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Abstract. In this article we study how a subshift can simulate another one, where the notion of simulation

is given by operations on subshifts inspired by the dynamical systems theory (factor, projective subaction...).
There exists a correspondence between the notion of simulation and the set of forbidden patterns. The main

result of this paper states that any effective subshift of dimension d – that is a subshift whose set of forbidden

patterns can be generated by a Turing machine – can be obtained by applying dynamical operations on a
subshift of finite type of dimension d+1 – a subshift that can be defined by a finite set of forbidden patterns.

This result improves Hochman’s [Hoc09].

Introduction

A subshift of dimension d is a closed and shift-invariant subset of AZd

where A is a finite alphabet. A
subshift can be characterized by either its language or by a set of forbidden patterns. With this last point of
view, the simplest class is the set of subshifts of finite type, which are subshifts that can be characterized by
a finite set of forbidden patterns. It is possible to apply dynamical transformations like factor or projective
subaction on a subshift of dimension d, and it seems natural to wonder how they modify the set of forbidden
patterns.

In dimension 1, the class of subshifts of finite type is well understood. In particular subshifts of finite
type are exactly those whose language is accepted by a local automaton [Bea93]. Given this result, we are
naturally interested in subshifts with a language given by a finite automaton without the locality condition.
This class is entirely characterized in terms of dynamical operations: it is the class of sofic subshifts, which
can all be obtained as a factor of a subshift of finite type [LM95]. Thus each sofic subshift is obtained by a
dynamical transformation of a subshift of finite type.

Multidimensional subshifts of finite type are not well understood. For example, it is not easy to describe
their languages. Moreover, in addition to factors, there exist other types of dynamical transformations
on multidimensional subshifts: for example a subaction of a d-dimensional subshift consists in taking the
restriction of a subshift to a subgroup of Zd. Hochman [Hoc09] showed that every d-dimensional subshift
whose set of forbidden patterns is recursively enumerable can be obtained by subaction and factor of a d+2-
subshift of finite type. The main result of this article states that any effective subshift of dimension d can be
obtained from a SFT of dimension d+ 1, thanks to a subaction and a factor operation. This result improves
Hochman’s [Hoc09] since our construction decreases the dimension. This problem is referenced in [Boy08]
and independently of this work there is solution at this problem in [DRS10].

The idea of the proof in [Hoc09] and in this article is to construct TFinal, a three dimensional subshift
of finite type in [Hoc09] (resp. a two-dimensional subshift of finite type in this paper), which realizes a

given effective subshift Σ ⊂ AΣ
Z in one direction (assume that d = 1) after a projection. Thanks to

product operation, TFinal is constituted by different layers, the first one is constituted by the alphabet AΣ

and can be obtained by a projection π. Then finite type conditions ensure that for any x ∈ TFinal, one
has π(x)Z×{(i,j)} ∈ Σ (resp. π(x)Z×{i} ∈ Σ) and all these lines are equal; moreover conditions are not so
restrictive and any configuration of Σ can be realized by a configuration of TFinal. We here briefly present
the main ideas of the proof, so that the reader already has in mind the final goal of technical constructions
presented in this article. The difficulty is to ensure that no forbidden pattern in Σ appears. Since Σ is
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an effective subshift, its forbidden patterns can be enumerated by a Turing machine. There are classical
techniques to simulate calculations of a Turing machine thanks to a finite type condition (see Section 2.6)
and the key point of these techniques is that calculations are embedded into finite computation zones. Thus,
we consider a Turing machineMForbid which has a double role: it both enumerates the forbidden patterns of
Σ and checks that none of these patterns appear in a particular zone around each computation zone, called
the responsibility zone. However, when a Turing machine is constructed in a two-dimensional subshift of
finite type, as in this article, computation zones are such that a computation is made on a fractured tape
(see Section 2.2). Consequently forbidden patterns produced by MForbid are also written on a fractured

tape, and comparing them with non fractured patterns that appear in AΣ
Z2

is not trivial. To do so, the
machineMForbid calls for a second Turing machineMSearch (see Section 3.5). This machineMSearch is given
by MForbid an address located in its responsibility zone, and answers back the letter of AΣ that appears
at this address. If a forbidden pattern is detected, the machine MForbid comes into a special state qstop,
whose presence is forbidden is the final subshift. This ensures that every row xZ×{i} in the final subshift is
a configuration of Σ. So, the two final operations one has to apply in order to obtain the subshift Σ consist
first in taking the projective subaction on Ze1, where e1 is the first vector of the canonical basis of Z2, and
then to erase any information that do not concern Σ – for instance the construction of computation zones
or the SFTs simulating the behaviour of Turing machines – thanks to a well-chosen letter-to-letter factor.

The difficulty of this construction presented in this paper is to program Turing machines with different size
of computation which exchange information in a two-dimensional subshift of finite type, similar arguments
can be found in [Dal74, Han74, DLS01]. We note that the authors of [DRS10] prove a similar result based on
Kleene’s fixed-point theorem. In that other proof, they do not recourse to geometric arguments to describe
the circulation of information between the different levels of computation.

The paper is organized as follows: in Section 1 we present five types of operations (product, factor, finite
type, projective subaction and spatial extension) and we formulate classic results with this formalism. In
Section 2, we present an important tool to define runs of a Turing machine with a sofic subshift in dimension
2, which is the construction of an aperiodic SFT that will contain calculations of a Turing machine and
how to code communication between those different calculations of a Turing machine. These tools are used
to prove our main result in Section 3. The main construction of the proof of Theorem 3.1 is built step by
step and for a better understanding, at the end of each of these subsections the contribution to the final
construction is summed up in a fact. We do not pretend to give a formal proof for these facts, but we hope
it will clarify our intention.

1. Subshifts and operations on them

In this section we recall some basic definitions on subshifts inspired from symbolic dynamics. We also present
some dynamical operations on subshifts, that were first introduced by Hochman [Hoc09] and then developed
by the authors in [AS09].

1.1. Tilings and subshifts

Let A be a finite alphabet and d be a positive integer. A configuration x is an element of AZd

. Let S be
a finite subset of Zd. Denote xS the restriction of x to S. A pattern is an element p ∈ AS and S is the
support of p, which is denoted by supp(p). For all n ∈ N, we call Sdn = [−n;n]d the elementary support of

size n. A pattern with support Sdn is an elementary pattern. We denote by EdA =
⋃
n∈NA[−n;n]d the set of

d-dimensional elementary patterns. A d-dimensional language L is a subset of EdA. A pattern p of support
S ⊂ Zd appears in a configuration x if there exists i ∈ Zd such that for all j ∈ S, pj = xi+j , we denote p < x.

Definition. A co-tile set is a tuple τ = (A, d, P ) where P is a subset of EdA called the set of forbidden
patterns.

A generalized tiling by τ is a configuration x such that for all p ∈ P , p does not appear in x. We denote
by Tτ the set of generalized tilings by τ . If there is no ambiguity on the alphabet, we just denote it by TP .

Remark. If P is finite, it is equivalent to define a generalized tiling by allowed patterns or forbidden patterns,
the latter being the usual definition of tiling.
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One can define a topology on AZd

by endowing A with the discrete topology, and considering the product

topology on AZd

. For this topology, AZd

is a compact metric space on which Zd acts by translation via σ
defined by:

σiA : AZd −→ AZd

x 7−→ σiA(x) such that σiA(x)u = xi+u ∀u ∈ Zd.
for all i in Zd. This action is called the shift.

Definition. A d-dimensional subshift on the alphabet A is a closed and σ-invariant subset of AZd

. We
denote by S (resp. Sd, S≤d) the set of all subshifts (resp. d-dimensional subshifts, d′-dimensional subshifts
with d′ ≤ d).

Let T ⊆ AZd

be a subshift. Denote Ln(T) ⊆ A[−n;n]d the set of elementary patterns of size n which
appear in some element of T, and L(T) =

⋃
n∈N Ln(T) the language of T which is the set of elementary

patterns which appear in some element of T.

It is also usual to study a subshift as a dynamical system [LM95, Kit98], the next proposition shows the
link between the two notions.

Proposition 1.1. The set T ⊂ AZd

is a subshift if and only if T = TL(T)c where L(T)c is the complement

of L(T) in EdA.

A set of patterns P ⊆ EdA is recursively enumerable if there exists an effective procedure for listing the
patterns of P (see for instance [RJ87]).

Definition. It is possible to define different classes of subshifts according to the set of forbidden patterns:

• For a finite alphabet A and a dimension d ∈ N, the subshift T(A,d,∅) = AZd

is the full-shift of
dimension d associated to A. Denote FS the set of all full-shifts (for every finite alphabet A and
dimension d).

• For a finite alphabet A, a dimension d ∈ N and a finite set P ⊆ EdA, the subshift T(A,d,P ) is a subshift
of finite type. Denote SFT the set of all subshifts of finite type. Subshifts of finite type correspond
to the usual notion of tiling.

• For a finite alphabet A, a dimension d ∈ N and a recursively enumerable set P ⊆ EdA, the subshift
TP is an effective subshift. Denote RE the set of all effective subshifts.

1.2. Operations on subshifts

In this section we describe five operations on subshifts and use them to define a notion of simulation of a
subshift by another one. Operations are gathered in two groups depending on which part – the alphabet A
or the group Zd – of a subshift T ⊆ AZd

they modify.

1.2.1. Simulation of a subshift by another one

An operation op on subshifts transforms a subshift or a n-tuple of subshifts into another one; it is a function
op : S → S or op : S × · · · × S → S that can depend on a parameter. An operation is not necessarily
defined for all subshifts. We remark that a subshift T (resp. a pair of subshifts (T′,T′′)) and its image by
an operation op(T) (resp. op(T′,T′′)) do not necessary have the same alphabet or dimension.

Let Op be a set of operations on subshifts. Let U ⊂ S be a set of subshifts. We define the closure of U
under a set of operations Op, denoted by ClOp(U), as the smallest set stable by Op which contains U .

We say that a subshift T simulates a subshift T′ by Op if T′ ∈ ClOp(T). Thus there exists a finite
sequence of operations chosen among Op, that transforms T into T′. We note it by T′ ≤Op T. Remark that
ClOp(T) = {T′ : T′ ≤Op T}.
1.2.2. Local transformations

We describe three operations that locally modify a subshift T ⊆ AZd

. The new subshift resulting from the

operation will be a subset of BZd

, where B is a new alphabet.

Product (Prod): Let Ti ⊆ AZd

i for any i ∈ {1, . . . , n} be n subshifts of the same dimension, define:

Prod (T1, . . . ,Tn) = T1 × · · · ×Tn ⊆ (A1 × · · · × An)Z
d

.

One has ClProd(FS) = FS and ClProd(SFT ) = SFT .
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Finite type (FT): These operations consist in adding a finite number of forbidden patterns to the initial

subshift. Formally, let A be an alphabet, P ⊆ EdA be a finite subset and let T ⊆ AZd

be a subshift. By
Proposition 1.1, there exists P ′ such that T = TP ′ . Define:

FTP (T) = TP∪P ′ .

Note that FTP (T) could be empty if P prohibits too many patterns. By FT, one lists all operations on
subshifts which are obtained by this type of transformation.

By definition of subshift of finite type, one has ClFT(FS) = SFT and ClFT(FS) = SFT .
Factor (Fact): These operations allow to change the alphabet of a subshift by local modifications. Let A
and B be two finite alphabets. A morphism π : AZd → BZd

is a continuous function which commutes with
the shift action (i.e. σi ◦ π = π ◦ σi for all i ∈ Zd). In fact, such a function can be defined locally [Hed69]:
that is to say, there exists U ⊂ Zd finite, called neighborhood, and π : AU → B, called local function, such
that π(x)i = π(σi(x)U) for all i ∈ Zd.

Let π : AZd → BZd

be a factor and T ⊂ AZd

be a subshift, define:

Factπ (T) = π(T).

By Fact, one lists all operations on subshifts which are obtained by this type of transformation.
Example 1.1 shows that ClFact(SFT ) 6= SFT .

Example 1.1 (ClFact(SFT ) 6= SFT ). Consider the alphabet {0, 1, 2}Z and define T = T{00,11,02,21}. The
factor π such that π(0) = π(1) = 0 and π(2) = 2 transforms T into a subshift:

π(T) = {x ∈ {0, 2}Z : finite blocks of consecutive 0 are of even length }

which is called the even shift. It is known that the even shift is not a subshift of finite type (see Example 2.1.9
of [LM95]), since one need to exclude arbitrarily large blocks of consecutive 0’s of odd lengths to describe it.

Definition. A sofic subshift is a factor of a subshift of finite type. Thus, the set of sofic subshifts is
Sofic = ClFact(SFT ).

In [LM95], it is shown that sofic subshifts of dimension 1 are subshift which can be defined with a language
of forbidden patterns which is regular. The characterisation is unknown for multidimensional sofic subshifts.

1.2.3. Transformations of the group of the action

We describe an operation that modify the group on which the subshift is defined, thus we change the
dimension of the subshift.
Projective Subaction (SA): These operations allow to take the restriction of a subshift of AZd

according to

a subgroup of Zd. Let G be a sub-group of Zd freely generated by u1, u2, . . . , ud′ (d′ ≤ d). Let T ⊆ AZd

be
a subshift, define:

SAG (T) =
{
y ∈ AZd′

: ∃x ∈ T such that ∀i1, . . . , id′ ∈ Zd
′
, yi1,...,id′ = xi1u1+···+id′ud′

}
.

It is easy to prove that SAG (T) is a subshift of AZd′

. One denotes by SA the set of all operations on
subshifts which are obtained by this type of operation.

One verifies that ClSA(SFT ) 6= SFT and ClSA(SFT ) 6= Sofic (see respectively Example 1.2 and Exam-
ple 1.3).

Example 1.2 (ClSA(SFT ) 6= SFT ). We construct a subshift of finite type T ⊂ {0, 1, 2}Z
2

such that the
projective subaction of T on the sub-group ∆ = {(x, y) ∈ Z2 : y = x} ⊆ Z2 is not of finite type. In this
example we want the subshift that appears on ∆ to be{

x ∈ {0, 1, 2}Z : finite blocks of consecutive 0’s are of even length
}
.

Define F the following set of allowed patterns of size 4 (. symbol may be 1 or 2 but not 0, blank symbol may
be 0,1 or 2):
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2 0
1 0 1

2 0 2
0 1

;

. .
2 0 .

1 0 1
0 2

;

1 0
2 0 2

. 0 1

. .

;

.
. . .

2 0 .
0 1

;

.
. .

. . .
0 .

;

2 0
. 0 1

. . .
.

;

. 0
. . .

. .
.

The alternation of 1 and 2 over and under the diagonal of 0 enables us to control the parity of 0 blocks.
Define F as the set of elementary patterns of size 4 that are not in F . Then if we denote T = TF :

SA∆ (T) =
{
x ∈ {0, 1, 2}Z : blocks of consecutive 0’s are of even length

}
which is not a subshift of finite type as explained in Example 1.1.

Example 1.3 (ClSA(SFT ) 6= Sofic). The non finite type subshift constructed in Example 1.2 is sofic, but
it is possible to obtain non sofic subshifts. We construct a subshift of finite type T such that the projection
SA∆ (T) on the straight line y = x is not sofic. It is well known that in dimension 1, sofic subshift are exactly
subshifts whose language — see Definition 1.1 — is a regular language [LM95]. The language {anbn : n ∈ N}
is non-regular and so we construct a subshift of finite type T ⊆ AZ2

and a morphism π : AZ2 → {0, a, b}Z2

such that the only allowed patterns in T′ = π(T) containing finite blocks of consecutive a’s or b’s are those
of the form 2n× 2n:

0
b

. .
.

b
a

. .
.

a
0

The principle is to construct patterns of even size and to localize the center of these patterns to distinguish
the an part from the bn part.

Denote A = {∗, a, b, 0, 1, 2, 3, 4}. We construct squares formed by any symbols except the symbol 0 which
forms a background.The symbols 1, 2, 3 and 4 help to draw the two diagonals of the square and to distinguish
in which quadrant we are. The symbol ∗ only appears on a diagonal of the square, and the other diagonal
contains the anbn part. The presence of the symbol 0 everywhere around a finite figure ensures that the two
diagonals cross in their middle, hence the figure pictured is a square. It is possible to describe a finite set
of patterns where the only finite figures on the background formed by 0’s which are allowed are even size
squares of the form:

0 0 0 0 0 0 0 0
0 ∗ 1 . . . . . . 1 b 0

0 4
. . . 1 1 . .

.
2 0

0
... 4 ∗ b 2

... 0

0
... 4 a ∗ 2

... 0

0 4 . .
.

3 3
. . . 2 0

0 a 3 . . . . . . 3 ∗ 0
0 0 0 0 0 0 0 0

(∗)
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We do not detail the entire set of allowed patterns, but the reader can easily deduce the missing patterns
from those given below:

Squares center:

∗ 1 1 b
4 ∗ b 2
4 a ∗ 2
a 3 3 ∗

0 0 0 0
0 ∗ b 0
0 a ∗ 0
0 0 0 0

Squares diagonals:
∗ 1 1
4 ∗ 1
4 4 ∗

1 1 b
1 b 2
b 2 2

∗ 2 2
3 ∗ 2
3 3 ∗

4 4 a
4 a 3
a 3 3

Squares sides:
0 0 0
0 ∗ 1
0 4 ∗

0 0 0
1 1 1
∗ 1 1

0 0 0
1 1 1
1 1 1

0 0 0
1 1 1
1 1 b

0 0 0
1 b 0
b 2 0

. . . and so on for the three other sides.

Uniform domains:
0 0 0
0 0 0
0 0 0

1 1 1
1 1 1
1 1 1

2 2 2
2 2 2
2 2 2

3 3 3
3 3 3
3 3 3

4 4 4
4 4 4
4 4 4

The only configurations one can construct with these allowed patterns are configurations of AZ2

with 0 ev-
erywhere except in some places where there are arbitrarily large blocks of the form (∗), and the configurations
made of the infinite pattern (∗). We denote by T this subshift of finite type.

Let π denote the letter-to-letter morphism defined by π(x) = 0 for x ∈ {∗, 1, 2, 3, 4} and π(a) = a,
π(b) = b. Suppose that SA∆ (T) is sofic. Since ClFact(Sofic) = Sofic then π(SA∆ (T)) would also be sofic,
which is absurd since:

π(SA∆ (T)) = T{ba;0ambn0:m 6=n}.

So this construction proves that ClSA(SFT ) 6= Sofic.

The class of SFT is not stable under projective subaction and the class ClSA(SFT ) is studied in [PS10].
Nevertheless a stable class for this operation is known, it is the class of effective subshifts. This follows
from the fact that projective subactions are special cases of factors of subactions, and by Theorem 3.1 and
Proposition 3.3 of [Hoc09] which establish that symbolic factors and subactions preserve effectiveness. That
is to say ClSA(RE) = RE .

With this formalism, the result of M. Hochman [Hoc09] can be written:

ClFact,SA(SFT ) = RE .

More precisely, he proves that ClFact,SA(SFT ∩ Sd+2) ∩ S≤d = RE ∩ S≤d.
In Theorem 3.1, we show that ClFact,SA(SFT ∩ Sd+1) ∩ S≤d = RE ∩ S≤d. Moreover, there are examples

of effective subshifts which are not sofic so ClFact(SFT ∩ Sd) = Sofic ∩ Sd 6= RE ∩ Sd.

2. Computation zones for Turing machines

In this section we explain how to construct computation zones for a Turing machine and how to use them
to simulate calculations. A Turing machine is a model of calculation composed by a finite automaton – the
head of calculation – that moves on an infinite tape divided into boxes, each box containing a letter that
can be modified by the head. A precise definition of Turing machine will be given in Subsection 2.1, and
it will be explained how to code the behaviour of the machine thanks to local rules. The main problem
is that this SFT is not enough to code calculations of the machine, since there is no rule that ensures the
calculation is well initialized. So we need to embed calculations into specific zones. To make sure that the
size of these computation zones is not a constraint and does not prematurely stop a calculation, we construct
arbitrarily large computation zones with a sofic subshift in Subsection 2.2 and we implement the local rules
of the Turing machine in these zones in Subsection 2.6.
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2.1. Local rules to code the behaviour of a Turing machine

In this article, we consider Turing machines with some restrictions: the behaviour of the machine will be
simulated only on the empty word (originally the tape only contains blank symbols ]). We also assume that
the head cannot go to the left of the initial position. Note that we can impose these restrictions without loss
of generality. First we recall the formal definition of a Turing machine. Remember that a Turing machine is
a model of calculation composed by a finite automaton – the head of calculation – that can be in different
states and moves on an infinite tape divided into boxes, each box containing a letter that can be modified
by the head.

Definition. Let M = (Q,Γ, ], q0, δ, QF ) be a Turing machine, where:

• Q is a finite set of states of the head of calculation; q0 ∈ Q is the initial state;
• Γ is a finite alphabet;
• ] /∈ Γ is the blank symbol, with which the tape is initially filled; end of any enumerated word;
• δ : Q× Γ→ Q× Γ× {←, · ,→} is the transition function. Given the state of the head of calculation

and the letter it can read on the tape — which thus depends on the position of the head of calculation
on the tape — the letter on the tape is replaced or not by another one, the head of calculation moves
or not to an adjacent box and changes or not of state;

• F ⊂ QF is the set of final states — when a final state is reached, the calculation stops.

Example 2.1. We consider the Turing machineMex that enumerates on its tape the words ab, aabb, aaabbb, . . .
and never halts. This machine uses the three letters alphabet {a, b, ‖} and five statesQ = {q0, qa+, qb+, qb++, q‖}.
A separation symbol ‖ is written at the end of each anbn. The transition function δex is

δex(q0, ]) = (qb+, a,→)
δex(qb+, ]) = (q‖, b,→)
δex(q‖, ]) = (q‖, ‖, .)


Initialization of the tape: the machine writes the first word
ab on the tape and place the head on the separation symbol
‖ to the right of the word.

δex(q‖, ‖) = (q‖, ‖,←)
δex(q‖, b) = (q‖, b,←)
δex(q‖, a) = (qa+, a,→)

 Suppose some word anbn ‖ is written on the tape, and that
the head is on the ‖ symbol in state q‖. The machine looks
for the rightmost symbol a in anbn.

δex(qa+, b) = (qb++, a,→)
δex(qb++, b) = (qb++, b,→)
δex(qb++, ‖) = (qb+, b,→)


The machine replaces the leftmost symbol b by a symbol a
and looks for the separation symbol ‖ on the right of the
word. Once it has found it, it is replaced by bb ‖. The word
an+1bn+1 ‖ is now written on the tape and the head is on
the ‖ symbol in state q‖.

A calculation of this machine on an empty tape will always go through the configurations of the tape
represented in figure 1.

If an origin is given it is straightforward to describe the behaviour of a Turing machine with a set of
two-dimensional patterns. The first dimension stands for the tape and second dimension for time evolution.
We obtain the space time diagram of computation of M which can be construct locally by 3 × 2 allowed
patterns:

• If the pattern codes a part of the tape on which the head of calculation does not act, the two line of
allowed pattern are identical and for x, y, z ∈ Γ one has:

x y z
x y z

• If the head of calculation is present in the part of the tape coded, we code the modification given by
the Turing machine. For example the rule δ(q1, x) = (q2, y,←) will be coded by:

(q2, z) y z′

z (q1, x) z′
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . ] a a a a b (qb++, b) ‖ ] ] . . .

. . . ] a a a a (qb++, b) b ‖ ] ] . . .

. . . ] a a a (qa+, b) b b ‖ ] ] . . .

. . . ] a a (q‖, a) b b b ‖ ] ] . . .

. . . ] a a a (q‖, b) b b ‖ ] ] . . .

. . . ] a a a b (q‖, b) b ‖ ] ] . . .

. . . ] a a a b b (q‖, b) ‖ ] ] . . .

. . . ] a a a b b b (q‖, ‖) ] ] . . .

. . . ] a a a b b b (q‖, ]) ] ] . . .

. . . ] a a a b b (qb+, ]) ] ] ] . . .

. . . ] a a a b (qb++, ‖) ] ] ] ] . . .

. . . ] a a a (qb++, b) ‖ ] ] ] ] . . .

. . . ] a a (qa+, b) b ‖ ] ] ] ] . . .

. . . ] a (q‖, a) b b ‖ ] ] ] ] . . .

. . . ] a a (q‖, b) b ‖ ] ] ] ] . . .

. . . ] a a b (q‖, b) ‖ ] ] ] ] . . .

. . . ] a a b b (q‖, ‖) ] ] ] ] . . .

. . . ] a a b b (q‖, ]) ] ] ] ] . . .

. . . ] a a b (qb+, ]) ] ] ] ] ] . . .

. . . ] a a (qb++, ‖) ] ] ] ] ] ] . . .

. . . ] a (qa+, b) ‖ ] ] ] ] ] ] . . .

. . . ] (q‖, a) b ‖ ] ] ] ] ] ] . . .

. . . ] a (q‖, b) ‖ ] ] ] ] ] ] . . .

. . . ] a b (q‖, ‖) ] ] ] ] ] ] . . .

. . . ] a b (q‖, ]) ] ] ] ] ] ] . . .

. . . ] a (qb+, ]) ] ] ] ] ] ] ] . . .

. . . ] (q0, ]) ] ] ] ] ] ] ] ] . . .

Figure 1. A calculation of this machine on an empty tape will always go through the
configurations of the tape.

Denote by PM the set of forbidden patterns on the alphabet AM = Γ ∪ (Q × Γ) constructed according
to the rules of M – patterns that cannot be seen as coming from the transition function as above. We can

assume that the support of all patterns in PM have the following type: . For example, with this
assumption the rule δ(q1, x) = (q2, y,←) becomes:

y
z (q1, x) z′

(q2, z)
t z (q1, x)

z′

(q1, x) z′ z′′

Consider now the subshift of finite type TPM . It contains an element that is exactly the space time diagram
of computation of M, but also many other elements that are inconsistent. With the Turing machine Mex

of Example 2.1, the SFT TPMex
contains an element where the following configuration of the tape appears

. . . ] . . . ] a b b b b b (q‖, ‖) ] . . . ] . . .

but this configuration is inconsistent since it is never reached by a calculation of Mex.
The problem comes from the lack of information about the beginning of a calculation. We need to specify

a point in Z2 that stands for the origin of a calculation – the head of calculation is in the initial state q0,
and the row is filled with blank symbols ].

By compactness of the set of configurations of a subshift, it is impossible to impose that a special symbol
appears exactly once in every configuration.

2.2. A substitutive sofic subshift as grid of computation

A classical problem in tiling theory is the construction of aperiodic tilings, that are sets of tiles that can only
produce aperiodic configurations. A first example was initially given by Berger, who proved that the domino
problem (is it possible to tile the whole plane with a given finite set of tiles?) is undecidable (see [Ber66] for
the original proof by Berger and [Rob71] for Robinson’s proof with a smaller set of tiles). Robinson reduces
this problem to the Turing machine halting problem, which is known to be undecidable. The heart of the
proof is the construction of an aperiodic tiling, which codes computation zones for Turing machines. These
computation zones are all finite, but for any calculation of a Turing machine that stops, it is possible to
find a zone large enough that contains it. Robinson entirely describes a finite set of tiles that produces the
tiling, but there are many techniques to obtain it: Mozes [Moz89] gives a proof based on substitutions and
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Durand, Romashchenko and Shen [DRS08] propose a proof based on Kleene’s fixed point theorem. We here
define computation zones for Turing machine with a two dimensional substitution.
Definition of the substitution sGrid. Let A be a finite alphabet. A (k, k′)-two dimensional substitution is a

function s : A → AUk,k′ where Uk,k′ = [0, k − 1] × [0, k′ − 1]. We naturally extend s to a function sn,n
′

:

AUn,n′ → AUnk,n′k′ by identifying AUnk,n′k′ with (AUk,k′ )Un,n′ . Starting from a letter placed in (1, 1) ∈ Z2 and

applying successively s, sk,k
′
, . . . , sk

n−1,k′n−1

we obtain a sequence of patterns in AUki,k′i for i ∈ {0, . . . , n}.
Such patterns are called s-patterns. Note that the substitutions s we define here are deterministic but one
can imagine non deterministic substitutions replacing the function s by a set of substitution rules, where a
letter may have different images by the substitution. The definition of s-patterns naturally extends to non
deterministic substitutions.

To describe the grid of computation, we consider two alphabets G1 and G2 (see Figure 2). The alphabet
G1 = { , , , } describes the zones of computation, , and are called computation boxes
where the computation holds and are called communication boxes through which computation boxes can
send information. More precisely, and are called border computation boxes. The alphabet G2 is
constituted by lines which describe communication channels between the different zones of computation.

G1

G2

Figure 2. The alphabets G1 and G2 on which the substitution is defined.

We define two (4, 2)-two dimensional substitutions, s1 on G1 and s2 on G2 (see Figure 3 for the substitution
rules). Then, we define the product substitution sGrid = s1×s2 on G1×G2. Iterations of sGrid on any pattern
of G1 × G2 produce arbitrarily large computation zones with communication channels between them (this
will be detailed in Section 2.4 and Section 2.7). See Figure 4 for an example of an iteration of sGrid.

Figure 3. Basic elements to define the substitution rules of s. The first row lists the
substitution rules of s1 on the alphabet G1. The second and third rows contain substitution
rules of s2 on some of the letters of G2. All substitution rules of s2 on G2 can be obtained
by superimposing a substitution rule of the second row and a substitution rule of the third
row. One can deduce substitution rules of sGrid on the alphabet G1 × G2 by superimposing
a rule of s1 on G1 and a rule of s2 on G2.

9



Figure 4. Four iterations of the substitution sGrid starting from an element of G1 × G2.

We denote by πG1 (resp. πG2) the projection on G1 (resp. G2).
Sofic subshift generated by the substitution. Given a substitution s, recall that a s-pattern is a pattern
obtained by iteration of the substitution s on a letter (for instance in Figure 4 are drawn s-patterns obtained
after four iterations on the letter ). The subshift generated by a substitution s, denoted Ts, is the set of
configurations x such that any pattern that appears in x also appears in a s-pattern.

S. Mozes studied more general substitutions – non deterministic ones and substitution rules may be of
different sizes – and proved that if the substitution s satisfies some good property and has only strictly
two-dimensional substitution rules, then Ts is a sofic subshift (see Theorem 4.1 of [Moz89]). In particular
Mozes theorem can be applied for all deterministic substitutions, that is to say that all letter have only one
image, like sGrid. As a consequence, the following holds

Fact 2.1. The subshift generated by sGrid,

TGrid = TsGrid =
{
x ∈ (G1 × G2)

Z2

: for all u < x there exists n ∈ N such that u < snGrid( )
}

is a two-dimensional sofic subshift.

Remark. Note that πG1(TGrid) = Ts1 and πG2(TGrid) = Ts2 but TGrid is different of Ts1 ×Ts2 .

A substitution s : A → AUk,k′ may be extended into an application s̃ : AZ2 → AZ2

. This substitution has

unique derivation if for every element x ∈ Ts there exists an unique y ∈ AZ2

and an unique i ∈ Uk,k′ such
that s̃(y) = σi(x).

Since the pattern appears in each rules of the substitutions s1, for every configuration x ∈ Ts1 , there
exists (i, j) ∈ [0, 3]× [0, 1] such that x{n1+i+1}×[n2+j+1,n2+j+2] = for all (n1, n2) ∈ N×N. Moreover this
pattern cannot appear in other position so (i, j) is chosen in an unique way. Consider the plane partition
([n1 + i, n1 + i+3]× [n2 + j, n2 + j+1])(n1,n2)∈N×N of the configuration x, since all boxes have different image

by the substitution, this plane partition gives an unique antecedent y by s̃1. We deduce that s̃1(y) = σi,j(x).
Thus Ts1 has unique derivation. The same type of reasoning holds for ‹s2.

Fact 2.2. The substitutions s1 and s2 have unique derivation.

2.3. Use of communication channels

A communication channel is a sequence of adjacent boxes marked by a special symbol – we call these marked
boxes channel boxes. The channel begins and ends with two computation boxes. In our construction, the
channel boxes are of two types which can appear in the same box:

• communication boxes from alphabet G1 that will be used for internal communication and com-
munication between adjacent Turing machines;

• symbols from alphabet G2 that will be used for communication between non adjacent Turing ma-
chines.

A transfer of information consists in three objects (see Figure 5):

• an initial computation box denoted i and a final computation box denoted f
10



i

f

c

Figure 5. A communication channel denoted c between the computation boxes i and f .

• local rules that determine the symbol transferred through a channel, depending on the direction of
the channel starting from i (resp.reaching f) and the symbol contained in the box i (resp. in the
box f)

• a communication channel c.

Two adjacent communication boxes carry the same symbol, which is transferred through the channel.
Note that the computation boxes i and f are not necessary identical – for example a rule local may make
a change at the end of the communication channel. The same computation box may be at the extremity of
different communication channels.

Note that a communication box may belong to multiple communication channels, but this number must
be bounded – in our construction the maximum number of channels going through a communication box will
be 3 – internal communication inside a computation zone, communication between two adjacent computation
zones of same level and communication between computation zones of different levels.

Fact 2.3. Given a subshift Σ that contains communication channels, it is possible to code transfers of
information through these channels thanks to a product and a finite type operations, provided the symbols
transferred locally depend on the symbol contained in the initial and final computation boxes of the channel.

2.4. Description of computation zones

In this section we only consider the G1 part of the sofic subshift TGrid. We here describe the grid where
computations hold for an element of πG1(TGrid): horizontal dimension stands for the tape and vertical
dimension for time evolution. On a horizontal line, a zone of computation is constituted by a group of
computation boxes located between on the left and on the right. The size of a computation
zone is the number of computation boxes which constitute the zone.

Consider a configuration x ∈ TGrid and a computation zone in x. Since s1 has unique derivation (see
Fact 2.2) for any integer n, there exists a unique way to partition x into 4n × 2n rectangles so that each of
these rectangles is a sn1 (a) for some a ∈ G1. So there exists a minimal integer n such that the computation
zone of x appears in sn1 (a) for some a ∈ G1. We call this integer the level of the computation zone (see
Figure 6).

At the iteration n of the substitution on , that is to say sn( ), we obtained a rectangle of size
4n × 2n. By induction, for all m ∈ [1, n], we get 4n−m ∗ 2n−m = 8n−m zones of computation of level m in
sn( ), the size of these zones of computation is 2m. More precisely, if on the line j ∈ [0, 2n− 1] of sn( )
we find a zone of computation of level m, then in this line we have 4n−m zones of computation of level m.
Moreover for each computation box located at the coordinate (i, j), the next computation box in the same
column above the current one is separated by 2m−1 communication boxes, so it is located at the coordinate
(i, j + 2m), and this computation box is in a zone of computation of level m at the same place that the box
at the position (i, j). There is the same phenomena if we look down. The set of zones of computation of the
same size 2m on a vertical line is called a strip of computation of size 2m.

For any other symbol a ∈ G1, the description is the same except for the bottom row.

Remark. Note that it is possible to have a symbol on a row with no symbol on its right – that is
to say an infinite computation zone. In this case the computation zone has an infinite level.
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Figure 6. Four iterations of the substitution sGrid. Computation zones of level 1,2 and 3
appear on the last pattern. The computation boxes of the first (resp. second and third)
level are pictured with plain (resp. hashed with SW-NE lines and hashed with NW-SE lines)
pattern.

Fact 2.4. Consider x ∈ TGrid and Cn a computation zone of level n of x. We assume that Cn appears in
the ith row of x, and we denote this row by xZ×{i}. Then the following properties hold – remember that in
this section we only consider the G1 part of the subshift TGrid:

(1) Cn contains 2n computation boxes, separated by communication boxes;
(2) on xZ×{i} there are only computation zones of level n, separated by 22n−1 communication boxes;
(3) the row xZ×{i} is repeated vertically every 2n rows, that is to say xZ×{i} = xZ×{i+k×2n} for any

integer k ∈ Z;
(4) vertically, between every pair of consecutive computation boxes of xZ×{i} and xZ×{i+k×2n}, there are

only 2n − 1 communication boxes.

We now explain how it is possible for two computation boxes of the same computation zone and for two
adjacent strips to communicate.
Communication inside a strip. Two computation zones in the same computation strip of level n communicate
thanks to communication boxes of the 2n−1 intermediate rows (vertical transfer of information), and inside a
same computation zone communication between computation boxes occurs on the 2∗4n−1−2n communication
boxes (horizontal transfer of information).

Figure 7 represents a computation grid where all zones of computation of the same size share the same
color and are filled with the same pattern.
Communication between two adjacent strips. Two strips of computation of same level can also communicate
if they are adjacent – that is the leftmost computation box of the first strip and the rightmost computation
box of the second strip are only separated by communication boxes.

Fact 2.5. Communication boxes contain two communication channels – horizontal and vertical channels.
Thanks to these channels, computation boxes into a same strip and two adjacent strips can communicate.

2.5. Initialization of calculations : the clock

The computation strips described in the previous section are restricted in space but not in time, hence incon-
sistent configurations of a Turing machine may appear. To solve this problem, we equip each computation
strip with a clock, that will be reinitialized periodically. At each step of calculation, the clock is increased
and when it is reinitialized, the Turing machine starts a new calculation.

We use a four elements alphabet C = {0, 1, ∅,∼} to construct a sofic subshift TClock obtained by adding

finite type rules on Prod
Ä
TGrid, CZ

2
ä
, where TGrid is the sofic subshift described in Section 2.2. Denote

πC the projection on the second coordinate. The clock is actually a finite automaton that simulates binary
addition modulo 22n

on a 2n boxes tape — special symbol ∅ corresponds to the carry in binary addition,
and symbol ∼ is used to synchronize adjacent computation zones of same level. To prevent the appearance
of inconsistent states on the clock, we forbid the patterns ∅ 0 , ∅ 1 , 0 ∅ , x ∼ and ∼ x

where x ∈ {0, 1, ∅} — we call this finite type condition Consist.
12



Figure 7. Computation grid with the communication between disconnected parts of the
same computation zone. Computation zones of level 1,2 and 3 are pictured with three
different colors and patterns. On a given row there are only computation zones of the same
level, and there are 2n rows between two rows with level n computation zones. A row of a
strip of computation of level n is made of 2n boxes arranged into a 2 ∗ 4n−1 wide block of
boxes. The two ways of communication (horizontal and vertical) are pictured with arrows
whose color corresponds to the level of the computation zone or strip.

∼ ∼ ∼ ∼
∅ ∅ ∅ ∅
1 1 1 1
1 1 1 ∅
1 1 0 1
1 1 ∅ ∅
1 0 1 1
1 0 1 ∅
1 0 0 1
1 ∅ ∅ ∅
0 1 1 1
0 1 1 ∅
0 1 0 1
0 1 ∅ ∅
0 0 1 1
0 0 1 ∅
0 0 0 1
0 0 0 0

Figure 8. On the left, an example of the evolution of the clock for a computation zone of
size 22. On the middle the evolution of a part of this clock on a level 2 computation strip:
on the tape are successively written 001∅, 0011, 01∅∅ and 0101. And on the right, some of
the finite type conditions Count, represented by the allowed patterns, added to the sofic
subshift TGrid to obtain the sofic subshift TClock.

We describe the finite type conditions Count on the alphabet G1 × C in Figure 8.
The clocks of different computation levels evolve according to the rules described in Figure 8, and when

a symbol ∅ reaches the left most computation box , it is reinitialized. Before reinitialization, the clock
passes through the configuration with only ∼ symbols on the tape. Thanks to this configuration, it is possible
to synchronize a clock on a strip of level n with its two neighbours of level n. For example the clock for
a computation strip of level 1 will be 00, 01, 1∅, 11, ∅∅,∼∼, 00, . . . Hence a clock for a computation strip of
level n is reinitialized after 22n

+ 2 steps.
To these local rules we add another finite type condition called Synchro, that ensures that clocks cor-

responding to computation zones on the same level are synchronized, that is they are in the same state at
every calculation step – on a same row, all the clocks are in the same state. This can be easily done by the
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following way: a clock is in the configuration ∼ · · · ∼ only when its left and right neighbours are in the same
configuration – a signal carrying symbol ∼ is sent through communication channel between neighbours. We
thus obtain a sofic subshift

TClock = FTCount∪Consist∪Synchro
Ä
Prod

Ä
TGrid, CZ

2
ää

in which every computation strip of TGrid is now equipped with a clock. Note that we do not impose clocks
for different levels of computation zones to be somehow synchronized.

Fact 2.6. Consider the sofic subshift TClock, in the interior of a strip of computation of level n which is of
size 2n, the clock is initialized every 22n

+ 2 on computation zone of level n.

2.6. A sofic subshift to describe Turing machines behaviour

We are going to use the subshift TClock constructed in Section 2.5 to construct a sofic subshift where the
computation of M in a space 2n holds on each strip of computation of size 2n, for all n ∈ N∗. We want to
apply the rules of PM to adjacent computation boxes that may be separated by a sequel of communication
boxes. As explained in Section 2.3 information may be transferred through communication boxes horizontally
and vertically. The space of computation ofM is restricted by on the left and by on the right. We

start again with the sofic subshift TClock defined in Section 2.5, into the product subshift Prod
Ä
TClock, ÃZ2

ä
where Ã = AM ∪ (AM ×AM ×AM). A symbol in Ã may be either a symbol of AM inside a computation
box or three symbols of AM transferred – horizontally for the first and the second and vertically for the third
– through a communication box. We have defined πG1 , πG2 and πC respectively the projections on G1, G2 and

C in the first coordinate of Prod
Ä
TClock, ÃZ2

ä
. Moreover denote πÃ the projection on the second coordinate

of Prod
Ä
TClock, ÃZ2

ä
, if we are in a communication box, we can write πÃ1

, πÃ2
and πÃ3

respecively for the

first, second and third coordinate of AM ×AM ×AM.

To the sofic-subshift Prod
Ä
TClock, ÃZ2

ä
, we add the following finite conditions, the support of all forbid-

den patterns have the following form:

a
b c d

e
with a, b, c, d, e ∈ G1 × G2 × C × Ã

The conditions are:

• if the center box corresponds to a communication box in TClock, that is to say πG1(c) = , one uses
conditions Transfer: the first and second coordinates are constant along the central row, and the
third coordinate is constant along the central comlumn – more precisely πÃ1

(b) = πÃ1
(c) = πÃ1

(d),

πÃ2
(b) = πÃ2

(c) = πÃ2
(d) and πÃ3

(a) = πÃ3
(c) = πÃ3

(e), these conditions hold if all boxes in
the neighborhood are communication boxes, in fact, if there is a computation box, we just use the
projection πÃ;

• if the center box corresponds to a computation box in TClock, that is to say πG1(c) ∈ { , , },
one uses one of the followings conditions:

– conditions Init: when the clock is in a initial state, there is the blank symbol ] on each box
and the tape is in the initial state on the left computation box – more precisely
∗ if πC(c) =∼ and πG1(c) = then πÃ(c) = πÃ1

(d) = πÃ2
(b) = πÃ3

(a) = (q0, ]),

∗ if πC(c) =∼ and πG1(c) ∈ { , } then πÃ(c) = πÃ1
(d) = πÃ2

(b) = πÃ3
(a) = ];

– conditions Comp: we use the rules described in PM if the clock is not in the initial state –
more precisely
∗ if πC(c) 6=∼ and πG1(c) = then

πÃ3
(a)

πÃ1
(b) πÃ(c) πÃ2

(d)
∈ PM, πÃ(c) = πÃ2

(b) = πÃ1
(d) and πÃ(c) = πÃ3

(e),

∗ if πC(c) 6=∼, πG1(c) = and the third coordinate of δ(πÃ(c)) is different from ←, that
is to say the transition function of the Turing machine does not move the head toward
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the left, then

πÃ3
(a)

] πÃ(c) πÃ2
(d)

∈ PM, πÃ(c) = πÃ2
(b) = πÃ1

(d) and πÃ(c) = πÃ3
(e),

if πC(c) 6=∼, πG1(c) = and the third coordinate of δ(πÃ(c)) is different from →, that
is to say the transition function of the Turing machine does not move the head toward
the right, then

πÃ3
(a)

πÃ1
(b) πÃ(c) ]

∈ PM, πÃ(c) = πÃ2
(b) = πÃ1

(d) and πÃ(c) = πÃ3
(e);

– conditions Bound: if the head wants to go to the left of the computation box or to the right
of the computation box , the head reaches a special state and the computation continues in
an infinite loop until the computation is initiated by the clock – more precisely
∗ if πC(c) 6=∼, πG1(c) = and the third coordinate of δ(πÃ(c)) is ←, then

qWait
πÃ(c) πÃ2

(d)
, πÃ(c) = πÃ2

(b) = πÃ1
(d) and πÃ(c) = πÃ3

(e);

∗ if πC(c) 6=∼, πG1(c) = and the third coordinate of δ(πÃ(c)) is →, then

qWait
πÃ1

(b) πÃ(c)
, πÃ(c) = πÃ2

(b) = πÃ1
(d) and πÃ(c) = πÃ3

(e);

∗ if πC(c) 6=∼, πG1(c) ∈ { , , } and πÃ = qWait, then

πÃ(c) = πÃ3
(a) = πÃ3

(e) = πÃ2
(b) = πÃ1

(d) = qWait,

∗ if πC(c) 6=∼ and πÃ1
(b) = qWait or πÃ2

(d) = qWait then πÃ(c) = qWait.

Define the sofic subshift TM:

TM = FTTransfer∪Init∪Comp∪Bound

Ä
Prod

Ä
TClock, ÃZ2

ää
.

For more convenience, we gather the local rules Transfer, Init, Comp and Bound in WorkM, and the

construction is summed up by: TM = FTWorkM

Ä
Prod

Ä
TGrid,AZ2

Comp(M)

ää
for any Turing machine M.

On each strip of computation appears parts of the space time diagram of the calculation ofM on the empty
word. Each part of these space time diagrams are limited in space by the size of the strip of computation and
the number of steps is bounded exponentially by the length of the strip. Thus we can find in TM arbitrary
large part of space time diagram of M.

Fact 2.7. The subshift TM contains all calculations of the Turing machine M on space time diagram of
size 2n ×

(
22n

+ 2
)

– 2n boxes tape and 22n

+ 2 steps of calculation – starting with an empty entry word.

Example 2.2. In this example the Turing machineMex starts its enumeration with the word ab. The picture
describes how a run is coded on a computation grid. If one only considers computation boxes of level 2, they
form a three by four computation zone (three steps of calculation on a four boxes tape).

2.7. Communication channels between Turing machine of different levels

In the sequel computation strips will need to communicate. For two strips of the same level communication
it is easy since between two zones of computation of adjacent strips of level n, there are only communication
boxes. Then one bit of information can be exchanged between two adjacent strips of level n at each step of
calculation (see Section 2.4). But if the two strips are not of the same level the problem is not as simple.
We present in this section a communication grid that allows a strip of level n to communicate with a strip of
level n− 1 and a strip of level n+ 1. This communication grid is based on the G2 part of the subshift TGrid.

The lines obtained with the alphabet G2 are called communication lines. Communication between com-
putation zones of different levels are made through these lines. Under the action of s2, communication lines
form rectangles. The two rectangles obtained after n iteration of an element of G2 are called communication
rectangles of level n. Each rectangle of level n intersects two rectangles of level n− 1 and it is intersected by
a rectangle of level n+ 1.
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Figure 9. Calculation of a Turing machine on a computation grid with computation zones
of levels 1, 2 and 3. Remark that each ↑ or ↔ arrow actually carries a symbol, but for more
readability they are not pictured here. For the same reason the clock is also omitted.

If we consider a border computation box (resp. ) in a computation zone of level n, it is inside a
communication rectangle of level n. Thus if we go horizontally on the left (resp. the right) of this box we
meet the left border (resp. the right border) of this rectangle. On the bottom and top lines of this rectangle,
we encounter two border computation boxes ( and ) which are in two different computation zones of
level n− 1.

By local rules it is possible to construct communications channel of level n, that start from each border
computation box ( or ) of level n. The channel of communication goes on horizontally on the right and
left branches until it meets the right or left border of a communication rectangle which is necessary of level
n. Then the channel goes up and follows the border of the rectangle until it meets a border computation box.
This box is necessarily of level n− 1. Thus a computation zone can communicate with the four computation
zones of the previous level which are included in itself (see Figure 10). These channels are used in Section 3.5
to ensure communication between computation zones of different levels. We remark that zones of a level n
repeat vertically with half the frequency of level n − 1 zones. Therefore half the level n − 1 zones do not
incoming path from higher zones.

Figure 10. A computation grid with communication lines. The computation zone of level
3 communicates with level 2 computation zones it contains. This communication is made
through the level 3 communication rectangle inside which the left border computation box
is. Symmetrically, one can imagine that the right border communication box communicates
with two other level 2 computation zones, this in not pictured here.
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Fact 2.8. For any computation strip of level n, there are two communication channels starting from each
border computation box or of level n and ending at a border computation box of level n − 1 – one

and one . Starting from a computation zone of level n, the four computation strips of level n − 1
associated can be reached by this way.

3. Proof of the main theorem

The ideas of the proof of the main result of this article were presented in the Introduction. We give here
technical details that rely on constructions presented in the previous sections. We want to prove the following
result.

Theorem 3.1. Any effective subshift of dimension d can be obtained with factor and projective subaction
operations from a subshift of finite type of dimension d+ 1.

Thanks to the formalism of Section 1 and since RE is stable under Fact and SA operations, we rewrite
it:

ClFact,SA(SFT ∩ Sd+1) ∩ S≤d = RE ∩ S≤d.
This result improves Hochman’s [Hoc09] since our construction decreases the dimension.
We here prove this statement in the particular case d = 1, but the proof can be easily extended to any

dimension. Let Σ be a one dimensional effective subshift, defined on an alphabet AΣ.

3.1. Construction of the four layers of SFT

We start with the two-dimensional fullshift AΣ
Z2

with a spatial extension operation, and thanks to factor,
product and finite type operations we construct a sofic subshift TFinal such that after factor and projective
subaction we obtain Σ. To do that, we eliminate configurations x such that xZ×{0} contains a forbidden word
of Σ. Then the projective subaction that consists in only keeping the first coordinate of a two-dimensional
configuration x gives the subshift Σ.

To resume the two-dimensional sofic subshift is made of four layers that are glued together thanks to
product operations:

• first layer contains AZ2

Σ and all horizontal lines are identical by finite condition Align, the other
layers force the horizontal line to be an element of the effective subshift Σ, thus this subshift can be
obtained after projective subaction (to keep horizontal line) and factor (to keep the first layer);

• layer 2 contains the computation zones for Turing machines equipped with the clock (this construction
is described in Section 2), that will be used by both machines MForbid and MSearch; but also the
communication channels that will be used by the same machines to send requests (see Sections 3.4
and 3.5);

• layer 3 is devoted to Turing machinesMForbid, and communication with the Turing machinesMSearch

(this part is described in Section 3.4);
• layer 4 is devoted to Turing machines MSearch and internal communication between these machines

(see Section 3.5).

Of course each of this layer depends on the others (for example layer 3 uses computation zones given by
layer 2), and the dependences are coded thanks to finite type operations.

3.2. Addresses in a strip

Since, on the first layer, each column is formed by one letter of AΣ, to check a word in an horizontal
configuration, it is sufficient to check the first layer in the corresponding columns.

Let Cn be a computation zone of level n of an element x ∈ TGrid and let Sn be the computation strip
associated. By Fact 2.2, there exists an unique i ∈ [0, 4n − 1] × [0, 2n − 1] and an unique y ∈ TGrid

such that snGrid(y) = σi(x) so there exists an unique (j1, j2) ∈ Z2 such that Cn < snGrid(y(j1,j2)). One has

Sn < σ−i(snGrid(y{j1}×Z})) < x, the strip σ−i(snGrid(y{j1}×Z})) is the dependency strip associated with the
computation strip Sn

In TGrid the tape of a Turing machine in a strip of level n is fractured. Thus a Turing machine of level n
cannot view all columns which are in its associated dependency strip. To get this information, this Turing
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Figure 11. Four layers in the final construction.

machine communicates with a Turing machine of lower level (see Section 3.5) but both machines need to
precisely identify a column.

Given a dependency strip associated with a computation strip of level n, it is possible to describe the
coordinate relative to this strip of any column of the dependency strip by an address which contains n letters
in a four elements alphabet. Each sn1 (a) is horizontally decomposed into four (possibly different) sn−1

1 (b)
where a, b ∈ G1. The first letter of the address indicates in which of these dependency stripes of size n − 1
the column is located. By iteration of this process the position of a column is exactly given with n letters
(see Figure 12).

0

0 1 2 3

1

0 1 2 3

2

0 1 2 3

3

0 1 2 3

sn1

sn2

sn3

Figure 12. Addresses of two boxes inside a dependency strip associated with a computation
zone of level 3. The address of the column of the black box is 231 and for the grey box, the
address of the column is 020.

Fact 3.2. For every dependency strip associated with a computation strip of level n, it is possible to describe
the position of any column by an address of length n on a four elements alphabet.

3.3. Responsibility zones

On each computation zone a Turing machine makes calculations. The Turing machine MForbid described
more precisely in Section 3.4 enumerates patterns and then checks that these patterns never appear. Since
it takes an infinite number of steps of calculation to check that one pattern does not appear in the entire
configuration, each Turing machine MForbid only checks a finite zone. The finite zone in which the machine
ensures that no forbidden pattern it produces appears is called the responsibility zone of the machine.

We thus associate a responsibility zone with each strip of computation. For a strip of level n this re-
sponsibility zone is 3 ∗ (2 ∗ 4n−1) = 6 ∗ 4n−1 wide and centered on the strip (see Figure 13), so that the
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responsibility zone of a strip starts at the end of the strip of same level on its left and ends at the beginning
of the strip of same level on its right.

Figure 13. Responsibility zones for strips of level 2. These zones are 24 boxes wide and
overlap on 8 boxes. The responsibility zone of the center strip starts at the end of the strip
on its left and ends at the beginning of the strip on its right.

Responsibility zones defined in this way overlap: two adjacent responsibility zones of same level n share
2 ∗ 4n−1 boxes. These overlappings are essential: if they did not exist, one can imagine that a forbidden
pattern not entirely included in any responsibility zone would not be detected. Moreover the non bounded
size of overlappings ensures that any pattern is inside an infinite number of responsibility zones of increasing
levels.

3.4. Generation and detection of forbidden patterns by MForbid

Since Σ is recursively enumerable, there exists a Turing machine that enumerates the forbidden patterns of
Σ. We here describe a modified version of this Turing machine that also checks that no forbidden pattern

appears inside its responsibility zone, on the first level of the construction AΣ
Z2

. Computation zones are
not connected (see Figure 9), so a calculation of MForbid on a strip of computation of size 2n cannot access
entirely its responsibility zone. The machine MForbid needs the help of a second Turing machine MSearch

to obtain the patterns of AΣ
Z written in its responsibility zone. The behaviour of MForbid is the following:

it enumerates as many forbidden patterns as the size of the computation zone allows, and each time such a
pattern is generated, MForbid checks that it does not appear in its responsibility zone.
Tapes of MForbid. The machine MForbid uses three tapes:

• the first tape is the calculation tape;
• the second tape is a writing tape, where the forbidden patterns are successively written;
• the last tape is the communication tape and contains successively the addresses of letters from

alphabet AΣ needed byMForbid to check no forbidden pattern appears inside its responsibility zone;
MForbid waits for the requiredMSearch machine of its neighbourhood (left, middle or right machine)
to be available, then sends it the address of the letter it wants to access (see Section 3.5).

Detection of the size of the responsibility zone associated. First, the Turing machine MForbid detects the
size of the computation zone between and . Thus, MForbid knows the size of its responsibility zone.
This can be in linear time according to the size of the computation zone considered.
Enumeration of forbidden patterns. Then,MForbid enumerates forbidden patterns and each time it encounter
one, it checks if this forbidden pattern appears in the associated responsibility zone before to enumerate the
following one.
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Check of the responsibility zone. Assume that the machine MForbid has written on its writing tape a for-
bidden pattern f = f0f1 . . . fk−1. Assume that MForbid must check a responsibility zone of level n denoted
a0a1 . . . a6∗4n−1−1. It asks MSearch for the first letter in its responsibility zone a0 (the principe of a request
is explained in Section 3.5), and compares it with f0. If the letters coincide, then it is still possible that
f appears in position 0 in the responsibility zone, so the comparison of the two patterns f and a0 . . . ak
continues. If f0 6= a0 then we are sure that f does not appear at this location. If f = a0 . . . ak, the Turing
machineMForbid stops its computation and enter in a state which says that a forbidden patterns appears in
the checked configuration. This state will be forbidden in the final subshift of finite type. When the word
a0 . . . ak−1 is checked, MForbid continues the comparison with a1 . . . ak, . . . , a6∗4n−1−k−1 . . . a6∗4n−1−1. At
most, to check if f appears in the responsibility zone of level n ,MForbid takes 6 ∗ 4n−1 ∗ k ∗ t(n) where t(n)
is the time takes by MSearch to answer a request of MForbid; the time t(n) is estimated in Section 3.5.

Responsibility zone of MForbid︷ ︸︸ ︷
a0 a1 a2 . . . . . . . . . . . . aN

f0 f1 f2 . . .

f0 f1 f2 . . .

f0 f1 f2 . . .

Figure 14. When a forbidden pattern
f = f0f1 . . . fk is generated by MForbid,
comparisons with the patterns appearing
in the responsibility zone of MForbid are
made in parallel.

3.5. Scan of the entire responsibility zone by MSearch

The Turing machine MSearch is sent a request – that is to say a sequence of symbols which codes the
address of a letter inside a responsibility zone of a MForbid machine – by MForbid each time an address
is totally written on the communication tape (the third tape of MForbid). The Turing machine MSearch

must respond the letter corresponding to the address inside the responsibility zone, on the first level of the

construction AΣ
Z2

. Note that the responsibility zone of aMForbid machine of level n does not exactly match
with the communication network of MSearch machines of same level. Actually a MForbid machine shares
its responsibility zone with three MSearch machines, and depending on the address of the bit requested, the
MForbid sends its request to the appropriate MSearch machine (see Figure 15 for an example).
Tapes of MSearch. The machine MSearch of level n uses three tapes:

• the first tape is the calculation tape;
• the second tape is the hierarchical request tape; this is where the bits of an address transferred by

the MSearch of level n+ 1 are written.
• the three last tapes are the left request tape, the center request tape and the right request tape which

correspond to the addresses of the bits asked by the Turing machine MForbid of level n localized
respectively to the left, inside and to the right of the communication strip of the machine MSearch

considered.

Request sent by MForbid. Each time that an address is written on the communication tape of a Turing
machineMForbid, this machine sends this request to the correspondingMSearch of the same level localized in
the same communication strip or in communication strips directly to the left or to the right. MForbid sends
one bit composing the address every step of calculation, so that a level n Turing machine sends a bit every
2n rows – if we implement Turing machines in the subshift of finite type described in Section 2.6. Adjacent
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strips of same level can communicate by communication channels described in Section 2.4 using the fact that
in one row there is only computation zones of same level (see Fact 2.4). The bits of the address are sent one
by one, hence the transfer takes 2n ∗ n rows since the size of the address of the request is n. The request
is written on the corresponding request tape. MForbid waits for the answer of the corresponding MSearch

before to continue the computation.
Request sent by MSearch. A Turing machine MSearch of level n ≥ 2 can make a request at one of the four
Turing machines MSearch of level n − 1 localized in its dependency. The asking machine sends one bit
composing the address every step of calculation, so that a level n Turing machine sends a bit every 2n

rows and thus it takes 2n ∗ n rows to transfer the address of size n. The machine MSearch of level n uses
communication channels described in Fact 2.8 to communicate: each border computation box and
is surrounded by a rectangle of the same level n which communicates with border computation box of the
previous level n− 1.
Treatment of a request. A machine MSearch of level n successively responds to the different request tapes.
The address of the request tape considered is copied on the computation tape, and the machine keeps in
memory to which request tape it is responding. If the machine MSearch is of level 1, it directly reads the
letter of AΣ. Otherwise the machineMSearch of level n transmits the address to the corresponding machine
MSearch of level n− 1: the first letter of the address indicates which channel MSearch must be used to send
the continuation of the address, converted into a n − 1 bits address by erasing the first bit of the address.
Then the machine MSearch of level n waits for the answer, which is obtained when a machine of level 1 is
reached (see Figure 15). This letter must be transferred back until it finds the machine which initially made
the request.

Figure 15. An example of request by aMForbid machine of level 3 – the computation zone
on the top of the picture. Depending on the address of the letter requested, MForbid sends
its request to either the left, center or rightMSearch machine. On this example theMForbid

machine sends its request to the left MSearch machine of level 3, which transmits it to a
MSearch machine of level 2 and finally to a MSearch machine of level 1. This last machine
can answer the request.

Transfer back of the information. When a Turing machine MSearch obtains the bit corresponding to the
request, it transfers it by the communication channel to the Turing machine which made the request via the
request tapes. This operation is instantaneous for two reasons. First there is just one box of information to
transmit. Secondly there is just one information on the channel since the corresponding Turing machine waits
for an answer. A Turing machine MSearch eventually answers the request of the Turing machine MForbid

of the same computation strip, since every MSearch alternately works for MForbid of same level and higher
levels MSearch machines.
Initialization of the computations. When the computation is initialized, it is important not to erase the
addresses on the request tapes, because Turing machines of higher levels may be waiting for an answer.
Requests are only made toward lower level, so they are answered even if the address does not correspond to
a real request.

Another problem of initialization occurs when a Turing machine makes a request, but is initialized before
to obtain its answer. Actually in this case we impose that once the Turing machine is initialized, it waits
for the answer to its request from the previous computation before to begin a new one.
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Time taken byMSearch to answer at a request. Denote t(n) the time that a machineMSearch of level n needs
to answer a request from MForbid. Since a machine of level n makes a calculation step every 2n rows, a
machine MSearch of level n needs 2n ∗ t(n) rows to answer a request from MForbid.

A machine MSearch of level n ≥ 2 needs the help of a machine MSearch of level n− 1: it transfers one by
one the n− 1 bits of the address, one bit is transferred every 2n rows, this takes n ∗ 2n rows. Then it waits
for the MSearch of level n− 1 answer. It is possible that this MSearch of level n− 1 is already busy, and the
level n machine has to wait – in the worst case threeMForbid machines of level n− 1 are already waiting for
an answer. Hence the MSearch of level n− 1 possibly works for the three neighbouring MForbid machines of
level n− 1, this takes 3× t(n− 1) steps of calculation, before to work for the MSearch of level n, this takes
t(n− 1) steps of calculation. Thus the number of rows used to answer at a request is given by

2nt(n) ≤ n ∗ 2n + 4 ∗ 2n−1 ∗ t(n− 1).

We deduce from the previous inequality that t(n) ≤ n22n.

Fact 3.3. All requests of MForbid of level n are handled by the MSearch machine of same level in at most
n22n steps of calculation for large enough n.

Time taken by MForbid to check if a forbidden word appear. Assume that a Turing machine MForbid must
check if a word f of size k appears in the responsibility zone associated. According to Section 3.4, this takes
6 ∗ 4n−1 ∗ k ∗ t(n) ≤ k ∗ n2 ∗ 23n+1 steps of calculation.

Let (fi)i∈N be the enumeration of forbidden patterns by MForbid. Denote t(f0, . . . , fk) the time taken by
MForbid to scan if the words (fi)i∈[0,k] appear in the responsibility zone associated and denote t′(f0, . . . , fk)
the time taken by MForbid to compute the words (fi)i∈[0,k] without scaning the responsibility zone. Thus,
the time taken by a Turing machine MForbid of level n to scan the words (fi)i∈[0,k] is given by

t(f0, . . . , fk) ≤ t′(f0, . . . , fk) + (k + 1) ∗max{|fi| : i ∈ [0, k]} ∗ n2 ∗ 23n+1.

Since t′(f0, . . . , fk) does not depend of the level ofMForbid and since by Fact 2.7 a machineMForbid of level
n could make 22n

+2 steps of calculation, there exists a level n such that all Turing machines of level n check
that the words (fi)i∈[0,k] does not appear in their responsibility zones.

Fact 3.4. For all forbidden word of Σ, there exists n ∈ N such that every turing machine MForbid of level
n checks that the word does not appear in its responsibility zone.

3.6. The final construction

We sum up the construction of the final subshift:

(1) First, we construct the four layers:

TLevel = Prod
Ä
AZ2

,TGrid,AZ2

Comp(MForbid)
,AZ2

Comp(MSearch)

ä
;

(2) then, we align all the letter of the first layer to obtain the same configuration horizontally TAlign =
FTAlign (TLevel);

(3) finally, we include the working of MForbid and MSearch thanks to WorkMForbid
∪WorkMSearch

and
we include the communication between the different layers thanks to Com. Moreover, we include
the condition Forbid which exclude the configuration whenMForbid encounters a forbidden pattern.
We obtain:

TFinal = FTWorkMForbid
∪WorkMSearch

∪Com∪Forbid
(
TAlign

)
.

The alphabet of TFinal depends of the Turing machine which enumerates the forbidden patterns of Σ,
it is O((q.a)3) where q is the number of states and a the cardinal of the alphabet of this Turing machine.

Moreover the support of the forbidden patterns of TFinal have the following shape .

We denote by T the subshift Factπ (SAZe1 (TFinal)) where π is a morphism that only keeps letters from
alphabet AΣ from the first layer. We want to compare Σ and T.
Any configuration in Σ can be obtained (Σ ⊆ T): Let x ∈ Σ, by construction of TFinal it is easy to construct
a two-dimensional configuration y such that y ∈ TFinal and π(y|Ze1) = x.
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Any configuration constructed is in Σ (T ⊆ Σ): Let x ∈ T, we prove that x ∈ Σ. By definition there exists
y ∈ TFinal such that π(y|Ze1) = x. It is sufficient to prove that every word in x is in L(Σ). Let w be a
word that appears in x. Suppose that w is not in L(Σ), by Fact 3.4, there exists n ∈ N such that in any
computation strip of level n, the word w is checked in the associated dependency strip. In particular the
word w will be compared with any word of length |w| that appears in x. Since w appears in x, there would be
a computation strip of level n in which the calculation ofMForbid violates the finite type condition Forbid.
This proves the inclusion T ⊆ Σ.

3.7. Effective subshift as sub-action of a two-dimensional sofic

In fact the previous construction gives a more general result. If we consider

SAZe1 : π(TFinal) −→ Σ
x 7−→ xZ×{0}

it is a continuous bijective map. Indeed, for all x ∈ π(TFinal), one has x(i,k) = x(j,k) for all i, j, k ∈ Z since
by condition Align all columns contain the same symbol. Moreover, SAZe1 ◦ σe1 = σΣ ◦SAZe1 , thus SAZe1
realizes a conjugation between the dynamical system (π(TFinal), σ

e1) and (Σ, σΣ). We deduce the following
theorem:

Theorem 3.5. Any effective subshift of dimension d is conjugate to a sub-action of a sofic subshift of
dimension d+ 1.
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