents from any equicontinuous
point. Moreover the sensitivity to initial conditions of F; is controlled by the tile set
T as shown by the following proposition.

Proposition 4 Let T be any tile set. Then we have the following:

— F7 has no equicontinuous point;

— F is sensitive to initial conditions if and only if T does not tile the plane. Moreover,
in this case, the maximal sensitivity constant is an exponential function of n, where
n X n is the size of the largest admissible square tiling.

Proof Firstly, it follows from definition of F; that Lemmas 1, 2 and 3 as well as
Proposition 3 remain true. Indeed, considering any configuration x of F;, and any
t > 0, then we have

{z: Fl(x)(2) € S;} S {z: F'(x))(2) € S}

where x’ is the configuration of F obtained from x be replacing any occurrence of
states from 7 by 1.

Moreover, if T can tile the plane then it is possible to form arbitrarily large valid
obstacles, so F; is not sensitive to initial conditions (same reasoning as in Proposi-
tion 2). Conversely, if T cannot tile the plane, then there is n such that no valid tiling
of a 2n + 1) x (2n + 1) square exists. This implies that, in any configuration x of
F;, there is some zg with ||z ||oo < 7 such that either x(zg) € L, or F:(x)(z0) € L (20
corresponds to some error for X'z ;). Then, applying Lemma 3 to position zgp as in
the proof of Proposition 3, we have:

V8 >0,3y,3r>0:d(x,y) <§ and d(Fi(x), FL(y))>27".

Since the constant n is independent of the choice of the initial configuration x, we
have shown that F; is sensitive to initial conditions with sensitivity constant 27". [

4.2 Controlling Erosion

In this section, we define G, another variant of F, which has an overall similar be-
haviour but uses a different kind of obstacles and a different kind of erosion process
depending on a tile set 7. Obstacles are protected from liquid component by a bound-
ary as the classical obstacles of F, but they are made only of successive boundaries
like onion skins. Moreover, invalid patterns in the solid component do not provoke
the complete destruction of obstacles as in F'.

The solid component of G is the set R; = 7 x X where

Xz{l,,T,(—,—),/,\,\,/,J_}.

The liquid component is identical to that of F, precisely £ = {U, D, 0}.
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Fig. 4 Inside (white) and HEmm HEE

outside (black) positions for 1 RN T
states of X ]

The obstacle sub-shift X ; of G is defined by the set of allowed patterns consti-

tuted by all 3 x 3 patterns appearing in the following set of partial configurations:

L L L L LLLL

L LLRRRe L L
L LLRRR: L L
L L LRRR: L L

L LLLLLLL

with the additional conditions that the T component is a valid tiling and the X com-
ponent is made exclusively from the set of 2 x 2 patterns appearing in the following

partial configuration:

N\
- —
—

(.

1
N
—>
/

T

e T S e e
==/ TN« <«
2N

The X component is used to give to any cell inside a solid region a local notion of

inside and outside as depicted by Fig. 4 (up to 7 /2 rotations): arrows point to
inside region.
The behaviour of G- is precisely the following:

the

1. if the neighbourhood (5 x 5 cells) forms a pattern forbidden in X' ., then the state

is left unchanged except for the following cases where it turns into state O:

— if the cell is in a liquid state;
— if the inside region of the cell forms a forbidden pattern,
— the cell together with one of its neighbour forms a forbidden pattern

2. else, apply (if possible) one of the transition rules depending only on the 3 x 3

neighbourhood detailed in Fig. 2 (replacing S by R.);

3. in any other case, leave the state unchanged if it is solid and turn into O if it is

liquid.

As for F, a configuration is said finite if it contains only a finite number of cells in

a solid state.

Lemma 4 (Erosion result) Let T be any tile set. Let x € X ¢ be a finite configuration.
Then the set X = {z € Z* : x(z) € R+} is a union of disjoint squares with sides of odd
length containing the state ‘1’ at the center, and which are pairwise spaced by at

least 2 cells.
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Proof By definition of X ;, x is necessarily made of rectangular obstacles which
are pairwise spaced by at least 2 cells.

Moreover, the X component ensures that the border of any rectangular obstacle is
made as follows:

— only state — (resp. <—, | and 1) on the left (resp. right, top and bottom) side;
— only state \ (resp. ,/, \ and ) on the top-left (resp. top-right, bottom-right and
bottom-left) corner.

Remark that the X component requires that the sequence of state obtained by starting
from a corner and advancing in the corresponding diagonal direction is a succession
of identical diagonal arrows, then the state ‘1’ and then a sequence of opposite diag-
onal arrows. This implies that the obstacle is a square of odd side length and that the
state ‘L’ is in the center. O

From now on, we call valid obstacle for G, a n x n square (n odd) of solid states
with state ‘L’ in the center and forming a valid pattern of X ;.

Lemma 5 (Conservative erosion process) Let T be any tile set. For any finite config-
uration x we have the following:

1. there exists ty such that, vVt > tg, G’r(x) € Xg,; and, in G’T(x), any occurrence of
U or D is on the left of any occurrence of any state from Ry;

2. ifzo and n > 7, n odd, are such that x contains a valid n x n obstacle centered on
zo then YVt >0 G’,(x) contains the same valid (n —4) x (n —4) square obstacle
centered on 7

Proof The first part of this lemma follows by applying arguments of the proof of
Lemma 1 to G.. The only point to check is that given any forbidden pattern for X' ;
we have (straightforward from the definition of X ; and interior regions):

— either a pair of cells at distance at most 2, both in a solid state, and which form a
forbidden pattern by themselves,
— or a cell in a solid state whose inside region forms a forbidden pattern.

Thus, the number of cells in a solid state is guaranteed to decrease while the current
configuration is not in X' ;. Therefore X ; is reached in finite time (any configura-
tion without solid states belongs to X ;).

For the second part of the lemma, consider all cells z of the lattice such that
Iz — z0llco < % (i.e. cells belonging to the (n — 4) x (n — 4) square centered on
z0)- Initially, those cells have a valid neighbourhood so after one step, they all stay
in the same state. Therefore, by definition of a valid square obstacle, they all have a
valid interior region after one step. Moreover, in their exterior region, they all have
either valid solid states as in the initial step, or liquid states (if some cell at the bound-
ary of the n x n square has turned into state 0): in any case, by definition of exterior
regions, no such cell z has a cell in its neighbourhood to form a forbidden pattern
with. Therefore, all cells z stay unchanged after two step, and the reasoning can be
iterated forever. 0
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The infiltration lemma (Lemma 3 for F) remains true here, simply replacing X'g
by X, ;. Combined with the above lemmas, it implies the following proposition.

Proposition 5 Let t be any tile set. Then G is sensitive to initial conditions if T does
not tile the plane, and it admits equicontinuous points if t tiles the plane. Moreover,
in the latter case, any equicontinuous point has the following properties:

— it is made only of solid states;
— it contains exactly one occurrence of state ‘1,
— its T component forms a valid tiling.

Proof First, suppose that T cannot tile the plane. Then there exists n such that there
is no valid square tiling of size n x n. Using the same reasoning as in Proposition 4,
we deduce that G, is sensitive to initial conditions (because, by Lemma 5, after some
time a liquid state must appear at some position z with ||z||sc <7 and the infiltration
can be applied to that position).

Now suppose that 7 can tile the plane. Consider the configuration x made only of
solid states and such that:

— the T component is a valid tiling;
— the X component is made of state L is at position (0, 0) and completed everywhere
in a valid way.

Since any n x n square centered on position (0,0) is a valid square obstacle,
Lemma 5 shows that x is an equicontinuous point. Indeed, for any n and for any
configuration y having a valid n x n square obstacle centered on position (0, 0),
we have that the orbits of x and y under the action of G; coincide on the central
(n —4) x (n —4) part.

Finally, consider any equicontinuous point x of G. Using the reasoning of the
first part of this proof, we show that x contains only solid states and that its T com-
ponent forms a valid tiling. Moreover, suppose that the X component contain at least
2 occurrences of state ‘L’ and let n be such that 2 occurrences of ‘L’ are contained
in the n x n central square of x. By Lemmas 5 and 4, for any finite configuration y
identical to x on the central n x n region, there is some time after which some cell in
the central n x n region is in a liquid state (because no valid obstacle can contain two
occurrences of ‘1’). From that point, the infiltration argument can be applied, con-
tradicting the fact that x is an equicontinuous point. To conclude the proposition, it
remains the case where the configuration x considered contains no occurrence of ‘L’.
This case is treated as above, since valid square obstacles must contain an occurrence
of ‘L’ as stated by Lemma 4. g

4.3 Combining Two Solid Components
Our last variation, called H;, is a simple combination of F and G, (for any given

tile set 7). More precisely, it is the CA defined over state set SU R, U L with the
following behaviour:

— if the neighbour contains only states from S U £ then behave like F;
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Automaton | Solid component Behaviour
F S N
F; S Sons if T tiles, N else
G: R+ Equ if T tiles, Seyg €lse
H, R, US Equ if T tiles, N else

Fig. 5 Summary of constructions

— if the neighbour contains only states from R, U £ then behave like G;
— in any other case, turn into state 0.

Using what was previously established for F and G, we have the following
proposition for H.

Proposition 6 Let T be any tile set. Then H is not sensitive to initial conditions and
it admits equicontinuous points if and only if T tiles the plane.

Proof Since arbitrarily large obstacles of type S can be formed, the reasoning of the
proof of Proposition 2 can be applied here showing that H; is not sensitive to initial
conditions.

Moreover, any equicontinuous point of x of G, is an equicontinuous point of
H-. Indeed, for any n, any configuration y identical to x is the central n x n region
verifies that at any time ¢, the central n x n region of H!(y) is made only of states
from R, U L and is therefore governed by G;. Thus, the reasoning of Proposition 5
applies here. Hence, if t can tile the plane, then H; admits equicontinuous points.

Conversely, suppose that t cannot tile the plane. So H; has no equicontinuous
points in (R, U L)ZZ because it would be an equicontinuous point for G, thus con-
tradicting Proposition 5. Similarly, there cannot be equicontinuous point in (S U E)Z2
because it would contradict Proposition 3. Finally, a configuration x containing states
from both sets S and R, cannot be an equicontinuous point either because x or H;(x)
necessarily contains a liquid state and in such a case the infiltration argument can be
applied as in Proposition 3 (Lemmas 2, 1 and 3 are true for H;). g

5 Topological Classification Revisited

Equipped with the various constructions detailed above (see Fig. 5), we study in this
section the topological classification of P. Kiirka (put aside expansivity) for higher
dimensional cellular automata.

In [5], the authors give a recursive construction which produce either a 1D CA with
equicontinuous points or a 1D sensitive CA according to whether a Turing machine
halts on the empty input or not. By Proposition 1, we get the following result.

Proposition 7 For any dimension, the classes Seus and Eg, are recursively insep-

arable. Moreover, Sy is not recursively enumerable and Egy is not co-recursively
enumerable.
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However, this is not enough to establish the overall undecidability of the topo-
logical classification of 2D CA. The main concern of this section is to complete
Proposition 7 in order to prove a stronger and more complete undecidability result
summarised in the following theorem.

Theorem 1 For any dimension strictly greater than 1, we have the following:

— each of the classes Eqy, Sens and N is neither recursively enumerable nor co-
recursively enumerable;
— any pair of them is recursively inseparable.

Proof The proof of this theorem is made of 3 similar parts: each one gives the insep-
arability of two classes A and B among Seys, g, and N, as well as the non enumer-
ability of A and the non co-enumerability of B. The propositions focus on 2D cellular
automata but, by Proposition 1, results remain true for higher dimensions (because
the canonical lift from some CA F to F' is recursive). The 3 parts are proved in the
following way:

A =S85 and B =&y, this is Proposition 7 (our construction G, gives an alterna-
tive proof by Berger’s theorem).

A=N and B =S,,,: this follows by Berger’s theorem [1] (the set of tile sets which
can tile the plane is not recursively enumerable) and Proposition 4 since F; can
be recursively constructed from t.

A=E&y, and B=N" again since the set of tile sets that can tile the plane is not
recursively enumerable, this follows by Proposition 6. |

Besides complexity of decision problems, other differences appears between di-
mension 1 and higher dimensions. Let us first stress the dynamical consequence of
the construction of CA Fr. It is well-known that for any 1D sensitive CA of radius
r, 272 s always the maximal admissible sensitivity constant (see for instance [10]).
Thanks to the above construction it is easy to construct CA with tiny sensitivity con-
stants as shown by the following proposition.

Proposition 8 The (maximal admissible) sensitivity constant of sensitive 2D CA can-
not be recursively (lower-)bounded in the number of states and the neighbourhood
size.

Proof This follows directly from Proposition 4 since the size n of the largest n x n
valid tiling for a given tile set is not a recursive function of the tile set. g

To finish this section, we will discuss another difference between 1D and 2D con-
cerning the complexity of equicontinuous points. Let us first recall that equicontinu-
ous point in 1D CA can be generated by finite words often called “blocking” words.
A finite word u is blocking for some CA F if for any pair of configurations x and y
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both having pattern u in their center, we have:!
Vi>0,Vz:lzllo<r =  F'0)@)=F )

where r is the radius of F.

For any F with equicontinuous points, there exists a finite word u such tha
is an equicontinuous point for F (proof in [10]). The construction G, can be used
with the tile set of Myers [11] which can produce only non-recursive tilings of the
plane. Therefore the situation is more complex in 2D, and we have the following
proposition.

t Pu™>®

Proposition 9 For any dimension strictly greater than 1, there exists a CA having
equicontinuous points, but only non-recursive ones.

Proof By Proposition 5, any equicontinuous point of G is made solely of solid states
and its T component forms a valid tiling. Now consider the tile set o of Myers [11]:
it can tile the plane but only with non-recursive tilings. Therefore, by Proposition 5,
G+, admits equicontinuous points, but only non recursive ones. g

Remark 1 Since the construction G, enforces the apparition of a particular state (L)
in any equicontinuous point, we could have proved Proposition 9 using the simpler
tile set of Hanf [7], which produces only non-recursive tilings provided some fixed
tile is placed at the origin.

Any 1D CA with equicontinuous points, admits in fact uncountably many equicon-
tinuous points. Indeed, if u is a blocking word and if ¢ is any bi-infinite sequence of
0 or 1, then the configuration:

...C(—n).u...c(—l).u.c(o).u...c(n)...

is always an equicontinuous point. The next proposition shows that it is no longer the
case for higher dimensional CA.

Proposition 10 For any dimension strictly greater than 1, there exists a CA having
a countably infinite set of equicontinuous points.

Proof Let 1( be a trivial tile set (a single tile and no constraint). By Proposition 5,
G+, admits equicontinuous points which are all identical on their tiling component.
Moreover, it follows from definition of X 4, that if two equicontinuous points have
the state ‘L’ in the same position, then they are identical. Thus G, possesses only a
countable set of equicontinuous points and the proposition follows for dimension 2.

I'To simplify the definition, we require that the blocking word fixes the 2r + 1 central columns of the
space-time diagrams of any configuration having u in its center. In fact 2r columns would be enough (and
it is the standard definition) but it doesn’t change anything for our purpose since with our definition of
blocking word, we still have the property that a 1D CA admits equicontinuous points if and only if it has
a blocking word.
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For dimension 3 we will use a lifted version G ;. of G,: G is essentially a canon-
ical lift of G, with the additional condition that 2 cells whose coordinates differ by
1 only on the third dimension must be in the same state, otherwise they turn into state
0 whatever the 2D dynamics of G, says. By a straightforward adaptation of the rea-
soning of Proposition 5 we have the following: for any equicontinuous point of G 4,
the set of occurrences of states ‘L’ is exactly a line co-linear to the third dimension.
Therefore, by the same reasoning as above, we deduce that G has only a countable
set of equicontinuous points.

The lift arguments can be iterated and thus the proposition follows for any dimen-
sion. g

6 Complexity of Sensitivity According to Dimension

In this section, we study the complexity of the set of S,y from the point of view of
the arithmetical hierarchy. More precisely, we establish an upper bound in the 1D
case and a lower bound in the 3D case showing that the complexity of S,,s does vary
with dimension.

Proposition 11 For 1D cellular automata, the set Seps is 173 .

Proof As said above, a 1D CA is sensitive if and only if it does not possess any
blocking word [10]. Let F be a CA of radius r. Following the definition of blocking
words given in Sect. 5, the fact that F possesses a blocking word can be expressed as
follows:

Juvt R(u,t)

where R(u, t) is true if and only if for all #’ < r and all pair of configurations x and y
having u in their center, we have:

Viilzlo<r = F ()@ =F ().

R(u, t) is recursive since the checking involve only a finite part of the initial config-
uration (precisely the 2r (¢ 4+ 1) central cells). Hence, the set S, is characterised by
the 1'[3 predicate Vu3r =R (u, t). O

We will now give a hardness result for the set S5 in dimension 3. We will reduce
COFIN, the set of Turing machines halting on a co-finite set of inputs, to S, thus
proving that S5 is Z’g -hard (see [12] for the proof of Eg—completeness of COFIN).

We will use simulations of Turing machines by tile sets in the classical way (orig-
inally suggested by Wang [14]): the tiling represents the space-time diagram of the
computation and the transition rule of the Turing machine are converted into tiling
constraints. For technical reasons which will appear clearly in the proof of Lemma 6,
we slow down the computation (what can be done by a recursive modification of the
machine): the head takes 2 time steps to move 1 cell left or right. Moreover, the tile
sets we consider always contain some blank tile 8 (corresponding to a blank tape
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symbol of the Turing machine) and some special tile o used to initiate the computa-
tion, but no tile corresponding to a final state of the Turing machine. More precisely,
each tile set enforces the following:

— if some row contains «, it is of the form *°BawpB> where w is a sequence of non-
blank symbols which will be treated as input (at this point we can not enforce by
tiling constraint that w is finite);

— the tile on the right of & must represent the Turing head in its initial state reading
the first letter of the input.

Thus, each time a valid tiling contains «, we are guaranteed that it contains a valid
non-halting computation starting on some (potentially infinite) input.

The ith Turing machine in a standard enumeration is denoted by M; and to each
M; we associate a tile set 7; whose constraints ensure the simulation of M; as men-
tioned above, and which contains the special tiles «; and §; as described above.

We now describe the construction, for any Turing machine M;, of a cellular au-
tomaton /; which is sensitive to initial conditions if and only if M; € COFIN. It will
essentially consist in a lift to dimension 3 of a modified version of G. We first
describe this modified version, denoted G ;), which is a 2D CA.

The intuition is the following: we want that any equicontinuous point of G (;y con-
tains a valid non-halting computation of M; starting from a finite input. More pre-
cisely, we will define G ;) in such a way that any equicontinuous point has a valid
7;-tiling on some of its components, which contains an occurrence of the special state
«;, and which contains only a finite sequence of non blank symbols on the right of «;.

The definition of G ;) differ from that of G, only by the definition of the subshift
26,y - for G ;y this subshift becomes X;) defined as follows. A configuration x is in
Xy exactly when:

- Xx€ Xy

— «; is the only tile allowed in the tiling component of a state having its X component
equal to L;

— asolid state having a tile different from g; in its tiling component is not allowed to
be on the immediate left of a liquid state.

G ;) is built upon Xy exactly as G, is built upon X ;. Precisely, any cell of
G ;) behave like this:

1. if the neighbourhood (5 x 5 cells) forms a pattern forbidden in X;), then the state
is left unchanged except in the following cases where it turns into state O:

— if the cell is in a liquid state;
— if the inside region of the cell forms a forbidden pattern,
— the cell together with one of its neighbour forms a forbidden pattern

2. else, apply (if possible) one of the transition rules depending only on the 3 x 3
neighbourhood detailed in Fig. 2 (replacing S by R+, );

3. in any other case, leave the state unchanged if it is solid and turn into O if it is
liquid.

From this definition and the result already established for G, we easily get the
following lemma.
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Lemma 6 G is sensitive to initial conditions if M; halts on any input. Moreover,
if M; doesn’t halt on all inputs, then Gy admits equicontinuous points and each
equicontinuous point verifies the following:

— its tiling component forms a valid tiling for t;;

— it contains exactly one occurrence of the special tile o;;

— there is a finite sequence w of consecutive non-blank symbols on the right of «;,
therefore the tiling component simulates a valid non-halting computation of M,
starting on a finite input w.

Proof The modifications introduced in Gy (compared to G) concern only new
cases in which a solid state is turned into 0. Therefore, all necessary conditions about
equicontinuous points of G; (Proposition 5) apply here. Besides, if M; possesses a
non-halting input, it is easy to construct an equicontinuous point x which contains a
valid space-time diagram of a non-halting computation. The fact that the computation
is slow ensures that we can find arbitrarily large squares centered on the tile ¢; (and
the state L) without any non-blank on the right boundary of the square. With such
precautions, the conservative erosion apply here exactly as in the proof of Proposi-
tion 5.

Finally, since the definition of G implies that occurrences of L coincide with
occurrences of «;, the lemma follows from the following property: if a configuration
x of G ;) contains a cell having an infinite sequence of non-blank symbols on its right,
then it is not an equicontinuous point. This property follows from the definition of
Xy since, for any finite configuration sufficiently close to x, the non-blank symbols
allow liquid states to infiltrate towards a fixed position (after some time) and therefore
the usual technique of particle infiltration shows that x cannot be an equicontinuous
point. O

The 3-dimensional cellular automaton I; The idea is that on each horizontal plane
P.={(a,b,c):a,be Zz} of the space, I; generally behaves like G;y. However, I;
contains an additional 3D mechanism, whose role is to ensure that the non-halting
simulations done on successive planes start from different inputs of M;. I; contains
an additional component of states, called Z, that can take 3 values ‘+’, ‘=’ and
‘=" (the state set of I; is Q; x Z where Q; is the state set of G ;)). To describe the
local constraints on Z, we use notations South(-), North(-), East(-), West(-)
to describe relation between positions in the same horizontal plane, and Top(-) and
Bot(-) for the 3rd dimension:

— if the Z-component of acell z € 73 is ‘=" then it is also the case for cells East(z),
West(z), Top(z) and Bot(z);

— if the Z-component of a cell z € Z> is ‘4’ then it is also the case for cells
East(z), West(z) and Top(z), whereas North(z) and South(z) must have a
Z-component equal to ‘=";

— if the Z-component of a cell z € Z* is ‘—’ then it is also the case for cells
East(z), West(z) and Bot(z), whereas North(z) and South(z) must have a
Z-component equal to ‘=";
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North Top a; column

N Bi zone

N 1 or '’ I N .

__ 1

——— > East

Fig. 6 Two planar (simplified) views of a valid solid configuration

— if the tiling component of a cell z (in a solid state) is ¢; then its Z-component must
be either ‘+’ or ‘—’; moreover Top(z) and Bot(z) must also be in a solid state
with a tiling component equal to ‘o;’;

— if acell z in a solid state has its Z-component equal to ‘4’ and its tiling component
is i, then, if West(Bot(z)) has also its Z-component equal to ‘+’ and is also
solid, it must have its tiling component also equal to §;;

— ifacell z in a solid state has its Z-component equal to ‘—’ and its tiling component
is B;, then, if West(Top(z)) has also its Z-component equal to ‘+’ and is also
solid, it must have its tiling component also equal to S;.

The global result of those local conditions is illustrated by the following lemma.

Lemma 7 Let x be a purely solid configuration of I; such that, each horizontal plane
contains one occurrence of «; and a valid tiling, and all the previous local conditions
are verified. Then x has the following form:

— on each plane, all Z components are ‘=" except on an east/west line which con-
tains o;;

— all the occurrences of a; are aligned in a top/bottom columni;

— the space is made of a top half corresponding to planes P, having some state with
Z-component ‘4’ and a bottom half corresponding to planes P. having some state
with Z-component ‘—’;

— if a plane P. is in the top half and simulates M; on an input of length n, then for
any a > 0, the plane P, simulates M; on an input of length strictly greater than
n;

— similarly for the bottom half, the input length is strictly greater for plane P.—_,
than for plane P.

Proof Straightforward. g

I; is then defined as follows: if one of the previous local conditions is violated in
the neighbourhood of a cell in a solid state surrounded only by cells in a solid state,
then the cell turns into state (0, =), else it behaves according to G ;) depending only
on cells in the same plane.

Proposition 12 For dimension 3, the set Seps is Eg -hard.
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Proof We show that I; is sensitive to initial conditions if and only if M; admits an
infinite set of non-halting inputs, which yields a reduction from COFIN to Sey;.

First, it is easy to see that if M; has an infinite set of non-halting inputs, then an
equicontinuous point for I; can be build: given an infinite sequence of non-halting
inputs of different lengths, one can build a purely solid configuration, made of two
halves, each one corresponding to the sequence of valid simulations on each plane
for successive inputs, and respecting all the conditions on the Z component. It is
straightforward to check that such a configuration is an equicontinuous point.

Conversely, if x is an equicontinuous point for /; then each plane P, must be an
equicontinuous point for G;, when we forget the Z component. Indeed, the addi-
tional 3D conditions of I; never affect liquid states and can only turn a solid state into
state 0. Now, adding 3D constraints, we deduce by Lemmas 6 and 7 that M; must
have an infinite set of non-halting inputs. g

7 Future Work

In this paper, we adopted the classical framework of topological dynamics (which
does not explicitly refer to dimension) and studied how its application to cellular
automata may vary with dimension.

The first research direction opened by this paper is the study of new dynamical be-
haviour appearing in dimension 2 and more. Indeed, the mechanisms of information
propagation can no longer be explained by the presence of particular finite words
(blocking words in dimension 1). In this general direction, the following questions
seems particularly relevant to us:

— what kind of dynamics can be found in the class N'?

— what kind of 2D cellular automata can be built which are in &, and have a set of
equicontinuous points of full measure? can we characterise such CA?

— what happens when we restrict to reversible cellular automata? more generally to
surjective ones?

The second part of the paper concerns complexity of decision problems related
to topological dynamics properties. Our construction techniques allow to prove sev-
eral complexity lower bounds. However, upper bounds seems harder to establish. We
think the following questions are worth being investigated:

— what is the exact complexity of S, in 1D? is it [T,-complete or only at level 1 of
the arithmetical hierarchy?

— we believe that the set S, is in the arithmetical hierarchy for any dimension, but
we have no proof yet starting from dimension 2.

— can we generally implement “Turing-jumps” in the complexity of the problem we
consider when we increase dimension? or is there limitation coming from the na-
ture of the problem?

Finally, the various kind of sensitivity to dimension change we encountered, sug-
gest to consider those problems from of more general point of view by allowing the
lattice of cells to be any Cayley graph. Can we then characterise graphs for which
Sens and £y, are complementary classes? What can be said on the complexity of the
different classes of topological dynamics?
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