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Abstract. The µ-limit set of a cellular automaton is a subshift whose forbidden
patterns are exactly those, whose probabilities tend to zero as time tends to in-
finity. In this article, for a given subshift in a large class of subshifts, we propose
the construction of a cellular automaton which realizes this subshift as µ-limit set
where µ is the uniform Bernoulli measure.

1. Introduction
A cellular automaton is a complex system defined by a local rule which acts

synchronously and uniformly on the configuration space. These simple models have
a wide variety of different dynamical behaviors. More particularly it is interesting
to understand its behavior when it goes to infinity.

In the dynamical systems context, it is natural to study the limit set of a cellular
automaton, it is the set of configurations that can appear arbitrarily far in time.
This set captures the longterm behavior of the CA and has been widely studied since
the end of the 1980s. Given a cellular automaton, it is difficult to determine its limit
set. Indeed it is undecidable to know if it contains only one configuration [Kar92]
and more generally, every nontrivial property of limit sets is undecidable [Kar94].
An other problem consists to characterize which subshift can be obtained as limit
set of a cellular automaton. This was first studied in detail by Lyman Hurd [Hur87],
and important progress has been made [Maa95, FK07] but there is still no char-
acterization. The notion of limit set can be refined if we consider the notion of
attractor [Hur90a, K ‌ur03].

However, these topological notions do not correspond to the empirical point of
view where the initial configuration is chosen randomly, that is to say chosen accord-
ing a measure µ. That’s why the notion of µ-attractor is introduced by [Hur90b].
Like it is discussed in [KM00] with a lot of examples, this notion is not satisfactory
empirically and the authors introduce the notion of µ-limit set. A µ-limit set is
a subshift whose forbidden patterns are exactly those, whose probabilities tend to
zero as time tends to infinity. This set corresponds to the configurations which are
observed when a random configuration is iterated.
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As for limit sets, it is difficult to determine the µ-limit set of a given cellular
automaton, indeed it is already undecidable to know if it contains only one configu-
ration [BPT06]. However, in the literature, all µ-limit sets which can be found are
very simple (transitive subshifts of finite type). In this article, for every enumer-
able family (Σi)i∈N of subshifts generated by a generic configuration, we construct a
cellular automaton which realizes

⋃
i∈N Σi as µ-limit set. In particular all transitive

sofic subshifts can be realized. This show a strong difference with the limit set since
there are sofic subshifts as the even subshift (subshift on alphabet {0, 1} in which all
words 01k0 with odd k are forbidden) which cannot be realized as limit set [Maa95].

To construct a cellular automaton that realizes a given subshift as µ-limit set,
we begin to erase nearly all the information contained in a random configuration
thanks to counters (section 3). Then we produce segments, which are finite areas of
computation. On each segment we construct small parts of the generic configurations
of many subshifts, and as time passes, segments grow larger and every word of every
subshift appears often enough (section 5).

2. Definitions

2.1. Words and density

For a finite set Q called an alphabet, denote Q∗ =
⋃
n∈NQ the set of all finite

words over Q. The length of u = u1u2 . . . un is |u| = n. We denote QZ the set of
configurations over Q, which are mappings from Z to Q, and for c ∈ QZ, we denote
cz the image of z ∈ Z by c. For u ∈ Q∗ and 0 < i ≤ j ≤ |u|−1 we define the subword
u[i,j] = uiui+1 . . . uj; this definition can be extended to a configuration c ∈ QZ as
c[i,j] = cici+1 . . . cj for i, j ∈ Z with i ≤ j. The language of S ⊂ QZ is defined by

L(S) = {u ∈ Q∗ : ∃c ∈ QZ, ∃i ∈ Z such that u = c[i,i+|u|−1]}.
For every u ∈ Q∗ and i ∈ Z, we define the cylinder [u]i as the set of configurations

containing the word u in position i that is to say [u]i = {c ∈ QZ : c[i,i+|u|−1] = u}. If
the cylinder is at the position 0, we just denote it by [u].

For all u, v ∈ Q∗ define |u|v the number of occurences of v in u as:
|u|v = card{i ∈ [0, |u| − |v|] : u[i,i+|v|−1] = v}

For a configuration c ∈ QZ, the density dc(v) of a finite word v is:

dc(v) = lim sup
n→+∞

|c[−n,n]|v
2n+ 1− |v|

.

These definitions could be generalized, for a set of words W ⊂ Q∗, we note |u|W
and dc(W ).

Definition 2.1 (Normal configuration). A configuration is said to be normal for
an alphabet Q if all words of length n have the same density of apparition in the
configuration.
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2.2. Subshifts

We denote σ the shift map σ : QZ 7→ QZ defined by σ(c)i = ci−1. A subshift
is a closed, σ-invariant subset of QZ. It is well known that a subshift is completely
described by its language denoted L(Σ). Moreover, it is possible to define a subshift
by a set of its forbidden words which do not appear in the language.

As the shift invariance is preserved, intersections and closures of unions of sub-
shifts are still subshifts. And in particular, the union of a set (L(Σi))i of languages
describes the subshift that is the closure of the union of all subshifts:

⋃
i∈N Σi.

We are going to define some class of subshift. A sofic subshift is a subshift whose
language of forbidden words is rational, i.e. given by a finite automaton. A subshift
Σ is transitive if for all u, v ∈ L(Σ) there exists a word w such that uwv ∈ L(Σ).
Let s : Q → Q∗ be a primitive substitution (there exists k ∈ N such that for all
a, b ∈ Q a appears in sk(b)), the substitive subshift associated to s is the subshift Σs

such that
L(Σs) = {u ∈ Q∗ : ∃a ∈ Q and n ∈ N such that u appears in sn(a)}.

2.3. Cellular automata

Definition 2.2 (Cellular automaton). A cellular automaton (CA) A is a triple
(QA, rA, δA) where QA is a finite set of states called the alphabet, rA is the radius of
the automaton, and δA : Q2r+1

A 7→ QA is the local rule.

The configurations of a cellular automaton are the configurations over QA. A
global behavior is induced and we’ll noteA(c) the image of a configuration c given by:
∀z ∈ Z,A(c)z = δA(cz−r, . . . , cz, . . . , cz+r). Studying the dynamic of A is studying
the iterations of a configuration by the map A : QZ

A → QZ
A. When there is no

ambiguity, we’ll note Q, r and δ for QA, rA, δA.

2.4. µ-limit sets

Definition 2.3 (Uniform Bernoulli measure). For an alphabet Q, the uniform
Bernoulli measure µ on configurations over Q is defined by: ∀u ∈ Q∗, i ∈ Z, µ([u]i) =

1
|Q||u| .

For a CA A = (Q, r, δ) and u ∈ Q∗, we denote for all n ∈ N, Anµ([u]) =
µ (A−n([u])).

Definition 2.4 (Persistent set). For a CA A, and the uniform Bernoulli measure
µ, we define the persistent set Lµ(A) with: ∀u ∈ Q∗:

u /∈ Lµ(A)⇐⇒ lim
n→∞

Anµ([u]0) = 0.

Then the µ-limit set of A is Λµ(A) =
{
c ∈ QZ : L(c) ⊆ Lµ(A)

}
.

Remark 2.5. As this definition gives a set of forbidden finite words, we clearly see
that µ-limit sets are subshifts.

Definition 2.6 (Set of predecessors). We define the set of predecessors at time n of
a finite word u for a CA A = (Q, r, δ) as P n

A(u) =
{
v ∈ Q|u|+2rn : An([v]−rn) ⊆ [u]0

}
.
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Remark 2.7. As we consider the uniform Bernoulli measure µ, |PnA(u)|
|Q||u|+2rn → 0 ⇔

u /∈ Lµ(A).

Remark 2.8. The set of normal configurations has measure 1 in QZ. Which means
that a configuration that is randomly generated according to measure µ is a normal
configuration.

Lemma 2.9. Given a CA A and a finite word u, with µ the uniform Bernoulli
measure, for any normal configuration c:
u ∈ Λµ(A). ⇔ dAn(c)(u) 9 0 when n→ +∞.

Proof. Actually, we prove here that for the uniform measure and for any n ∈ N:
dAn(c)(u) = Anµ(u) =

|PnA(u)|
|Q||u|+2rn .

The second equality is clear.
Let n ∈ N. We note r the radius of A. Since any occurence of u in An(c) corresponds
to an occurence of a predecessor of u in c :

dAn(c)(u) = lim sup
k→+∞

|An(c)[−k,k]|u
2k + 1− |u|

= lim sup
k→+∞

∑
v∈PnA(u)

|c[−k−rn,k+rn]|v
2k + 2rn+ 1− (|u|+ 2rn)

.

And as c is normal, for any v ∈ P n
A(u) : |c[−k−rn,k+rn]|v ∼k→+∞

2k+1
|Q||u|+2rn .

Then:

dAn(c)(u) =
∑

v∈PnA(u)

lim sup
k→+∞

(
1

2k + 1− |u|
2k + 1

|Q||u|+2rn

)
=

∑
v∈PnA(u)

1

|Q||u|+2rn
=
|P n
A(u)|

|Q||u|+2rn
.

Proposition 2.10. Let u ∈ Lµ(A), there exists a word w such that uwu ∈ Lµ(A).

Proof. Let u ∈ Lµ(A), there exists α > 0 and an increasing sequence (ni)i∈N such
that Aniµ([u]) > α. Thus, for a normal configuration c, one has dAni (c)(u) > α for
all i ∈ N. Let l ∈ N and ε > 0 such that 2|u|

2|u|+l < α− ε, we define

W1 = {w ∈ Q∗A : u is not a subword of w and |w| ≤ l} and
W2 = {w ∈ Q∗A : u is not a subword of w and |w| > l} .

Consider uWku = {uwu : w ∈ Wi} for k ∈ {1, 2}, one has

dAni (c)(uW2u) = lim sup
n→∞

|Ani(c)[−n,n]|uW2u

2n+ 1
≤ 2|u|

2|u|+ l

since a word of uW2u can appear at most 2|u| times for each pattern of length 2|u|+l
ofAni(c). Moreover dAni (c)(uW1u)+dAni (c)(uW2u) ≥ dAni (c)(u) so dAni (c)(uW1u) ≥ ε.

Since W1 is finite, there exists a word w ∈ W1 such that dAni (c)(uwu) ≥ ε for an
infinity of i ∈ N. Thus uwu ∈ Lµ(A).

Example 2.11. We consider here the “max” automaton AM . The alphabet contains
only two states 0 and 1. The radius is 1. When the rule applies to three 0 (no 1),
it produces a 0. In any other case, it produces a 1.

The probability to have a 0 at time t is the probability to have 02t+1 on the initial
configuration. Which tends to 0 when t → ∞ for the uniform Bernoulli measure.
So, 0 does not appear in the µ-limit set. And finally Λµ(AM) = {∞1∞}.

And this example gives a difference between subshifts that can be realised as
limit set (Λ(A) =

⋂
i∈NAi(QZ)) and subshifts that can be realised as µ-limit set.



CONSTRUCTION OF µ-LIMIT SETS 5

Effectively, Λ(AM) = (∞10∗1∞)
⋃

(∞0∞)
⋃

(∞01∞)
⋃

(∞10∞), but if we apply propo-
sition 2.10 with the word 01, we conclude that Λ(AM) cannot be a µ limit set.

3. Counters
In this section and the following one, we describe an automaton AS, which, on

normal configurations, produces finite segments of size growing with time. In these
segments, we will make computations described in section 5.

Before to start computation, the automaton AS has a transitory regime which
erases the random configuration and generate segments between # where the com-
putation is done. To do that, we have a special state ∗, that can only appear in the
initial configuration, and which generates two counters. Between two counters, the
states are initialized and when two counters intersect, they compare their respective
lengths. If they do not have the same age, the younger deletes the older one; if
they have the same age, they disappear and we put the state # in view to start
the computation. The notion of counters was introduced in [DPST10] to produce
equicontinuous points according arbitrary curves.

We recall some ideas which allow to construct such automaton:
• no transition rule produces the state ∗;
• ∗ produces two couples of signals, one toward the left and another one toward
the right;
• a couple of signal (called counter) is formed by an inner signal and an outer
signal, which is faster. Their collisions are handled in the following way:
– nothing other than an outer signal can go through another outer signal;
– when two outer signals collide they move through each other and com-

parison signals are generated;
– on each side, a signal moves at maximal speed towards the inner border

of the counter, bounces on it and goes back to the point of collision;
– the first signal to come back is the one from the youngest counter and

it then moves back to the outer side of the oldest counter and deletes it;
– the comparison signal from the older counter that arrives afterwards is

deleted and will not delete the younger counter’s outer border;
• between a left counter and a right counter, the configuration is initialized;
• if two counters that have the same age meet, they disappear and produce
the state #S which start the computation described in section 5
• the state #S becomes # which delimitates segments, this state can disappear
if two adjacent segments decide to merge as described in section 4, or if a
counter (necessarily younger) encounters it.

The initialization of a configuration is illustrated in figure 1. The gray areas
of computation begin on the left of a # produced by the meeting of two counters
generated by a ∗.

Lemma 3.1. There exists a constant Kc such that if two # are distant of k, they
appeared before time k ×Kc.

Proof. Consider two states # in the space time diagram separated by k cells. If
# is not in the initial configuration, the only way to appear is to result from the
collision of two counters coming from the left and from the right. Thus, in the initial
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#

#

#
#
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#

Figure 1: When two counters launched by a ∗ meet, a # is produced and a com-
putation is launched on the right. The computation area extends until it
meets the inner signal of a counter or another #.

configuration, it is necessary to have the state ∗ between the two # to create the two
#. This operation take at most k ×Kc where Kc is the speed of an inner signal.

4. Merging segments
We saw in Section 3, how a special state ∗ on the initial configuration gave birth

to counters protecting everything inside them until they meet some other counter
born the same way. In this section, we will describe the evolution of the automaton
AS after this time of initialization. When two counters of the same age meet, they
disappear and a # is produced.

Definition 4.1 (Segment). A segment u is a subword of a configuration delimited
by two # and containing no # inside. So, u ∈ # (Q \ {#})∗#. The size of a
segment is the number of cells between both #.

There will be computations made inside segments, but we will describe it later.
Thus, in a segment, there is a layer left for computations that remain inside the both
#, and a “merging layer” that will contain signals necessary for the behavior with
other segments. Every signal presented in this section will travel on this merging
layer. The idea is the following: at some times, two neighbor segments will decide to
merge together to form one unique segment whose size will be the sum of both sizes.
And we will assure that each segment will eventually merge, so that no segment of
finite size can still be in the µ-limit set of AS.

When a # is produced in automaton AS, it sends two signals, on its right and on
its left to detect the first # on each side. If the signal catches the inside of a counter
still in activity before reaching a #, it waits until the counter produces a #. Then
both # have recognised each other and the segment between them is “conscious”. It
launches a computation inside it, and waits until it is achieved. We will assure later
that this computation ends. When this is done, it will alternatively send signals on
its left and on its right to propose successively to its neighbors to merge.

For this purpose, it computes and stores the length n of the segment as a binary
representation. Then the segment puts a L mark on the # to its left, and waits for
n2 timesteps. If, during this time, the left side neighbor has not put a R mark on
the common #, our segment erases the L mark, a signal is sent on the other side,
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#########

Figure 2: A # stays until two segments merge. Computation happens in gray areas,
and at its end a signal (...) is sent and stays on the left of the segment,
then goes to the right, stays and comes back. This cycle continues until
a neighbor’s signal is on the same # at the same time. Then the # is
deleted and another computation is started on the left.

and it puts a R mark on the # to its right end. It waits once again n2 timesteps
before erasing the R, sending a signal to its left, and starting over. The whole cycle
takes 2(n2 + n) timesteps as we consider a signal at speed 1 crossing a segment of
size n. We request the signal to stay n2 timesteps because as (n + 1)2 > n2 + 2n,
if two segments do not have the same size, their signals eventually meet during a
cycle of the smallest one. So, the only case in which two neighbor segments that try
to merge do not merge, is when they have same size and are correctly synchronized.
Computing and storing n, and waiting n2 can be done with a space log(n).

This process ends when at the same time, both a L and a R mark are written
on a #. When this happens, the two segments agree to merge together and they do
it. Which means, they erase every data on the merging layer, the # between them
is erased too, and the whole activity begins again, starting with the computation
inside the new segment.

The general behavior of the segments among themselves is illustrated in figure 2.
We prove the following claims for automaton AS.

Claim 4.2. For any two words u, v ∈ Q∗, with |u| 6= |v|, if the word w = #u#v#
appears at time t in a space-time diagram of AS, one of the 3 # of w has disappeared
at time t+ |Q||w| + 2(|w|2 + |w|).

Proof. If the word w exists at time t on a space time diagram, at time t + |Q||u|
(respectively t + |Q||v|) at most, the computation is achieved in u (resp. v). We
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suppose here that no # in w has disappeared, which means, u and v do not merge
with any other segment outside w. So at time t+ |Q||w| both segments try to merge
with another one. Assume |v| > |u| for example, the other case is totally symmetric.
Then, as |v|2 > |u|2 +2|u|, before the end of the cycle of v, they have put their mark
simultaneously on their common # for one timestep at least. And consequently,
they have merged and one # has disappeared at time t+ |Q||w| + 2(|w|2 + |w|).
Claim 4.3. Two segments of size less than k ∈ N can merge together at most
|Q|2k + 2((2k)2 + 2k) timesteps after being formed.

Proof. If they don’t have the same size, lemma 4.2 let us conclude. If they have the
same size, their computations are achieved after |Q|2k. And as their merging cycle
takes the same time for both, if they do not merge during the first cycle, they will
never merge. So they merge before |Q|2k + 2((2k)2 + 2k) too.

Claim 4.4. For any two words u, v ∈ Q∗, with |u| 6= |v|, the word w = #u#v#
does not appear in Λµ(AS).

Proof. We use the constant Kc from lemma 3.1. Denote
T = |w| ×Kc + |w|

(
|Q||w| + 2(|w|2 + |w|)

)
. We prove that for t > T , P t

AS(w) = ∅.
If the two # encircling w never disappear, the dynamic inside w is not affected
by the exterior. Through time, some other # possibly appeared and disappeared
between them. But after time at most |w|×Kc, they have all appeared. Since then,
they will only disappear. There are less than |w| − 1 excedentary # that have to
disappear. Considering lemma 4.3, one disappears at least every |Q||w|+2(|w|2+|w|)
timesteps. After that, the two segments of w are formed, and with lemma 4.2, one
of the # of w disappear before |Q||w|+ 2(|w|2 + |w|) new timesteps. Finally, at time
T , one of the # of w has disappeared and P t

AS(w) = ∅.
Proposition 4.5. There is no # in the µ-limit set of AS.
Proof. Assume that # ∈ Lµ(A), by Proposition 2.10, there exits u ∈ Q∗ such that
#u# ∈ Lµ(A), we can assume that u does not contain #. Let k = |u|, by Lemma 3.1,
the # encircling u appeared before time k×Kc. DenoteW = {#v# : v ∈ (Q\{#})k}
and Xn = {x ∈ QZ : Ak(x)[0,k+1] ∈ W for all k ∈ [k ×Kc, n]}. Since #u# ∈ Lµ(A),
there exists α > 0 such that µ(Xn) > α for an infinity of n ∈ N. Moreover, as
Xn+1 ⊂ Xn, we can conclude that µ(X∞) > α where X∞ = ∩n∈∞XN .

As µ is Bernoulli, we have µ(Y ) > 0 where Y = [∗(Q r ∗)2k ∗ (Q r ∗)2k∗]0;
moreover there exist k1 ≥ 0 and k2 ≥ k1 + 4k + 1 such that µ(Z) > 0 where
Z = X∞ ∩ σ−k1(Y ) ∩ σ−k2(X∞). For all n ≥ k × Kc one has F n(Z)[0,k+1] ⊂ W ,
F n(Z)[k2,k2+k+1] ⊂ W and F n(Z)[k1+k,k1+3k] ⊂ F n(Y )[k1+k,k1+3k] does not contain #.

We deduce that there exists a word w ∈ Q of length k2 − k − 1 such that
w[k1+k,k1+3k] does not contain # and #u#w#u# ∈ Lµ(A). However, in #u#w#u#
we can find two segments #u1#u2# which have different length. By Claim 4.4 we
obtain a contradiction. Thus, there is no # in the µ-limit set of AS.

Finally, we prove a lemma that will be useful later.

Claim 4.6. The density of cells outside segments generated by counters born in the
initial configuration tends to 0.

Proof. The proof is clear since such a cell needs predecessors without states ∗ on
each side in the initial configuration.
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Lemma 4.7. For a word u ∈ Q∗ of density less than αk in segments of size greater
than k, if αk → 0 when k →∞, then u /∈ Lµ(AS).
Conversely, for a word u ∈ Q∗ of density more than αk in segments of size greater
than k, if αk 9 0 when k →∞, then u ∈ Lµ(AS).

Proof. Let’s consider a normal configuration c. For any k ∈ N, we denote

dtk =
∑

v∈#(QA)l#, l≤k
l × dAtS(c)(v)

the density of cells in segments of size less than k in the image at time t of c. Due
to proposition 4.5, dtk → 0 when t → ∞. And due to claim 4.6, the density at of
cells outside wellformed segments tends to 0 when t→∞.

Suppose u ∈ Q∗ has density less than αk in segments of size greater than k with
αk → 0. Concerning segments of size less than k, the density of u is then less than
dtk, and for segments of size more than k, the density is less than αk. Finally, at a
given time t, dAtS(c)(u) ≤ dtk + αk + at.

As this equation holds for any k, finally, when t → ∞, dAtS(c)(u) has a limit
which is 0. This concludes the proof of the first part of the lemma with lemma 2.9.

In the other side, suppose u ∈ Q∗ has density more than αk in segments of size
k with αk 9 0. Therefore, dAtS(c)(u) ≥ (1 − dtk − at)αk which does not tend to 0

when t→∞ and k →∞. Thus, u ∈ Lµ(AS).

5. Infinite Unions
In this section we will see how to create a cellular automaton whose µ-limit set

is the closure of the infinite union of a recursively enumerable family of subshifts.

Definition 5.1 (Generable Subshift). We say that a Turing machineM generates a
subshift Σ ⊆ QZ if M computes a generic configuration of Σ in the following sense:

• the tape alphabet of M contains Q;
• on an empty tape, M writes the right half of a configuration c ∈ Σ such
that lim supn→∞

|c[0,n]|u
n+1

> 0 if and only if u ∈ L(Σ); c is called a generic
configuration;
• after a symbol of Q has been written on the tape, it is never changed.

Theorem 5.2. Given a recursively enumerable family (Σi)i∈N of generable subshifts,
that is to say that there exists a Turing machine that enumerates a set of machines
(Mi)i ∈ N such that Mi produces the subshift Σi, there exists a cellular automaton
whose µ-limit set is exactly the subshift

⋃
i∈N Σi.

Proof. Let us consider a recursively enumerable family (Σi)i∈N of generable subshifts,
let us denote by M the Turing machine that enumerates the machines (Mi)i∈N that
in turn produce the generic configurations for each of the subshifts.

We will now describe the behavior of such a cellular automaton A. A will
work as the automaton AS described in Section 4 meaning that from a normal
configuration, it will generate “counter signals” that will produce finite segments on
the configuration (separated by a # symbol). We will now describe the computation
performed by each finite segment during the evolution of the cellular automaton.
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The first thing a segment does is compute its length n and store it as a binary
representation. By incrementing a binary counter moving across the segment, this
is easily done in space log(n). Once this is done, the segment can simulate Turing
machines on its first log(n) cells (it is important to limit the computational space so
that the computation states become negligible and disappear from the µ-limit set).

On the initial log(n) cells of the segment the machine M is simulated so that
it produces as many of the descriptions of the machines (Mi)i∈N as possible, and
stops when it has reached its space limit. Let us assume the machine has produced
k descriptions (k may be 0 for short segments, but we know that as the segments
grow larger, k will grow too). Additionnally, we request that k ≤ log(log(n)).

The space of size log(n) is further divided into k fragments of size log(n)/k. On
each of these k fragments, the corresponding machine Mi is simulated to produce
the first letters wi of the generic configuration corresponding to the subshift Σi. The
word wi might be much smaller than log(n)/k depending on the space needed by
the machine Mi to compute the first letters of its generic configuration, but again
we know that as segments grow larger, larger words will be computed.

After the k different wi have been computed, the initial segment of length n is
split into

√
n fragments of length

√
n. Each of these fragments is filled with copies

of one of the wi in the following manner: one out of two is filled with w1, one out of
four (i.e. one out of two among the remaining fragments) is filled with w2, one out
of eight is filled with w3 and so on. The remaining segments (if k is very small, we
might run out of wi before filling all the fragments) are filled with wk. Fragments
are separated by a symbol $1 /∈ Q and the copies of words wi inside a given fragment
are separated by a symbol $2 /∈ Q.

Remark 5.3. The previous construction can all be done using only log(n) cells
of computation at a given time (cells that are not active and that only contain a
symbol from Q∪{$1, $2} are not counted). To fill the fragments of size

√
n we need

only compute the binary expression of
√
n and then advance through the segment

while filling the fragment with the appropriate wi while decreasing a counter to
measure

√
n cells. The important data (the words wi and different counters) are

moved through the segment so that they are always present near the location to be
filled. Thus the head of the Turing machineM carries only log(n) cells used to store
the wi and to its computation. No mark of the computation remains in the other
cells, even those already visited and rewritten.

When all the fragments of the segment have been filled with the wi, the segment
can erase all the remaining computation data and start the process of merging with
its neighbors as described in Section 4.

When two segments merge, the whole computation is restarted but this time
with a larger space. The segments are not erased immediately after a merge, but
rather the new data overwrites the previous as the

√
n fragments are filled.

We will prove that Lµ(A) =
⋃
i∈N L(Σi).

Claim 5.4. The states used for computation, signals inside segments, writing frag-
ments, $1 or $2 do not appear in Λµ(A).

Proof. Here we use the lemma 4.7 for each of these states.
We use the log(k) initial cells of a segment of size k to do the computation, so

the density of these cells is log(k)/k, and the property is proved. The head of the
Turing machine M carries at most log(k) cells for its computation or writing, thus



CONSTRUCTION OF µ-LIMIT SETS 11

the same argument works. The signals for the merging process are in a finite number
in a segment, therefore their density in a segment tends to 0 too. The density of $1

is
√

(k)/k, and the lemma applies once again.
For the density of $2, let λ > 0, ∃k0 > 0 such that the word wi produced in

a segment of size k > k0 is such that |wi| > λ for any i ≤ λ. So, for k > k0, the
density of $2 in a segment of size k is less than 1/λ in fragments of Si, i ≤ λ and
less than 1 in the other fragments that have themselves a density lower than 1/2λ.
And thus, the density of $2 is lower than 1

λ
+ 1

2λ
in segments of size k > k0. Finally

the density of $2 tends to 0 when k →∞. And the claim is proved.

Claim 5.5. For any subshift Σi, i ∈ N, any word u ∈ L(Σi) and any family of
segments (vk)k of size |vk| = k, dvk(u) does not tend to 0 when k →∞.

Proof. As u ∈ L(Σi), its density α(u) in the generic configuration computed byMi is
positive. So, there exists li ∈ N such that any subword of this configuration contains
u with density at least α(u)/2. Let k0 such that in any segment of size k > k0, the
word wi computed has length |wi| > li.

For any segment vk of size k > k0, there are log(k) cells occupied for com-
putation, less than

√
(k) cells containing a $1 and 1

2i+1 among the remaining cells
attributed to the copies of wi. Among these copies, a proportion li−1

li
of the cells

contain $2. log(k) additional cells can be dedicated to the head of the Turing ma-
chine M writing in the segment and a finite number K of cells can contain signals
for the merging process. Finally,

dvk(u) ≥

((
k − log(k)−

√
(k)

2i+1

)
li − 1

li
− log(k)−K

)
1

k
.

Which does not tend to 0 when k →∞.

Claim 5.6. For any subshift Σi, i ∈ N and any word u ∈ L(Σi), u ∈ Lµ(A).

Proof. We clearly get the result by combining claim 5.5 and lemma 4.7.

Finally, the theorem is proven:
• the proposition 4.5 and the claim 5.4 assure that every state used for com-
putation does not appear in Λµ(A), which means Lµ(A) ⊆

⋃
i∈N L(Σi),

• the claim 5.6 assures that
⋃
i∈N L(Σi) ⊆ Lµ(A).

The next proposition gives some examples of generable subshifts.

Proposition 5.7. The following subshifts are generable:
• transitive sofic subshifts,
• substitutive subshift associated to a primitive substitution.

Proof. As a transitive sofic subshift Σ is given by the strongly connected automaton
recognizing its language. For example, we can write successively every cycle of size
k for k from 1 to ∞. In this case we obtain a configuration where the density of all
the words of the language of Σ is positive.

For a primitive substitution s, it is easy to generate the fix point configuration
denoted c[0;∞] whose all prefixes are given by sk(a) for all k ∈ N where a ∈ Q. It
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is well know that all words of the substitutive subshift associated appears with a
positive density in c[0;∞] [Fog05].

6. Conclusion and perspectives
In this paper, we prove that a large class of subshifts can be realized as µ-limit

sets of cellular automata. In particular, it is possible to obtain all transitive sofic
subshifts, this is a profound difference with the topological case since the even shift
cannot be realized as the limit set of one cellular automaton. This construction
allows to control the iterations of a random configuration in view to obtain an auto-
organized behavior. The construction can be adapted at least in two ways:

• to obtain the same result for a large class of measure (σ-ergodic measure of
full support) modulo some technical changes
• to obtain a subshift without any word of low complexity (as suggested by V.
Poupet).

Of course the principal open question is in the reciprocal of the theorem, that
is to say to characterize subshifts that can possibly be realized as µ-limit sets.
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