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a b s t r a c t

We discuss a rule proposed by the biologist Thomas according to which the possibility for a genetic
network (represented by a signed directed graph called a regulatory graph) to have several stable states
implies the existence of a positive circuit. This result is already known for different models, differential or
discrete formalism, but always with a network of genes contained in a single cell. Thus, we can ask about
the validity of this rule for a system containing several cells and with intercellular genetic interactions. In
this paper, we consider the genetic interactions between several cells located on a d-dimensional lattice,
i.e., each point of lattice represents a cell to which we associate the expression level of n genes contained in
this cell. With this configuration, we show that the existence of a positive circuit is a necessary condition
for a specific form of multistationarity, which naturally corresponds to spatial differentiation. We then
illustrate this theorem through the example of the formation of sense organs in Drosophila.

© 2008 Elsevier Ireland Ltd. All rights reserved.

1. Introduction

Proteins synthesised by genes play an essential part in many cel-
lular processes: they can bind to DNA and regulate the transcription
of specific genes. This regulation of transcription is a very complex
mechanism. A gene, when expressed, leads to the production of
proteins that can either activate or inhibit the expression of other
genes. Therefore the activity of a gene in a cell is measured by the
concentration of the transcribed RNA in the cell, a quantity called
the expression level of the gene. Genetic interactions form a genetic
regulatory network, from which one can draw a regulatory graph. It
is a signed directed graph: the vertices are the genes, the edges are
labelled with a sign, positive (+1) in the case of an activation and
negative (−1) for an inhibition.

This paper deals with relationships between the structure of
such graphs and their dynamical properties. The biologist Thomas
has enounced the following general rule (Thomas, 1981): a nec-
essary condition for multistability (i.e., the existence of several stable
fixed points in the dynamic) is the presence of a positive circuit in
the regulatory graph, the sign of a circuit being the product of the
signs of its edges. Multistability corresponds to important biolog-
ical phenomena, namely cell differentiation processes. This rule
is about the dynamic of a single cell, and it has given rise to
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mathematical statements and proofs in a differential dynamical
formalism (Plahte et al., 1995; Snoussi, 1998; Gouzé, 1998; Soulé,
2003), and more recently in a discrete formalism (Remy et al.,
submitted for publication, 2006; Richard, 2006). This result in a
discrete framework is recalled in Section 3.1. Thus in this paper we
try to extend this rule to regulatory interactions spanning within
cells (as in Thomas’ rule) and between cells by establishing connec-
tions between spatial differentiation and the existence of positive
circuits. Positive circuits are often associated to spatial differentia-
tion: see, e.g., González et al. (2006) for a study of dorsal–ventral
boundary in the Drosophila wing. On the other hand, Soulé raises
this question in Soulé (2006).

In a first paper (Crumière and Ruet, 2006), we consider as a
starting point the case of fixed cells located on a one-dimensional-
infinite grid: more simply each cell is represented by an integer. This
is a simplification which has the advantage of emphasing the basic
formalism. Intercellular communication is assumed to be local: a
gene may interact only with genes in its own cell at the position
m ∈Z and neighbouring cells, left or right, m − 1 or m + 1. This
assumption, which is biologically reasonable is standard and at the
basis of cellular automata (von Neumann, 1966).

In this present paper, we generalize in Section 2 the model above.
We study an intercellular genetic network: the location of cells is
done by a lattice, i.e., a discrete subgroup of Rd, the expression
level of genes is multivaluated and intercellular communication
is extended to some neighbourhood. With this general framework,
we obtain the Thomas’ rule with a spatial condition on stable states.
This theorem is the purpose of Section 3. Each notion is illustrated
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by an example in two-dimensional: more precisely cells are located
on a hexagonal two-dimensional grid. The choice of hexagons was
followed on from a discussion with biologists in order to be in agree-
ment with the biological reality. This layout implies that a cell has
six neighbouring cells. We then apply our model through the exam-
ple of the Drosophila in Section 4, in particular the formation of
sense organs as modelled in an article from Ghysen and Thomas
(2003).

2. Intercellular Case: The Formalism

In this paper, we shall consider cells with a fixed location on an
arbitrary lattice. To illustrate our formalism, we choose to consider
hexagonal cells which tile the plane. Thus cells are localized on a
hexagonal lattice. This correspond to the realistic biological model
of the formation of sense organs in Drosophila which is developed
in Section 4.

2.1. Global Dynamic

Now we shall be interested in the evolution of the system com-
posed of cells which contain in each cell the same collection of
genes chosen in a finite set I. For a gene i ∈ I, Ai = [0, ki] denotes
the expression level of gene i. A state of a cell is an element
a = (ai)i ∈ I ∈A where A is the Cartesian product of Card(I) finite
intervals of integers, i.e., A =

∏
i ∈ IAi.

Generally, a biological system is made up of several cells. We
can assume that cells laid regularly and of discrete way in the space
Rd. So we can consider that cells are located on a lattice M, i.e., a
discrete subgroup of Rd endowed with the operation +. Each cell
is in state of the alphabet A. A state of this system or a configuration
is a sequence of elements of A indexed by M, i.e., an element of
AM. For all x ∈AM and U ⊂M, xU denotes the restriction of x to U.
Furthermore, x(i,m) denotes the expression level of gene i ∈ I in the
cell number m ∈M.

Now we shall be interested in the evolution of the expression
level of a gene in a cell. Intercellular communication is local: a cell
can only interact with its neighbourhood. Thus, the expression level
of a gene in a cell evolves in the time according to the expression
level of genes in this cell and also in the neighbouring cells. More-
over, each cell interact uniformly in the space. A modelling of this
phenomena is given by cellular automaton. We consider a finite set
V ⊂M called neighbourhood and a local function F̄ : AV → A. The
global dynamics of the system is given by the cellular automaton
F : AM → AM defined by

F(x)m = F̄((xm+!)! ∈V) for all x ∈AM and m ∈M.

The definition of F from F̄ corresponds to the assumption that cells
interact locally, uniformly and synchronously.

Remark 1. In Remy et al. (submitted for publication, 2006) and
Richard (2006), we consider the intracellular case which corre-
sponds to the case whereM = {0}.

Example 1 (Hexagonal lattice). In this example, there is two genes
per cells, i.e. I = {a, b}, which have two expression levels, thus A =
{0, 1} × {0, 1}.

Moreover cells are located on a plane, i.e. R2. For biological rea-
sons, cells are represented by hexagonals which tile the plane. Thus,
we use the hexagonal latticeM generated by the vectors e1 and e2,
i.e.M = Ze1 + Ze2. As usually used, for m1, m2 ∈Z, (m1, m2) denotes
the coordinates of a cell m ∈M in the lattice according to the base
(e1, e2) and an arbitrary origin O (see Fig. 1).

Since cells are by hypothesis laid in hexagonal configurations,
the neighbourhood V of the cell (0, 0) is the set consisting in the

Fig. 1. Localisation.

six cells surrounding the cell (0, 0) and the cell itself, that is to say
V = {(0, 0), (0, 1), (1, 1), (−1, 0), (1, 0), (−1, −1), (0, −1)}.

Thus, by regularity of the lattice, the neighbourhood of a cell
m = (m1, m2) is m + V = {(m1, m2), (m1, m2 + 1), (m1 + 1, m2 +
1), (m1 − 1, m2), (m1 + 1, m2), (m1 − 1, m2 − 1), (m1, m2 − 1)}. For
x ∈AM we write xm+V as a 3 × 3 matrix with two holes:

xm+V =

(
xm1,m2+1 xm1+1,m2+1

xm1−1,m2 xm1,m2 xm1+1,m2
xm1−1,m2−1 xm1,m2−1

)

For example, the local state xV in Fig. 2 is composed of seven cells
represented by hexagons. The two numbers in each cell are the
expression levels of two genes. This state is mathematically repre-
sented by the matrix:
(

(0, 0) (0, 1)
(1, 1) (0, 1) (0, 1)
(0, 0) (1, 0)

)
,

where each pair gives the expression levels of the two genes a and
b inside the corresponding cell.

To simplify this example afterwards, we assume that there is
just a gene, the gene A per cell, i.e. I = {A}, moreover this gene as
just two levels of expression, i.e. AA = {0, 1}. One example of partial
local dynamic for this gene is done in Fig. 3.

2.2. Asynchronous Dynamic

The synchronous assumption is not biologically acceptable.
Indeed, it does not take into account explicit delays. In particular,
no difference is made between intracellular regulation process on
the one hand, and on the other hand the regulation due to diffusion,
which occurs in general via transmembrane signaling, hence faster
than regulation. That why Thomas (1981) describes the phenom-
ena in the intracellular case with an asynchronous dynamic starting
from a global dynamic. In our case, it is possible to describe the
asynchronous dynamic in the intercellular case starting from the
global dynamic.

Fig. 2. xV .



104 A. Crumière, M. Sablik / BioSystems 94 (2008) 102–108

Fig. 3. Local dynamics.

For t ∈Z, define sig(t) = 0 if t = 0, sig(t) = +1 if t > 0 and sig(t) =
−1 if t < 0. For all x, y ∈AM and (i, m) ∈ I ×M, define x(i,m)!y by for
all (j, n) ∈ I ×M:

x(i,m)!y
(j,n) =

{
x(j,n) for all (j, n) /= (i, m)
x(i,m) + sig (y(i,m) − x(i,m)) if (j, n) = (i, m).

Given such a cellular automaton F : AM → AM, the nondeterminis-
tic asynchronous dynamic is a graph, denoted GTA(F), defined by

• the vertex set which is AM;
• the set of oriented edges, denoted TA(F), where there is an edge

from x to y, i.e. (x, y) ∈ TA(F), when there exist i ∈ I and m ∈M such
that

y = x(i,m)!F(x).

The system evolves from a state x ∈AM to another state y ∈AM
following the edges of GTA(F), i.e. (x, y) ∈ TA(F). Thus, F(x)(i,m)
denotes the value to which the expression level of gene i in cell
number m could tend when the system is in state x. Consequently,
the expression level of at most one gene is updated at each step in
at most one cell. Other dynamics can be considered, like the (deter-
ministic) synchronous dynamics where all the expression level of
genes are simultaneously updated in one step. But as argued in
Remy et al. (submitted for publication), the asynchronous dynamic
is more realistic.

Remark 2. The principal property studied in this paper is the pres-
ence of fixed points, which is independent from any reasonable
assumption on the dynamics: synchronous, asynchronous, with
delays.

2.3. Notion of Stability

In this article, we consider a general notion of stability
according to a hyperrectangle of AM. A hyperrectangle is a
Cartesian product P =

∏
(i,m) ∈ I×MP(i,m) where each P(i,m) is an

interval of Ai. For all x, y ∈AM and U ⊂M, the smallest hyper-
rectangle which contains xU and yU is denoted by "(xU, yU) =∏

(i,m) ∈ I×U[min(x(i,m), y(i,m)), max(x(i,m), y(i,m))].

Definition 1. Let F : AM → AM be a cellular automaton and P be
a hyperrectangle of AM, a state x ∈P is P-stable if for all y ∈A such
that (x, y) ∈ TA(F), then y /∈ P.

It is easy to verify that a point x ∈AMwhich isAM-stable is a fixed
point of F, i.e. F(x) = x. Thus, in this case, we obtain the classical
framework of the Thomas’ conjecture (Thomas, 1981).

2.4. Regulatory Graphs

Generally, we observe the variations of expression level of a
gene when the other genes interact with itself. These variations are
highlighted in the calculation of the discrete Jacobian of the global
dynamic and represented by the regulatory graph. There exists a
formalism in the intracellular case which can be generalized in the
intercellular case. We just add the position of the cell in the lattice
M.

Let x, y ∈AM, U ⊂M and (i, m), (j, n) ∈ I × U, we define the dis-
crete Jacobian of F in xU ∈AU towards yU ∈AU by ∂(i,m),(j,n)F(x, y) =

• sig(y(j,n) − x(j,n))sig(F(x(j,n)!y)(i,m) − F(x)(i,m)) if F(x)(i,m) and
F(x(j,n)!y)(i,m) are on both sides of x(i,m) + sig(y(i,m) − x(i,m))/2,

• 0 otherwise.

Remark 3. When we consider the discrete Jacobian in one point,
it is interesting to calculate it according to the direction which
involves the maximum of variation. With the multilevel formalism,
the variation of the expression level of one gene in the same time
is likely to generate two possibilities: crease or decrease. In Remy
et al. (submitted for publication, 2006), Crumière and Ruet (2006)
and Crumière (2007), the different authors use the Boolean formal-
ism which is a particular case of the multilevel formalism. With the
Boolean formalism, at each time, the variation of the expression
level of one gene has just one possibility of variation. That is why,
in this case, we consider ∂F(x, x̄) where x̄(i,m) = 0 if x(i,m) = 1 and
x̄(i,m) = 1 if x(i,m) = 0 for all (i, m) ∈ I ×M.

To represent the action of one gene in one cell on another gene
in the same cell or other cells in a region U ⊂M, we define the
regulatory graph of ∂F(xU, yU), denoted G(∂F(xU, yU)). The regulatory
graph is a signed directed graph, i.e. a directed graph with a sign,
+1 or −1, attached to each edge and it is defined by:

• the set of vertices I × Uwhich represents the genes of each cell of
the region U;

• there is an edge from the gene j in the cell n (i.e. the ver-
tex (j, n) ∈ I × U), to the gene i in the cell m (i.e. the vertex
(i, m) ∈ I × U) if ∂(i,m),(j,n)F(xU, yU) /= 0. The sign of ∂(i,m),(j,n)F(x, y)
determines the sign of the edge from (j, n) to (i, m).

In this paper we link the multistationarity to the following prop-
erty of regulatory graph.
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Definition 2. A regulatory graph G(∂F(xU, yU)) has an elemen-
tary positive circuit if there exist L ∈N and (il, ml) ∈ I ×M, with
l ∈ [0, L], all distincts, such that

∏L
l=0∂(il,ml),(il+1,ml+1)F(xU, yU) >

0with the convention(iL+1, mL+1) = (i0, m0).

Example 2 (Hexagonal lattice). Consider the dynamic given in
Example 1 with one gene per cell.

The regulatory graph

G

(
∂F

(
0 1

0 1 0
1 1

)(
1 0

1 0 1
0 0

)))

contains three edges, a positive edge from the high right cell to the
central cell, because:

F̄

(
0 1

0 1 0
1 1

)
/= F̄

(
0 0

0 1 0
1 1

)
and F̄

(
0 1

0 1 0
1 1

)
= 1,

a negative edge from the right cell to the central cell, because:

F̄

(
0 1

0 1 0
1 1

)
/= F̄

(
0 1

0 1 1
1 1

)
and F̄

(
0 1

0 1 0
1 1

)
/= 0,

and a positive edge from the low cell to the central cell, because:

F̄

(
0 1

0 1 0
1 1

)
/= F̄

(
0 1

0 1 0
1 0

)
and F̄

(
0 1

0 1 0
1 1

)
= 1,

Thus:

In the same way, the regulatory graph

G

(
∂F

((
0 1

0 1 1
1 1

)
,

(
1 0

1 0 0
0 0

)))

contains two edges, a negative edge from the high cell to the central
cell and a positive edge from the high right cell to the central cell.
Thus:

Thus, we build the regulatory graph

G



∂F








0 1

0 1 1
0 1 1
1 1



 ,




1 0

1 0 0
1 0 0
0 0













which is by definition the union of

G

(
∂F

(
0 1

0 1 0
1 1

)
,

(
1 0

1 0 1
0 0

)))

and

G

(
∂F

(
0 1

0 1 1
1 1

)
,

(
1 0

1 0 0
0 0

)))

which contains an elementary positive circuit:

3. Necessary Condition for Multistationarity: Positive
Circuit

3.1. The Intracellular Case

In this section we recall the theorem relating multistation-
arity in the case of a single cell to the existence of a positive
circuit in the multilevel framework (Remy et al., submitted for
publication; Richard, 2006). With our formalism, the lattice con-
sidered is justM = {0} and the theorem obtained by Richard (2006)
can be expressed by:

Theorem 1 (Richard, 2006). Let F : A{0} → A{0} be a global dynamic
and P be a hyperrectangle of A. If two distinct states x, y ∈P are P -
stables, then there exists z ∈ "(x, y) such that G(∂F(z, y)) contains an
elementary positive circuit.

Example 3 (Intracellular example). In order to illustrate this the-
orem, we present a very simple example of a system of two
genes, I = {A, B}, and each gene has just two expression levels. Thus
A = {0, 1} × {0, 1}. We assume that the system has the following
dynamic: F(x, y) = (y, x) with x, y ∈A.

We have:

∂A,AF((0, 0), (1, 1)) = sig(F(1, 0)A − F(0, 0)A) = 0
∂A,BF((0, 0), (1, 1)) = sig(F(0, 1)A − F(0, 0)A) = 1
∂B,AF((0, 0), (1, 1)) = sig(F(1, 0)B − F(0, 0)B) = 1
∂B,BF((0, 0), (1, 1)) = sig(F(0, 1)B − F(0, 0)B) = 0

So, the regulatory graph G(∂F((0, 0), (1, 1))) contains two edges: an
edge from gene A to gene B and one from gene B to gene A. Moreover,
the interactions between genes A and B are positive (activations).
Thus:

F has two fixed points, i.e. two A-stable points, (0, 0) and
(1, 1). In accordance with Theorem 5, the regulatory graph
G(∂F((0, 0), (1, 1))) contains a positive circuit between gene A and
gene B.
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3.2. The Intercellular Case

We recall that V is the neighbourhood of the global function
F : AM → AM. For U′ and U′′ two subsets of M, denote U′ + U′′ =
{u′ + u′′ : u ∈U′andu′′ ∈U′′}. ForU ⊂Mfinite, define ∂U = (U+ V) \ U
the boundary of U and Ū = U+ V the closure of U by V.

Theorem 2. Let F : AM → AM be a global function, P =∏
(i,m) ∈ I×MPi,m be a hyperrectangle of AM and U ⊂M be a finite sub-

set. If x, y ∈AM are two P - stable points which verify x∂U = y∂U
and xU /= yU, then there exists z ∈ "(x, y) such that G(∂F(z, y)) has an
elementary positive circuit.

Proof. Define F̂ : AŪ → AŪ such that

F̂((au)u ∈ Ū)u′ =
{

F̄((au′+!)! ∈V) for all u′ ∈U,
F(y)u′ for all u′ ∈ ∂U.

The intuition is that this dynamics F̂ preserves the local dynamics
of intercellular communication, i.e. a gene can only interact with a
gene of the same cell or with a gene in the neighbourhood of the
cell, and let invariant the boundary.

It is easy to verify that xŪ and yŪ are PŪ-stables where
PŪ =

∏
(i,m) ∈ I×ŪPi,m. Applying Theorem 1 at the intracellular

dynamics F̂ : (AŪ)
{0}

→ (AŪ)
{0}

, there exists zŪ ∈ "(xŪ, yŪ) such that
G(∂F̂(zŪ, yŪ)) has an elementary positive circuit. That is to say, there
exist L ∈N and (il, ml) ∈ I × Ū, for all l ∈ [0, L], all distincts, such that

L∏

l=0

∂(il,ml),(il+1,ml+1)F̂(zŪ, yŪ) > 0

with (iL+1, mL+1) = (i0, m0).
Since x∂U = y∂U and zŪ ∈ "(xŪ, yŪ), one has z∂U = y∂U. Thus

∂(i,m),(j,n)F̂(z, y) = 0 for all n ∈ ∂U. One deduces that ml /∈ ∂U for all
l ∈ [0, L]. Put zM\U = yM\U. Since F and F̂ are defined locally by F̄ ,
for all m, n ∈U and i, j ∈ I, one deduces that ∂(i,m),(j,n)F̂(yŪ, zŪ) =
∂(i,m),(j,n)F(y, z). The theorem follows. "

Remark 4. Since G(∂F(z, y)) contains an elementary positive cir-
cuit and zM\U = yM\U, the positive circuit is located on U.

3.3. Case of Periodic Configurations

In Crumière and Ruet (2006) and Crumière (2007), we study
periodic configurations in the space. This is usual in some biological
setting.

With our formalism, a configuration x is M′-periodic according
to a sub-lattice M′ of M if xm+m′ = xm for all m ∈M and m′ ∈M′. If
the sub-group quotientM/M′ is finite (i.e.M andM′ have the same
dimension), there exists at least a finite subsetU such thatU+M′ =
M. Such sets are called f undamental domains ofM′. Of course, we
have Card(U) = Card(M/M′). In this case, the assumptions on the
boundary of Theorem 7 could be simplified.

Corollary 1. Let F : AM → AM be a global function and P =∏
(i,m) ∈ I×MPi,m be a hyperrectangle of AM. Let M′ be a sub-lattice

of M and U ⊂M be a fundamental domain. Let C ⊂ U such that
∂(U \ C) ⊂ C+M′, we say that C verifies the spatial condition.

If x, y ∈AM are two P -stables M′ -periodic points which verify
xC = yC and xU /= yU, then there exists z ∈ "(x, y) such that G(∂F(z, y))
contains an elementary positive circuit.

Proof. LetW = U \ C. SinceC satisfies the spatial condition, byM′-
periodicity, we have x∂W = y∂W. Then we apply Theorem 7 withW
in the role of U. "

Fig. 4. Spatial condition for aM′-periodic configuration.

Example 4 (One-dimensional lattice). In the framework of
Crumière and Ruet (2006), we haveM = Z. A sub-group ofM is nZ
with n ∈N. We consider the global dynamic F : AZ → AZ of neigh-
bourhoodV = {−1, 0, 1}, that is to say, a cell can interact just itself or
with the neighbouring cells on the left or on the right. Let x, y ∈AZ
two fixed periodic points of period respectively k and k′ such that
x0 = y0. The points x and y are AZ-stables and dZ-periodics, where
d = gcd(k, k′) is the biggest common divisor of k and k′. Thus, it is
possible to apply Corollary 8 with C = {0} and U = {0, . . . , d − 1}.
We obtain again Theorem 4.1 of Crumière and Ruet (2006).

Example 5 (Hexagonal lattice). Following the setting of Examples
1 and 4. Assume that in our model the configurations are period-
ics according to the sub-lattice M′ = 3e1Z+ 2e2Z. A fundamental
domain isU = {(0, 0), (1, 0), (2, 0), (0, 1), (1, 1), (2, 1)} and the sub-
setC = {(0, 0), (0, 1), (1, 1), (2, 1)} satisfies the spatial condition. In
Fig. 4, we represent a fundamental domain ofM′ and the coloured
part correspond to C. We present also aM′-periodic configuration.

3.4. Boundary Effects

Sometimes, some points of the lattice are not occupied by a cell.
For example, when the biological system does not occupy all the
space. In this case, with some modifications, Theorem 7 still holds.
For that, we add to the alphabet A a neutral state, denoted q. Let
Aq = A ∪ {q} and we extend the local function F̄ to a local function
Fq : AVq → Aq, such that:

• the restriction of Fq at AV is F̄;
• if ! ∈AVq verifies !0 = q then Fq(!) = q, i.e. a neutral state stays

neutral;
• boundary effects are correctly defined, i.e. if ! ∈AVq such that

there exists m ∈V \ {0} which verifies !m = q then F̄q(!) is chosen
according to the more natural biological behaviour.

In this case, Theorem 7 holds with the global function Fq : AMq →
AMq .

Generally, F̄ is isotropic, i.e., does not depend on the position
of neighbouring cells. In this case, it is easy to consider boundary
effects. Indeed, if a cell q appear in the neighbourhood, the central
cell where we apply the local function F̄q is just influenced by other
cells. We are going to see that in the following example.

Example 6 (Isotropic local function). Let F̄ : A → A be a local
function such that F̄((a!)! ∈V) = f (a0, (max{a(i,!) : ! ∈V \ {0}})i ∈ I),
where f : A × A → A is a function. Biologically, this means that the
level of expression of one gene just depends on the level of expres-
sion of the genes of this cell and the maximum level of expression
of genes of neighbouring cells. In this case, when Fq consider a cell
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in the state q, it is natural to assume that all level of expression of
genes of this cell is 0. This means that a cell in the state q can not
have an influence on our system.

4. Application

This application deals with a genetic network leading to the for-
mation of individual sense organs in Drosophila. A logical approach
has been proposed in Ghysen and Thomas (2003).

The formation of Drosophila’s sense organs depends on the activ-
ity of proneural genes. Proneural activity is controlled by 4 types of
genes:

• prepattern genes, which activate the proneural genes in clusters
of cells at defined regions of the ectoderm;

• neurogenic genes, noted B, which mediate a process of lateral
inhibition whereby the competence is restricted to a single cell
in each group;

• “cell cycle” genes, noted C, which control the entry in mitosis;
• proneural genes, noted A.

The expression of proneural genes depends on local combi-
nations of activating and repressing prepattern genes. Prepattern
genes must be considered as simple entries: we assume that the
expression level of prepattern genes is at a sufficient level to allow
the expression of proneural genes. Moreover the different cells
are located on a plane according to the hexagonal lattice M as in
Example 1.

Thus, prepattern genes will not be considered inside our genetic
network and each cell will be composed by only 3 types of genes:
A, B and C, i.e. I = {A, B, C}. Variables am, bm and cm represent
the expression levels concentration of genes A,B and C, respec-
tively in the cell number m. Variable cm is a Boolean variable,
i.e., the expression level of gene C is assumed to be either 0
(gene not expressed) or 1 (expressed). While variables am and
bm are ternary variables, two thresholds will be distinguished for
each gene: the value of the variable will be 0 when the con-
centration of the product will be underneath the first threshold,
1 between the two threshold and 2 above the second thresh-
old. Thus AA = {0, 1, 2}, AB = {0, 1, 2} and AC = {0, 1}, so A = AA ×
AB × AC . We can now examine closely the model of the sys-
tem.

The cells are located on the hexagonal lattice and each
cell interacts with the six neighbouring cells. Thus, as in
Example 1 about the hexagonal lattice, the neighbourhood
of the local function F̄ which defines the dynamic is V =
{(0, 0), (0, 1), (1, 1), (−1, 0), (1, 0), (−1, −1), (0, −1)}.

In this application, we make this assumption that not all the
parameters (expression levels of genes) of the neighbouring cells
are taken into account. To be more precise, only the expression
level of gene A of the six neighbouring cells might have an influ-
ence on the expression level of gene of central cell at next step.
Let maxA(m) denote the maximum expression level of gene A in
the six neighbouring cells of the cell m ∈M: variable maxA(m) will
thus be a ternary variable. For example, if maxA(m) = 0, it means
that the value of expression level of gene A in each neighbouring
cell of the studied cell is 0. As in Example 6, the local function can
be define as: F̄((a!, b!, c!)! ∈V) = f ((a0, b0, c0), max(a! : ! ∈V \
{0})) = f ((a0, b0, c0), maxA(0)), where f : A × AA → A is given in
Fig. 5. The expression level of genes of a cell are naturally repre-
sented by three numbers because there are three genes in each
cell and each number is the expression level of one gene in the
cell.

Fig. 5. Definition of f : A × AA → A.

For example, here is a state and its image by F̄ at next step (we
have maxA = 2 and the table gives f (101, 2) = 220):

We can notice that the local state xV ∈AV centred on V below is
steady:

Moreover, V is a fundamental domain of the sub-lattice M′ =
(2e1 − e2)Z+ (e1 + 3e2)Z where (e1, e2) is the base of the hexag-
onal lattice introduced in Example 1. Observe that the state
generated by the previous local state, denoted xV composed by
seven cells, allows one to obtain a fixed point (F(x) = x), or a AM-
stable state, x ∈AM such that xm+V = xV for all m ∈M (Fig. 6).

In the same way, the state generated by this following hexagonal
local state yV ∈AV allows to obtain a new stable state y ∈AM such
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Fig. 6. Fixed point x.

Fig. 7. Fundamental domain and spatial condition.

Fig. 8. Example of positive circuit.

that ym+V = yV for all m ∈M.

Given the fundamental domainV ofM′ composed by seven cells.
Let

C = {(−1, 0), (1, 0), (1, 1), (1, 0)},

it is the coloured set of the fundamental domain in Fig. 7.

PartC satisfies the spatial condition of Corollary 8. We thus have
our two fixed states x and y which enjoy the conditions of Corollary
8. The two local state x and y have the same expression level of genes
on this coloured set. Then, there is a state z such as G(∂F(z, y)) has
a positive circuit. Here is one example (Fig. 8):

There are an intracellular positive circuit and an intercellular
positive circuit. This last circuit is on two cells, the genes A and B
in the two cells interact. Let us remark that a single fixed periodic
state with a certain regularity suffices to imply the existence of a
positive circuit. Since the local state y is just obtained by translation
of x.

5. Perspectives

This article presents a discrete model of intercellular genetic
networks and generalizes Thomas’ rule with a spatial condition on
stable states. The principal result, Theorem 7, is not yet optimum.

Indeed, in the present work, the size of the positive cir-
cuit is controlled by the size of the tile: the genes involved
in the circuit are localised on the cells contained in the tile,
more precisely in U. We may conjecture a stronger location
constraints on the positive circuit which must exist in Theo-
rem 7. We can expect a bound independent of the dynamic: for
instance the circuits will be on at most three or four neighbouring
cells.

Moreover, cells are located on a lattice which gives a rigid struc-
ture at the biological system. We can imagine that biological system
are not such regular. An idea in order to study no regular configu-
rations is to use quasi-periodic structures where the most famous
is the Penrose’s tiling.

Another possibility would be to focus on spatial properties in a
differential framework.
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