
Submitted to the Symposium on Theoretical Aspects of Computer Science
www.stacs-conf.org

AN ORDER ON SETS OF TILINGS CORRESPONDING TO

AN ORDER ON LANGUAGES

NATHALIE AUBRUN 1 AND MATHIEU SABLIK 2

1 Institut Gaspard Monge, Université Paris-Est Marne-la-Vallée,
77454 Marne-la-Valle Cedex 2, France.
E-mail address: nathalie.aubrun@ens-lyon.fr

2 Laboratoire d’Analyse, Topologie, Probabilité, Université de Provence,
39, rue F. Joliot Curie, 13453 Marseille Cedex 13, France.
E-mail address: sablik@cmi.univ-mrs.fr

Abstract. Traditionally a tiling is defined with a finite number of finite forbidden pat-
terns. We can generalize this notion considering any set of patterns. Generalized tilings
defined in this way can be studied with a dynamical point of view, leading to the notion of
subshift. In this article we establish a correspondence between an order on subshifts based
on dynamical transformations on them and an order on languages of forbidden patterns
based on computability properties.

Introduction

Given a finite set of tiles A and a finite set of forbidden patterns P , a d-dimensional

tiling is an element of AZd

where the local conditions imposed by P are satisfied at every
point of Zd. This basic model captures geometrical aspect of computation [Ber66, ?, Han74].
To estabish structural properties of tilings, it is interesting to study the set of tilings which
satisfies the conditions imposed by P [BDJ08].

It is easy to generalize the usual notion of tiling considering infinite set of forbidden
patterns. A set of generalized tilings can be studied with a dynamical point of view with
the notion of subshift [LM95, Kit98]. In this theory, a set of usual tilings corresponds to a
subshift of finite type.

In dimension 1, the class of subshifts of finite type is well understood. In particular, the
language of a subshift of finite type is given by a local automaton [Bea93]. Given this result,
it is natural to characterize subshifts which of language is given by a finite automaton. It
is the class of sofic subshifts which can all be obtained as a factor of a subshift of finite
type [LM95]. Thus, each sofic subshift is obtained by a dynamical transformation of a
subshift of finite type.

Multidimensional subshifts of finite type are not well understood. For example, it is not
easy to describe their languages. Moreover, in addition to factors, there exist other types of
dynamical transformations on multidimensional subshift: the sub-action of a d-dimensional

1998 ACM Subject Classification: G.2.m.
Key words and phrases: tiling, subshift, Turing machine with oracle, subdynamics.

c© N. Aubrun and M. Sablik
Confidential — submitted to STACS

2 N. AUBRUN AND M. SABLIK

tiling consists in taking the restriction of a tiling to a subgroup of Zd. Hochman showed
that every d-dimensional subshift whose set of forbidden patterns is recursively enumerable
can be obtained by sub-action and factor of a d + 2-subshift of finite type [Hoc07].

This result suggests that a subshift can simulate another one, where the notion of
simulation is given by operations on subshifts inspired by the dynamical theory. This in-
volves different orders depending on the operations which are considered. In this paper, we
present five types of operations: product, factor, finite type, sub-action and superposition.
It is possible to formulate classic results with this formalism. Our main result (Theorem 4.2)
establishes a correspondance between an order on subshifts based on dynamical transfor-
mations on them and an order on languages of forbidden patterns based on computability
properties.

The paper is organized as follows: Section 1 is devoted to introduce the concepts of
tiling and subshift. In Section 2, we present several operations on subshift which allow to
define the notion of simulation of a subshift by another one. Then, in Section 3, we define
an important tool to define runs of a Turing machine with a sofic subshift. This tool is used
to proove our main result in the last Section.

1. Definitions

1.1. Generalized tilings

Let A be a finite alphabet and d be a positive integer. A configuration x is an element

of AZd

. Let S be a finite subset of Zd. Denote xS the restriction of x to S. A pattern is
an element p ∈ AS and S is the support of p, which is denoted by supp(p). For all n ∈ N,
we call Sd

n = [−n;n]d the elementary support of size n. A pattern with support Sd
n is an

elementary pattern. We denote by Ed
A =

S
n∈NA[−n;n]d the set of d-dimensional elementary

patterns. A d-dimensional language L is a subset of Ed
A. A pattern p of support S ⊂ Zd

appears in a configuration x if there exists i ∈ Zd such that for all j ∈ S, pj = xi+j, we
note p ⊏ x.

Definition 1.1. A tile set is a tuple τ = (A, P) were P is a subset of Ed
A called the set of

forbidden patterns.
A generalized tiling by τ is a configuration x such that for all p ∈ P , p does not appear

in x. We denote by Tτ the set of generalized tilings by τ . If there is not ambiguity on the
alphabet, we just denote it by TP .

Remark 1.2. If P is finite, it is equivalent to define a generalized tiling by allowed patterns
or forbidden patterns, the latter being the usual definition of tiling.

1.2. Dynamical point of view : subshifts

One can define a toplogy on AZd

by endowing A with the discrete topology, and con-

sidering the product topology on AZd

. For this topology, AZd

is a compact metric space on
which Zd acts by translation via σ defined by:

σi
A : AZd

−→ AZd

x 7−→ σi
A(x) such that σi

A(x)u = xi+u ∀u ∈ Zd.

for all i in Zd. This action is called the shift.

AN ORDER ON SETS OF TILINGS CORRESPONDING TO AN ORDER ON LANGUAGES 3

Definition 1.3. A d-dimensional subshift on the alphabet A is a closed and σ-invariant

subset of AZd

. We denote by S (resp. Sd, S≤d) the set of all subshifts (resp. d-dimensional
subshifts, d′-dimensional subshifts with d′ ≤ d).

Let T ⊆ AZd

be a subshift. Denote Ln(T) ⊆ A[−n;n]d the set of elementary patterns
of size n wich appear in some element of T, and L(T) =

S
n∈N Ln(T) the language of T

which is the set of elementary patterns which appears in some element of T.

It is also usual to study subshift as dynamical system [LM95, Kit98], the next propo-
sition shows the link between the two notions.
Proposition 1.4. The set T ⊂ AZd

is a subshift if and only if T = TL(T)c where L(T)c

is the complement of L(T) in Ed
A.

Definition 1.5. Let A be a finite alphabet and T ⊂ AZd

be a subshift.

The subshift AZd

is the full-shift associated to A. Denote FS the set of all full-shift.
If there exists a finite set P ⊆ Ed

A such that T = TP then T is a subshift of finite type.
Denote SFT the set of all subshift of finite type. Subshift of finite type correspond to the
usual notion of tiling.

If there exists a recursively enumerable set P ⊆ Ed
A such that T = TP then T is a

recursive enumerable subshift. Denote RE the set of all recursive enumerable subshift.

2. Operations on tilings

2.1. Simulation of a tiling by another one

An operation op on subshifts transforms a subshift or a pair of subshifts into another
one; it is a function op : S → S or op : S × S → S. We remark that a subshift T (resp. a
pair of subshifts (T′,T′′)) and the image by an operation op(T) (resp. op(T′,T′′)) do not
necessary have the same alphabet or dimension. An operation can depend on a parameter.

Let Op be a set of operations on subshifts. Let U ⊂ S be a set of subshifts. We define
the closure of U under a set of operations Op, denoted by ClOp(U), as the smallest set stable
by Op which contains U .

We say that a subshift T simulates a subshift T′ by Op if T′ ∈ ClOp(T). Thus there
exists a finite sequence of operations chosen among Op, that transforms T into T′. We note
it by T′ ≤Op T. We remark that ClOp(T) = {T′ : T′ ≤Op T}.

2.2. Local transformations

We describe three operations that modify locally the subshift.
• Product P :

Let T ⊆ AZd

and T′ ⊆ BZd

be two subshifts of the same dimension, define:

φP (T,T′) = T×T′ ⊆ (A×B)Zd

.

One has ClP (FS) = FS and ClP (SFT) = SFT .
• Finite type FT:

These operations consist in adding a finite number of forbidden patterns to the initial

subshift. Formally, let A be an alphabet, P ⊆ Ed
A be a finite subset and let T ⊆ AZd

be a
subshift. By proposition 1.4, there exists P ′ such that T = TP ′ . Define:

φFT (P,T) = TP∪P ′ .

4 N. AUBRUN AND M. SABLIK

If P and T have not the same alphabet or the same dimension, put φFT (P,T) = T.
We remark that φFT (P,T) could be empty if P prohibit too many patterns. By FT , one
lists all operations on subshifts which are obtained by φFT .

By definition of subshift of finite type, one has ClFT (FS) = SFT .
• Factor F:

These operations allow to change the alphabet of a subshift by local modifications. Let

A and B be two finite alphabets. A morphism π : AZd

→ BZd

is a continuous function
which commutes with the shift action (i.e. σi ◦ π = π ◦ σi for all i ∈ Zd). In fact, such
function can be defined locally [Hed69]: that is to say, there exist U ⊂ Zd finite, called
neighborhood, and π : AU → B, called local function, such that π(x)i = π(xi+U) for all
i ∈ Zd. Let T be a subshift, define:

φF (π,T) = π(T).

If the domain of π and T do not have the same alphabet or the same dimension, put
φF (π,T) = T. By F , one lists all operations on subshifts which are obtained by φF .

One verifies that ClF (SFT) 6= SFT (see Example ?? in the annex).

Definition 2.1. A sofic subshift is a factor of a subshift of finite type. Thus, the set of
sofic subshifts is Sofic = ClF (SFT).

2.3. Transformation on the group of the action

We describe two operations that modify the group on which the subshift is defined,
thus we change the dimension of the subshift.
• Sub-action SA:

These operations allow to take the restriction of a subshift of AZd

according to a
subgroup of Zd. Let G be a sub-group of Zd generated by u1, u2, . . . , ud′ (d′ ≤ d). Let

T ⊆ AZd

be a subshift, define:

φSA(G,T) =

ß
y ∈ AZd

′

: ∃x ∈ T such that ∀i1, . . . , id′ ∈ Zd′ , yi1,...,i
d′

= xi1u1+···+i
d′ud′

™
.

It is easy to proof that φSA(G,T) is a subshift of AZd
′

. If T ⊆ AZd

and G is not a
subgroup of Zd, put φSA(G,T) = T. By SA, one lists all operations on subshifts which are
obtained by φSA.

One verifies that ClSA(SFT) 6= SFT and ClSA(SFT) 6= Sofic (see respectively Ex-
ample ?? and Example ?? in the annex).

Theorem 2.2. ClSA(RE) = RE.

• Superposition SP:

These operations increase the dimension of a subshift by a superposition of the initial
subshift. Let d, d′ ∈ N∗. Let G and G′ be two subgroups of Zd+d′ such that G is isomorphic

to Zd and G⊕G′ = Zd+d′ . Let T ⊆ AZd

be a subshift, define:

φSP (G, G′,T) =

ß
x ∈ AZd+d

′

: ∀i ∈ G′, xi+G ∈ T

™
.

If T ⊆ AZd

and G is not isomorphic to Zd or G⊕G′ 6= Zd+d′ , put φSP (G, G′,T) = T.
By SP , one lists all operations on subshifts which are obtained by φSP .

It is easy to verify that ClSP (SFT) = SFT .

AN ORDER ON SETS OF TILINGS CORRESPONDING TO AN ORDER ON LANGUAGES 5

With this formalism, the result of M. Hochman [Hoc07] can be writen:

ClF,SA(SFT) = RE .

More precisely, he proves that ClF,SA(SFT ∩ Sd+2) ∩ S≤d = RE ∩ S≤d.

3. Simulation of Turing machines by subshifts

A Turing machine is a model of calculation defined by local rules. It seems natural to
represent the runs of a machine by a 2-dimensional subshift: one dimension representing
the tape and the other time evolution. But the main problem is that in general the Turing
machine uses a finite part of the space-time diagram which is represented by the subshift.
Robinson [?] proposes a self-similar structure to construct an aperiodic subshift of finite
type of dimension 2. In fact, it is also possible to use a general construction with substi-
tutions due to Mozes [?]. This construction allows to give to the machine finite spaces on
which it calculates independently. The problem is that we cannot control the entry of the
Turing machine in view to recognize a configuration of a subshift. To obtain this property,
Hochman [Hoc07] uses similar tools to construct a sofic subshift of dimension 3 in order to
to prove that ClF,SA(SFT) = RE . In this Section, we present a similar construction which
is used to prove our main result in Section 4.

3.1. Substitution tilings

Let A be a finite alphabet. A substitution is a function s : A → AUk where Uk =
[1; k] × [1; k]. We naturally extend s to a function sn : AUn → AUnk by identifying AUnk

with (AUk)Un . Starting from a letter placed in (1, 1) ∈ Z2 and applying successively

s, sk, . . . , skn−1

we obtain a sequence of patterns in AUki for i ∈ {0, . . . , n}. Such patterns
are called s-patterns.

Definition 3.1. The subshift Ss defined by the substitution s is

Ss =
¶
x ∈ AZ2

: every finite pattern of x appears in a s-pattern
©

.

3.2. A framework for Turing machines

We now describe a family of substitutions sn defined on the alphabet {◦, •}, which
are used by M. Hochman [Hoc07] to prove ClF,SA(SFT) = RE . For every integer n the
substitution sn is given by :

◦ 7−→

◦ . . . ◦ ◦

.

.

.
.

.

.

• ◦

◦ .

.

.

.

.

.

.

.

.

• ◦ . . . ◦

and • 7−→

◦ . . . ◦ •

.

.

.
.

.

.

• ◦

◦ .

.

.

.

.

.

.

.

.

• ◦ . . . ◦

where the patterns are of size n× n. Let Sn be the tiling defined by substitution sn.
These substitutions have good properties, in particular they are unique derivation sub-

stitutions and for this reason they verify [?]; one obtains:

Proposition 3.2. For every integer n, there exists a SFT S̃n and a letter to letter morphism

πn such that Sn = πn(S̃n).

6 N. AUBRUN AND M. SABLIK

Definition 3.3. If T ⊆ AZ2

is a subshift, we define T(↑) by :

T(↑) =
¶
x ∈ AZ2

: ∃y ∈ T,∀(i, j) ∈ Z2, x(i,j) = y(i,j−i)

©
.

Notice that if T is an SFT, then T(↑) is also an SFT (just shift the forbidden patterns

of T to get those of T(↑)).

We now work on the space Z3 = Ze1 ⊕ Ze2 ⊕ Ze3 and we construct the SFT W2, W3

and W5 ⊆ {◦, •}
Z3

defined by :

x ∈W2 ⇐⇒

®
∀k ∈ Z, x|Z2×{k} ∈ S

(↑)
2

∀u ∈ Z3, xu = xu+e3
(∗)

x ∈W3 ⇐⇒

®
∀j ∈ Z, x|Z×{j}×Z ∈ S

(↑)
3

∀u ∈ Z3, xu = xu+e2
(∗∗)

x ∈W5 ⇐⇒

®
∀k ∈ Z, x|Z2×{k} ∈ S

(↑)
5

∀u ∈ Z3, xu = xu+e3
(∗ ∗ ∗)

Let x be a configuration of the subshift W2 ×W3 ×W5 ⊆ ({◦, •}3)Z3

. If we focus
on the subshift W3 ×W5, we can see rectangles whose corners are defined by the letter
(•, •) of {◦, •}2. These rectangles of size 5n × 3m are spaces of calculation on which the
Turing machine runs independently. On top of that the information brought by W2 gives
the size of the entry pattern p on each rectangle : scanning the base of a rectangle from
left to right, the entry word is located between the left corner and the first symbol • due
to W2 that occurs. This results are resumed in proposition 3.4 and figures can be found in
appendix ??.

Proposition 3.4. The product W2 ×W3 ×W5 is a partition of the space into rectangles,

in which each plane {i} × Z2 is paved by rectangles of same width and height. Moreover if

there is a 5m× 3p-rectangle in (i, j, k) ∈ Z3 with entry of size 2n, then there exists i′ and i′′

such that there exists a 5m+1×3p-rectangle in (i′, j, k) and a 5m×3p+1-rectangle in (i′′, j, k)
both with entry of size 2n.

This result will be used in Section 4.2.2 to prove that, thanks to these arbitrary large
rectangles, one can simulate a calculation with an arbitrary number of steps.

3.3. A 2-dimensional sofic subshift

We now explain how we can use the previously constructed framework to simulate a
Turing machine by a subshift. First we recall the formal definition of a Turing machine.

Definition 3.5. Let M = (Q,A,Γ, ♯, q0, δ,QF) be a Turing machine, where :

• Q is a finite set of states; q0 ∈ Q is the initial state;
• A are Γ are two finite alphabets such that A (Γ;
• ♯ /∈ Γ is the blank symbol;
• δ : Q× Γ→ Q× Γ× {←, · ,→} is the transition function;
• F ⊂ QF is the set of final states.

We can describe its behaviour with a set of 2-dimensional patterns. First dimension
stands for the tape and second dimension for time evolution. For example the rule δ(q1, x) =
(q2, y,←) will be coded by :

(q2, z) y z′

z (q1, x) z′

AN ORDER ON SETS OF TILINGS CORRESPONDING TO AN ORDER ON LANGUAGES 7

Denote by PM the set of forbidden patterns constructed according to the rules of M.
One can consider the subshift of finite type TPM

where each local pattern correspond to
calculations of the machineM. Then thanks to a product operation we superimpose these
calculations on the framework, with the following finite conditions :

• condition Init : to copy out the entry word ;
• condition Head : the initial state q0 appears on every rectangle down left corner

and only here;
• condition Stop : when a side of a rectangle is reached by th head of the machine,

the calculation stops and if necessary the tape contents is just copied out until the
top of the rectangle;
• condition Final : when a final state is reached, the tape contents is just copied out

for next steps of calculation until the top of the rectangle.

Define TM the subshift:

TM = φFT

Ä
{Init,Head,Stop,Final},AZ3

× (W2 ×W3 ×W5)× φSP (Ze2 ⊕ Ze3,Ze1,TPM
)
ä
.

By stability of the class of subshift of finite type by SP , TM is a subshift of finite
type up to a letter to letter morphism; thus TM ∈ Sofic. For all i ∈ Z, in the plane
{i} ×Z2, it is possible to find rectanges of size 5m × 3p arbitrary large and an entry of size
2n also arbitray large. On each rectangle, thanks to the conditions PM, we can observe the
evolution of the Turing machine M - see the figure in Appendix ??.

Remark 3.6. The construction described here only works for usual Turing machine. In
Section 4.2.2 we explain how to add finite conditions on the subshift TM ifM is a Turing
machine with oracle.

4. Study of the semi-order ≤P,F,FT,SA,SP

In this section we focuse on the five operations described previously. Our aim is to
study the semi-order ≤P,F,FT,SA,SP .

4.1. A semi-order on languages

A Turing machine with semi-oracle is a usual machine with on top of that a special
state q? and an oracle tape. The behaviour of a Turing machine with semi-oracle L, where
L is a language, is the following : the machine reads an entry pattern p and writes a pattern
on the oracle tape, until the state q? is reached. If the pattern written on the oracle tape is
in L then the machine stops, else it keeps on calculating.

We define a semi-order on languages :

L � L′ ⇐⇒ ∃ML′

a Turing machine with semi-oracle L′ such that dom(ML′

) = L,

where dom(M) is the domain of the machine M that is to say the set of entry words on
which M stops. We refer to [?] for definitions and properties of similar semi-orders on
languages based on computability.

Proposition 4.1. � is a semi-order.

8 N. AUBRUN AND M. SABLIK

Consider the equivalence relation L ≈ L′ if and only if L � L′ and L′ � L. This
equivalence relation defines classes of languages, and we can compare them within the
semi-order. For instance, the class of recursively enumerable languages is the smallest for
this semi-order. We have ∅ ≈ L for every recursively enumerable language L.

4.2. Closure theorem:

The semi-order on languages defined by semi-oracle Turing machines corresponds to a
semi-order on subshifts:

Theorem 4.2. Let T be a subshift, one has:

ClP,F,SA,SP,FT(T) = {TL : L � L(T)c} .

Or equivalently, if T′ and T′′ are two subshifts of dimension d′ and d′′, one has:

T′ ≤P,F,FT,SA,SP T′′ ⇐⇒ L(T′)c � L(T′′)c.

4.2.1. Direct inclusion. Put L = L(T)c. To show ClP,F,SA,SP,FT (T) ⊆ {TL′ : L′ � L}, it is

sufficent to show the stability of {TL′ : L′ � L} by all the operations. Let L1 ⊆ E
d1

A1
and

L2 ⊆ E
d2

A2
be two languages such that Li � L for i ∈ {1, 2}. Thus, for i ∈ {1, 2}, there exists

Turing machine Mi with semi-oracle L whose domain is exactly Li.
• Stability under product: Let T′ = φP (T1,T2), so T′ = TL′ with L′ = L1×E

d2

A2
∪

Ed1

A1
× L2. The language L′ could be the domain of a Turing machine M′ with semi-oracle

L. It suffies to simulate the two Turing machines M1 and M2 (each machine runs during
one step successively) on each coordinates of a pattern of L′. Thus L′ � L.
• Stability under finite type: Let T′ = φFT (P,TL1

). Since P is finite, one has
L1 ∪ P � L1 � L and T′ = TL1∪P .

• Stability under factor map: Let T′ = φ(π,TL1
) where π : AZd1

1 → BZd1 is a
morphism of neighborhood Sd1

n and local function π. One has T′ = TL′ where L′ = (π(Lc
1))

c.

Moreover, one has L′ � L1. Indeed, if p ∈ Ed1

B , we simulate the machineM1 on all pattern

p′ ∈ Asupp(p)+Sd1
n such that π(p′) = p, running successively one step for each pattern.

• Stability under sub-action: Let T′ = φSA(G,TL1
) ⊆ AZd

′

1 where G is a subgroup

of Zd1 of dimension d′ ≤ d1. We consider the language L′ ⊆ Ed1

A1
which is the domain of the

Turing machine M′: on a pattern p ∈ Ed′

A1
of support U, a Turing machine M′ simulates

successively M1 on every entry word of support [−n;n]d1 which completes p in Ed1

A1
where

[−n;n]d1 is the minimal support which contains U embedded in G. Thus L′ � L1, moreover
T′ = TL′ . This is exactly the same principle as in the proof of Theorem 2.2.
• Stability under superposition: Let T′ = φSP (G, G′,TL1

) where G is isomorph

to Zd1 and G ⊕ G′ = Zd1+d. Let L′ ⊆ Ed1+d
A1

be the language where each pattern p is the

superposition of patterns p1, . . . , pd ∈ E
d1

A1
and there exists i ∈ {1, . . . , d} such that pi ∈ L1.

Thus L′ � L1 and T′ = TL′ .

AN ORDER ON SETS OF TILINGS CORRESPONDING TO AN ORDER ON LANGUAGES 9

4.2.2. Reciprocal inclusion. Let T ⊆ AZd

be a subshift; define L = L(T)c ⊆ Ed
A. Let

L′ ⊆ Ed′

B be a language such that L′ � L. We want to prove that TL′ ∈ ClP,F,SA,SP,FT (T).
Here, we assume that L and L′ are one-dimensional languages, but the proof can be

adapted to the general case. We explain how to construct the subshift TL′ thanks to
operations P,F, FT, SA and SP applied on T = TL.

Since L′ � L there exists a Turing machineM with semi-oracle L such that dom(M) =
L′. We transform this Turing machine so that it only take in entrance patterns of support
[0, 2n−1] (because checked patterns are given by W2) and at the moment when the state q?

is reached, the word written on the oracle tape is copied out in the alphabet ‹A, which is
simply a copy of A, then again copied out in the alphabet A once the oracle has given its
answer.

We first list auxiliary subshifts that we need to construct TL′ :

• the original subshift TL written in the copy of A: ‹TL ⊆ ‹AZ will simulate the oracle;

• turing machine M is coded by a subshift of finite type TM ⊆ O
Z2

, where O is an

alphabet that contains at least A, ‹A and B;
• the framework for this Turing machine will be given by W2, W3 and W5 defined

in Section 3; they are defined on the alphabet {•, ◦} and are subshifts of finite type
up to a letter to letter morphism.

Construction of TL′ . The principle is to construct Σ ∈ ClP,F,SA,SP,FT(TL) a 4-dimensional

subshift on the alphabet C = A× ‹A×B × {•; ◦}3 ×O. Denote (e1, e2, e3, e4) the canonical
basis of Z4. We need these four dimensions for different reasons :

• the subshift TL′ will appear on Ze1;
• thanks to Ze1⊕Ze2⊕Ze3, we construct a framework forM, so that every rectangle

of this framework is in a plane {i} × Z× Z× {k} where i, k ∈ Z;

• on Ze4 we have the oracle simulated by ‹TL.

Step 1 : First notice that changing TL into ‹TL only require a letter to letter morphism.

Then we construct W̃ = φSP (Ze4,Ze1 ⊕ Ze2 ⊕ Ze3, ‹TL) to place ‹TL in a 4-dimensional

subshift. We finally add through a product operation P all letters from C : W = W̃× (A×

B × {•; ◦}3 ×O)Z4

so that W ∈ ClP,F,SP (TL) ∩ CZ4

.

Step 2 : We want TL′ to appear on Ze1. Simulations of the Turing machine M will take
in entrance a word written on Ze2. So we need to copy out Ze1 on Ze2 so that these
simulations apply to what will be the subshift XL′ . We get to it with the finite condition :

∀x ∈ CZ4

,∀u ∈ Z4, xu = xu+e1−e2
.

We also want to keep accessible all along the simulation the entry word of every rectangle
of the framework. To do that we add the finite condition :

∀x ∈ CZ4

,∀u ∈ Z4, xu = xu+e3
.

We thus obtain a subshift W′ ∈ ClP,F,SP,FT (TL).

10 N. AUBRUN AND M. SABLIK

Step 3 : Then we add to W′ a framework for the Turing machine. We construct Wrect ⊆
{•, ◦}Z3

an auxiliary subshift of finite type up to a letter to letter morphism, containing

well-chosen rectangles. Denote Fi the finite type condition that ensures ∀x ∈ {•, ◦}Z3

,∀u ∈Z3, xu = xu+ei
. As in Section 3, we define:

• W2 = φFT (F3, φSP (Ze1 ⊕Ze2,Ze3 ⊕ Ze4,S
(↑)
2));

• W5 = φFT (F3, φSP (Ze1 ⊕Ze2,Ze3 ⊕ Ze4,S
(↑)
5));

• W3 = φFT (F2, φSP (Ze1 ⊕Ze3,Ze2 ⊕ Ze4,S
(↑)
3)).

The rectangles are obtained in W̃rect = W2 ×W5 ×W3. Each rectangle of lenght 5m

given by W5 has on top of that the length of its entrance 2n given by W2. Thus we can
simulate the Turing machine on words of length 2n, on a tape of length 5m and simulations
are bounded by 3p steps of calculation. Up to a letter to letter morphism, W̃rect is a subshift
of finite type, so there exists a finite set of patterns Frect and a morphism πrect such that
W̃rect = πrect(TFrect

). We add this framework to W′ via Wrect = πrect(φFT (Frect,W
′)) so

that we have Wrect ∈ ClP,F,SP,FT (TL).

Step 4 : We add the behaviour of M in rectangles of Wrect but for the moment we do not
take into consideration calls for oracle. As in Section 3, we consider the finite conditions
PM given by the rule of M and the conditions Pcalc = {Init,Head,Stop,Final} which
control the interaction of the head of M with the rectangles. For the moment every time
the machine calls the oracle it keeps on calculating. Thus WM = φFT (PM∪Pcalc,Wrect) ∈
ClP,F,FT,SP (TL).

Step 5 : To simulate the oracle, we add finite type conditions to ensure that during a
calculation, when the machine calls for the oracle in (i, j, k, l) ∈ Z4, the pattern p ∈ Ãn on
which the oracle is called coincides with the pattern in Ze4 between (i, j, k, l) and (i, j, k, l+
n). These new allowed patterns look like :

↑e4

ã .

b̃ ã
,

ã .

(q?, b̃) ã
→e2

However, these conditions are only valid in the interior of a rectangle. We denote these finite
type conditions by Foracle. Then we have WMoracle

= φFT (Foracle,WM) ∈ ClP,F,SP,FT (TL).

Step 6 : In order to avoid dependence problems between differents calculations, each con-
figuration of TL that appears on Z4 is used for the same calculation, thanks to the finite
type condition :

∀x ∈ CZ4

,∀u ∈ Z4, xu = xu+e1+e4
.

Finally we consider the final state qstop as a forbidden pattern and we denote by Σ this
subshift. We have Σ ∈ ClP,F,SP,FT (TL).

We simulate the running of the Turing machine M on a pattern p ∈ E1
B of length 2n.

As soon as M calls for the oracle, we compare the word on which the orcale is called and
the word on Ze4. If the two words coincide then M keeps on calculating, else it come to
the final state qstop. If the machine cannot terminate its calculation within the time given
by the rectangle, Proposition 3.4 ensures that we can find a larger rectangle in which the
machine will calculate on the same entry word.

AN ORDER ON SETS OF TILINGS CORRESPONDING TO AN ORDER ON LANGUAGES 11

The following drawing resumes the behaviour of the machineM on the framework :

e1

e2

e3

e4

p

p

q?

q?

q?

qstop

Proof that this construction works. We now prove that φSA(Ze1,Σ), the projection of
Σ on Ze1 is TL′ , up to a morphism that just consists in keeping information about B.

Proof of φSA(Ze1,Σ) ⊆ TL′ : Let y ∈ Σ, we prove that x = y|Ze1
∈ TL′ . It is sufficient to

prove that every pattern in x is not in L′. Let p be a pattern in x then it is a sub-pattern
of a certain p′ ⊏ x where p′ is chosen such that it is of length 2n. By construction of Wrect

there exists t, s ∈ N arbitrarry large such that there exists a rectangle of size 5s × 3t with
the entry word p′. Since y ∈ Σ, in every rectangle the calculation of the machineM on the
word p′ does not reach the final state qstop. Since these rectangles are arbitrarily large, we
can conclude that the machine M never reaches qstop. It means that p′ /∈ L′, thus p /∈ L′.

Proof of TL′ ⊆ φSA(Ze1,Σ): Let x ∈ TL′ , we construct y ∈ CZ4

such that y ∈ Σ and
y|Ze1

= x. To insure that y ∈ Σ we just need to check that for all (i, j, k) ∈ Z3, we can
impose that y|{i}×{j}×{k}×Z ∈ TL while the calculations of M in the rectangles containing
any (i, j, k, l) do not reach the state qstop.

Let’s now focus on a specific rectangle of the framework, on which the machine M
calculates on a pattern p of size 2n that appears in x. Since p appears in x, p /∈ L′ so the
machineM loops on the entry p. It means that every time the calculation ofM on p calls
for the oracle on a pattern p′, p′ is not in L. Since L = L(T)c, for all pattern p′ on which
the oracle is called, there exists a configuration z ∈ TL such that z|[0;|m′|−1] = p′. Thus we
complete y on the following way :

- if in (i, j, k) ∈ Z3 the calculation of M calls for the oracle on a pattern p′, then
y|{i}×{j}×{k}×Z = z previously constructed;

- if the oracle is not called, we complete y with any y|{i}×{j}×{k}×Z ∈ TL.

This makes sure that y is in the subshift Σ, so x ∈ φSA(Ze1,Σ).

The proof of Theorem is completed. �

An application of Theorem 4.2: There does not exist an “universal” subshift T which
could simulate every element of S. Indeed, consider L = L(T)c, one has ClP,F,SA,SP,FT (T) =
{TL′ : L′ � L}. But there exists L′′ strictly superior to L (see [?]). Moreover, one can
choose L′′ such that for all patterns p ∈ L′′ ⊆ Ed

A, then for all p′ ∈ Ed
A such that p ⊏ p′, one

has p′ ∈ L′′. Thus L(TL′′)c = L′′. One deduces that TL′′ /∈ ClP,F,SA,SP,FT (T).

12 N. AUBRUN AND M. SABLIK

Conclusion

In this article we generalize the notion of tilings considering any set of forbidden pat-
terns. We present operations on sets of tilings, called subshifts, inspired by the dynamical
theory. We obtain different notions of simulation, depending on the set of operations which
are considered. These notions involve different semi-orders on subshifts and in this article
we focus on the semi-order which consider all the transformations presented. This semi-
order is quite well understood since we establish a correspondance with a semi-order on
languages of forbidden patterns based on computability properties. The following points
are still open questions :

• In our construction, considering two subshifts T1 and T2 respectively of dimension
d1 and d2 such that L(T2)

c � L(T1)
c, we need Σ ∈ ClP,F,SA,SP,FT(T1) of dimension

d1 + d2 + 2 to simulate T2. It is possible to decrease the dimension of Σ?
• For which class U ⊆ S there exists a subshift T such that ClP,F,SA,SP,FT(T) = U?

We can also consider other semi-orders involved by other set of operations and look for
general tools to study them. In fact, some of these semi-order have already been studied.
For example, the set of space-time diagrams of a cellular automaton can be viewed as a
subshift, and the orders presented in [?, ?, ?] could be formalized with the tools introduced
in Section 2.

References

[BDJ08] Alexis Ballier, Bruno Durand, and Emmanuel Jeandel. Structural Aspects of Tilings. In Proceedings
of the 25th Symposium on Theoretical Aspects of Computer Science : STACS 2008, 2008.

[Bea93] M.P. Beal. Codage Symbolique. Masson, 1993.
[Ber66] R. Berger. The Undecidability of the Domino Problem. American Mathematical Society, 1966.
[Han74] William Hanf. Nonrecursive tilings of the plane. i. The Journal of Symbolic Logic, 39(2):283–285,

1974.
[Hed69] GA Hedlund. Endomorphisms and automorphisms of the shift dynamical system. Theory of Com-

puting Systems, 3(4):320–375, 1969.
[Hoc07] M. Hochman. On the Dynamics and Recursive Properties of Multidimensional Symbolic Systems.

2007.
[Kit98] B. Kitchens. Symbolic dynamics. Springer New York, 1998.
[LM95] D. Lind and B. Marcus. An Introduction to Symbolic Dynamics and Coding. Cambridge University

Press, 1995.
[Moz89] S. Mozes. Tilings, substitution systems and dynamical systems generated by them. Journal

d’analyse mathématique(Jerusalem), 53:139–186, 1989.
[MR99] J. Mazoyer and I. Rapaport. Inducing an order on cellular automata by a grouping operation.

Discrete Applied Mathematics, 91(1-3):177–196, 1999.
[Oll03] N. Ollinger. The intrinsic universality problem of one-dimensional cellular automata. Symposium

on Theoretical Aspects of Computer Science (STACS’2003), LNCS:632–641, 2003.
[RJ87] H. Rogers Jr. Theory of recursive functions and effective computability. MIT Press Cambridge, MA,

USA, 1987.
[Rob71] R.M. Robinson. Undecidability and nonperiodicity for tilings of the plane. Inventiones Mathemat-

icae, 12(3):177–209, 1971.

[The05] G. Theyssier. Automates cellulaires: un modèle de complexités. PhD thesis, École Normale
Supérieure de Lyon, 2005.

AN ORDER ON SETS OF TILINGS CORRESPONDING TO AN ORDER ON LANGUAGES 13

Appendix A. Figures

A.1. Construction of rectangles

(◦, •, •) (◦, •, •)

(◦, •, •) (◦, •, •)

...
(◦, •, ◦)

...

. . . (◦, ◦, •) . . .

(•, ◦, •)
S

(↑)
2 × S

(↑)
5

S
(↑)
3

p

••
•

•

•
•
•

•

•
•

•

A.2. Simulation of a Turing machine

We present the construction to simulate a Turing machine thanks to the product sub-
shift

TM = φFT

Ä
{Init,Head,Stop,Final},AZ3

× (W2 ×W3 ×W5)× φSP (Ze2 ⊕ Ze3,Ze1,TPM
)
ä

. The first part of this product AZ3

contains the entry word, which is copied out in
W2 ×W3 ×W5 and in φSP (Ze2 ⊕ Ze3,Ze1,TPM

) thanks to condition Init. The second
part of the product W2 ×W3 ×W5 contains the framework which gives rectangles of
calculation to the third subshift φSP (Ze2⊕Ze3,Ze1,TPM

). Finite conditions Head, Stop

and Final ensure that the Turing machine runs independently on different rectangles.

14 N. AUBRUN AND M. SABLIK

q0

q1

q1

q1

q1

q2

q2

q3

q3

Head

Init

Stop

AZ3

W2 ×W3 ×W5

φSP (Ze2 ⊕ Ze3,Ze1,TPM
)

Appendix B. Some counter-examples

B.1. ClF (SFT) 6= SFT

Consider the alphabet {0, 1, 2}Z and define T = T{00,11,02,21}. The factor π such that
π(0) = π(1) = 0 and π(2) = 2 transforms T into a subshift :

π(T) = {x ∈ {0, 2}Z : blocks of consecutive 0 are of even length }

which is not a subshift of finite type, since one need to exclude arbitrary large blocks of
consecutive 0 of odd lengths to describe it.

B.2. ClSA(SFT) 6= SFT

We construct a subshift of finite type T ⊂ {0, 1, 2}Z2

such that the sub-action of T on
the sub-group ∆ = {(x, y) ∈ Z2 : y = x} ⊆ Z2 is not of finite type. In this example we
want the subshift that appears on the staight line ∆ to be

{x ∈ {0, 1, 2}Z : blocks of consecutive 0 are of even length }.

Define F a set of allowed patterns (. symbole may be 1 or 2 but not 0, blank symbole may
be 0,1 or 2) :

2 0
1 0 1

2 0 2
0 1

;

. .
2 0 .

1 0 1
0 2

;

1 0
2 0 2

. 0 1

. .

;

.
. . .

2 0 .
0 1

;

.
. .

. . .
0 .

;

2 0
. 0 1

. . .
.

;

. 0
. . .

. .
.

AN ORDER ON SETS OF TILINGS CORRESPONDING TO AN ORDER ON LANGUAGES 15

The alternation of 1 and 2 over and under the diagonal of 0 enable us to control the parity
of 0 blocks. Define F as the set of elementary patterns of size 4 that are not in F . Then if
we denote T = TF :

φSA(∆,T) = {x ∈ {0, 1, 2}Z : blocks of consecutive 0 are of even length }

which is not a subshift of finite type as explained in ??.

B.3. ClSA(SFT) 6= Sofic

We construct a subshift of finite type T such that the projection φSA(∆,T) on the
straight line y = x is not sofic. It is well known that in dimension 1, sofic subshift are
exatcly subshift whose language -see definition in ??- is a regular language [LM95]. The

language {anbn : n ∈ N} is non regular and so we construct T ⊆ AZ2

a subshift of finite type

and π : AZ2

→ {0, a, b}Z2

a morphism such that the only allowed patterns in T′ = π(T)
containing a or b are those of the form 2n× 2n:

b

. .
.

b
a

. .
.

a

The principle is to construct patterns of even size and to localize the center of these
patterns to distinguish the an part from the bn part.

Denote A = {∗, a, b, 0, 1, 2, 3, 4}. The symbols ∗, 1, 2, 3 and 4 help to draw the two
diagonals of the square and to distinguish in which quadrant we are. The following set of
patterns only allows the construction of even size squares of the form :

∗ 1 1 b

4
. . . 1 1 . .

.
2

... 4 ∗ b 2
...

... 4 a ∗ 2
...

4 . .
.

3 3
. . . 2

a 3 3 ∗

(∗)

Let’s detail the set of allowed patterns :

Squares center :

∗ 1 1 b
4 ∗ b 2
4 a ∗ 2
a 3 3 ∗

Squares diagonals :
∗ 1 1
4 ∗ 1
4 4 ∗

1 1 b
1 b 2
b 2 2

∗ 2 2
3 ∗ 2
3 3 ∗

4 4 a
4 a 3
a 3 3

16 N. AUBRUN AND M. SABLIK

Squares sides :
0 0 0
0 ∗ 1
0 4 ∗

0 0 0
1 1 1
∗ 1 1

0 0 0
1 1 1
1 1 1

0 0 0
1 1 1
1 1 b

0 0 0
1 b 0
b 2 0

. . . and so on for the three other sides.

Squares filling :
1 1
1 1

2 2
2 2

3 3
3 3

4 4
4 4

Outside the squares : 0

The only configurations one can construct with these allowed patterns are configurations

of AZ2

with 0 everywhere except in some places where there are arbitrarily large blocks of
the form (∗), and the configuration made of the infinite pattern (∗). We denote by T this
subshift of finite type.

Let π denote the letter to letter morphism defined by π(x) = 0 for x ∈ {∗, 1, 2, 3, 4}
and π(a) = a, π(b) = b. Suppose that φSA(∆,T) is sofic. Since ClF (Sofic) = Sofic then
π(φSA(∆,T)) would also be sofic, which is absurd since:

π(φSA(∆,T)) = {x ∈ {0, a, b}Z : all blocks containing only a and b are of the form anbn}.

So this construction proves that ClSA(SFT) 6= Sofic.

Appendix C. Proofs

C.1. Proof of Proposition 1.4

• If x ∈ T, since L(T) is the set of all elementary patterns that appears in T, all the
elementary patterns of x are in L(T), that is to say x ∈ TL(T)c . So T ⊆ TL(T)c .
• Reciprocally, let x ∈ TL(T)c . Then every elementary pattern that appears in x is

in L(T). In particular for all n ∈ N, xSn
∈ L(T) hence there exists xn ∈ T such that

(xn)|Sn
= xSn

. We have xn → x, and since T is a closed set, x ∈ T.

C.2. Proof of Theorem 2.2

Let T ⊆ AZd

be a recursively enumerable subshift given by P a recursively enumerable
set of forbidden patterns. Let G < Zd be a sub-group generated by the vectors u1, . . . , ud′ ∈Zd. The principle of the demonstration is the following : from the set P we construct another
recursively enumerable set P ′ such that φSA(G,T) = TP ′ . P ′ will be the set of all forbidden
patterns, that is to say the complementary of the language of φSA(G,T).

AN ORDER ON SETS OF TILINGS CORRESPONDING TO AN ORDER ON LANGUAGES 17

We denote by T′ the subshift φSA(G,T), so that T′ ⊆ AZd
′

. We construct a set P ′ with the

following properties : P ′ is recursively enumerable and T′ = TP ′. If p′ is a pattern in ASd
′

n ,
it can be seen as a pattern p in AU where U = ∪i=(i1,...,i

d′)∈[−n;n]d′ (i1u1 + · · ·+ id′ud′) ⊆ Zd

and we denote by Φ−1(p′) the set of elementary patterns in AZd

that contain this pattern
p. Let P ′ be the following set :

P ′ =
[

n∈N{p′ ∈ ASd
′

n : ∀p ∈ Φ−1(p′),∃p̃ ∈ P such that p̃ appears in p}.

Lemma C.1. The set P ′ is recursively enumerable.

Proof. Since P is recursively enumerable, there exists a Turing machine M that accepts
every pattern in P and loops on other entries.

LetMaux be an auxiliary machine with the following behaviour on an entry p : Maux

enumerates all the sub-patterns of p. They are in finite number, we call them p1, . . . , pn.
Then we simulate M on every pi, successively one step for each pattern. As soon as M
stops on a pi, Maux stops. So this machine loops on p if all its sub-patterns are not in P
and stop if there exists a sub-pattern in P .

We construct a Turing machineM′ such that on an entry pattern p′,M′ loops if p′ /∈ P ′

and stops if p′ ∈ P ′. Let p′ ∈ AZd
′

be a pattern. On the entry p′ the machineM′ works that
way : M′ enumerates all the elementary supports containing the one of p′. We denote this
enumeration by (suppi)i∈N. M′ calculates one step successively on each support suppi :

• Let Ci be the finite set Asuppi ∩ Φ−1(p′). We denote it by Ci = {p
(i)
1 , . . . , p

(i)
ki
}.

• On each p
(i)
k successively, M′ simulates Maux.

M′ stops on the entry p′ if and only if there exists a support suppi containing supp(p′)
such that for all pattern p ∈ Φ−1(p′) with support suppi, p contains a forbidden pattern in
P . This is exactly the definition of P ′, so P ′ is recursively enumerable.

Lemma C.2. φSA(T, G) = TP ′.

Proof. • φSA(G,T) ⊆ TP ′

Let y ∈ φSA(G,T). Then there exists x ∈ T such that for all i = (i1, . . . , id′) ∈ Zd′ ,
yi = xi1u1+···+i

d′u
′
d

. Let p′ be a pattern of y. If p′ were in P ′ then every pattern

in Ci would contain a forbidden pattern for T, so in particular x would contain a
forbidden pattern for T, that is to say x /∈ T which is absurd. Finally y contains
no pattern in P ′, hence y ∈ TP ′ .
• TP ′ ⊆ φSA(G,T)

Let y ∈ TF ′ . We have y = (yi)i∈Zd′ with for all i ∈ Zd′ and n ∈ N, yi+[−n;n]d′ /∈ P ′.

For all n ∈ N we have y[−n;n]d′ /∈ P ′. That means that there exists a pattern

pn ∈ Φ−1
k (y[−n;n]d′) which contains no forbidden pattern for T. pn is a finite pattern,

we complete it to get a xn ∈ (A ∪ {♯})Zd

, where ♯ is a new symbol not in A. Thus

xn ∈ T♯ where T♯ ⊆ (A∪{♯})Zd

is the subshift defined with the same set of forbidden

patterns as T. The sequence (xn)n∈N is in the compact space (A∪{♯})Zd

so that we

can extract from (xn)n∈N a sequence (xφ(n))n∈N that converges to x ∈ (A∪ {♯})Zd

.

As the xn are constructed, we also have that x ∈ AZd

and since T♯ is closed, x ∈ T♯

hence x ∈ T♯ ∩ A
Zd

= T. Finally yi = xi1u1+···+i
d′u

′
d

for all i = (i1, . . . , id′) ∈ Zd′ .

This proves that TF ′ ⊆ φSA(G,T).�

18 N. AUBRUN AND M. SABLIK

The recursively enumerable set P ′ is such that TP ′ = φSA(G,T), so recursively enumerable
subshifts are stable under subaction.

C.3. Proof of proposition 3.4

Lemma C.3. Let p be a prime number and x ∈ Sp, we denote E(x) = {u ∈ Z2/xu = •}.
Then up to a translation :

E(x) =
∞[

n=1

p−1[
k=1

(pnZ+ kpn−1)× (pnZ+ kpn−1)

Proof. One can show by induction that this result is true on every elementary support. To
have details of this proof see [Hoc07].

A consequence of the structure of E(x) is the following : for every n ∈ N there always
exists a column and an row in Sp such that symbols • appear on a pn-periodic way.

Another consequence : if on a same row -or column- there are two symbols • from a
distance pn, then there exists another row -or column- with two symbols • from a distance

pn+1. In T
(↑)
p , the symbols • from these two rows -or columns- line up as on the drawing:

In Tp : •

pn−1−1z}|{
◦
...
◦

9>=
>; pn−1 − 1

• . . . ◦

pn − 1

8><
>:

◦
...
◦

...

• . . . ◦

|{z}
pn−1−1

◦
...
◦

9>=
>; pn−1 − 1

•

9>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>;

pn+1 − 1

In T
(↑)
p : •

◦
...
◦

pn−1−1z}|{
◦
...
◦

• . . . ◦

pn − 1

8><
>:

◦
...
◦

...

• . . . •

9>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>;

pn+1 − 1

Consider a plane {i}×Z2. Then there exists a colum in S
(↑)
3 and a column in S

(↑)
5 that

define it. On these two columns, symbols • are placed 3n-periodically and 5m-periodically
respectively. The letters (•, •) of the product alphabet form rectangles of size 3n × 5m

thanks to rules (∗∗) and (∗ ∗ ∗).
We now focus on such a rectangle of size 3n × 5m placed in (i, j, k). Then for all

i1 = i+3n−1 +λ3n+1 we have rectangle of width 3n+1. On the same way for all i2 = i+µ5m

we have rectangles of hight 5m. We look for integers λ and µ such that

i + µ5m = i + 3n−1 + λ3n+1 ⇔ µ5m = 3n−1(1 + 9λ)

this is possible since 5m and 3n are relatively primes. So there exists i′ such that we have
a rectangle of size 3n+1 × 5m en (i′, j, k). The same kind of reasoning leads to the result of
proposition 3.4, since 2,3 and 5 are relatively primes.

AN ORDER ON SETS OF TILINGS CORRESPONDING TO AN ORDER ON LANGUAGES 19

C.4. Proof of proposition 4.1

We prove that the relation � is reflexive and transitive.

• � is reflexive : for every language L we have L � L. It is sufficient to consider the
machine with oracle L that directly calls for the oracle on the entry word.
• � is transitive. Suppose L1 � L2 and L2 � L3, we prove that L1 � L3. We have at

our disposal a machineM2 with oracle L2 such that dom(M2) = L1 and a machine
M3 with oracle L3 such that dom(M3) = L2. We construct a machine M such
that : on an entry p we simulate M2, and as soon as M2 calls for its oracle L2 we
simulate M3. Thus M stops on p if and only if p ∈ L1, and has L3 for oracle. So
L1 � L3.

If accepted for publication by STACS, this work will be licensed under the Creative Commons Attribution-NoDerivs
License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nd/3.0/.

