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a b s t r a c t

A cellular automaton is a continuous function F defined on a full-shift AZ which commutes
with the shift �. Often, to study the dynamics of F one only considers implicitly �. However,
it is possible to emphasize the spatio-temporal structure produced by considering the
dynamics of the Z ⇥ N-action induced by (�, F).

In this purpose we study the notion of directional dynamics. In particular, we are
interested in directions of equicontinuity and expansivity, which generalize the concepts
introduced by Gilman [Robert H. Gilman, Classes of linear automata, Ergodic Theory
Dynam. Systems 7 (1) (1987) 105–118] and P. Kůrka [Petr Kůrka, Languages, equicontinuity
and attractors in cellular automata, Ergodic Theory Dynam. Systems 17 (2) (1997)
417–433]. We study the sets of directions which exhibit this special kind of dynamics
showing that they induce a discrete geometry in space-time diagrams.

© 2008 Elsevier B.V. All rights reserved.

0. Introduction

A one-dimensional cellular automaton is a complex system defined by a local rule which acts on a configuration space
AZ synchronously and uniformly. These simple models exhibit a wide variety of dynamical behaviors. During the last
twenty years there have been several attempts to classify them according to their complex behavior. This problem starts
with Wolfram [20] who proposed an empiric classification. He suggested four different types of behavior according to the
observation of the space-time diagrams produced by the evolution of cellular automata.

Although the work of Wolfram was informal, this classification gave a determining impulse to the study of cellular
automata and a lot of authors started to give new formal classifications. From the point of view of topological dynamics,
Gilman [9] proposed a classification according to the sensitivity to initial conditions with respect to a Bernoulli measure and
Hurley [12] classified according to their attractors. Afterwards, Kůrka [15] refined these two ideas and proposed a third one
based on the possible language theoretical properties of codings of orbits in relation to a clopen partition. However, these
classifications remain unsatisfactory from the qualitative point of view since the (considered) product topology privileges
the central coordinates, while there is no reason to give more importance to coordinates around 0 than others. Thus, simple
cellular automata like the powers of the shift map are sensitive to the initial conditions. This is not in accordance with the
intuitive idea that appears when observing the extremely regular space-time diagrams of these cellular automata.

Previous classifications only take into account the action of the cellular automaton, without looking explicitly at the shift
map denoted by �. In order to capture the complexity of the structures observed in the space-time diagrams produced by a
cellular automaton F, it is natural to study the combined action of F and �. That is, the Z ⇥ N-action given by the family of
maps {�m � F

n : n 2 N,m 2 Z} (in contrast with the N-action defined by F and the Z-action defined by �). A shortcoming is
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that the Z⇥N-action inherits expansivity from the shift map, independently of F. Thus wemust restrict to a sub-semi-group
of Z ⇥ N. In fact, since Z ⇥ N can be embedded into R2, one can define a suspension of the action and consider directional
dynamics according to a subspace of R2. This allows us to study irrational directions.

Inspired by the work of Boyle and Lind [1] on directional expansivity for general Zd-actions, in this paper we study
directional dynamical properties of cellular automata from a topological and measure-theoretical point of view. This study
allows us to generalize classifications of [9] and [15] but according to a given direction. The main result of this article is the
characterization of the set of equicontinuous directions, directions containing equicontinuous points, expansive directions
and µ-almost equicontinuous directions for an invariant measure µ. These results reveal a discrete geometry in the space-
time diagrams.

1. Different actions on the configuration space AZ

1.1. General semi-group actions

Let M be a semi-group and X a compact metric space. One says M acts on X if for any m 2 M there is a continuous map
T

m : X ! X and T

m+n = T

m � T

n for all m, n 2 M. The pair (X, T) is called a dynamical system. If M = N or Z then T = T

1 is
a generator and one speaks about the M-action T. If M = Z ⇥ N or Z ⇥ Z, S = T

(1,0) and T = T

(0,1) are generators and one
speaks about theM-action (S, T).

Amorphism between dynamical systems (X, T) and (X0, T 0) is a continuous function ⇡ : X ! X

0 such that ⇡ � T

m = T

0m � ⇡
for all m 2 M. If ⇡ is surjective (X0, T 0) is a factor of (X, T); if ⇡ is injective (X, T) is a sub-system of (X0, T 0); if ⇡ is bijective
(X, T) and (X0, T 0) are conjugate.

The following are the main dynamical properties of an action we will need (for more details see [10]). Let d be a metric
in X.

• (X,M) is M-equicontinuous if for all " > 0 there exists � > 0 such that if d(x, y) < � then d(Tm(x), Tm(y)) < " for all
m 2 M.

• x 2 X is a M-equicontinuous point if for all " > 0 there exists � > 0 such that for all y 2 X with d(x, y) < � one has
d(Tm(x), Tm(y)) < " for all m 2 M. Denote Eq

M(X, T) the set ofM-equicontinuous points of (X, T).
• (X,M) is M-sensitive if there exists " > 0 such that for all x 2 X and � > 0 there exists y 2 X and m 2 M such that

d(x, y) < � and d(Tm(x), Tm(y)) > ".
• (X,M) isM-expansive if there exists " > 0 such that for all x 6= y there exists m 2 Mwhich verifies d(Tm(x), Tm(y)) > ".

Let us remark that in the literature a N-expansive action is frequently called positively expansive and a Z-expansive action
is called expansive. In this article we prefer to precise the nature of the action.

1.2. The space dimension: Z-action of the shift on AZ

Configuration space. Let A be a finite set and AZ the configuration space of Z-indexed sequences in A. If A is endowed with
the discrete topology, AZ is metrizable, compact and totally disconnected in the product topology. A compatible metric is
given by:

8x, y 2 AZ, d

C

(x, y) = 2�min{|i|:x
i

6=y

i

i2Z}.

Consider a not necessarily convex subset U ⇢ Z. For x 2 AZ, denote xU 2 AU the restriction of x to U. Given w 2 AU, one
defines the cylinder centered at w by [w]U = {x 2 AZ : xU = w}. Denote by A⇤ the set of all finite sequences or finite words
w = w0...wn�1 with letters in A; |w| = n is the length of w. When there is no ambiguity, denote [w]

i

= [w][i,i+|w|�1].

Shift action. The shift map � : AZ ! AZ is defined by �(x)
i

= x

i+1 for x = (x
m

)
m2Z 2 AZ and i 2 Z. It is an homeomorphism

of AZ.
A closed and �-invariant subset ⌃ of AZ is called a subshift. For U ⇢ Z denote L⌃(U) = {xU : x 2 ⌃} the set

of patterns centered at U. Since ⌃ is �-invariant, it is sufficient to consider the words of length n 2 N, so we denote
L⌃(n) = {x[0,n�1] : x 2 ⌃}. The language of a subshift ⌃ is defined by L⌃ = [

n2NL⌃(n). By compacity, the language
characterizes the subshift.

A subshift⌃ ✓ AZ is transitive if givenwords u, v 2 L⌃ there isw 2 L⌃ such that uwv 2 L⌃ . It ismixing if given u, v 2 L⌃

there is N 2 N such that uwv 2 L⌃ for any n � N and some w 2 L⌃(n).
A subshift ⌃ ⇢ AZ is specified if there exists N 2 N such that for all u, v 2 L⌃ and for all n � N there exists a �-periodic

point x 2 ⌃ such that x[0,|u|�1] = u and x[n+|u|,n+|u|+|v|�1] = v (see [8] for more details).
A subshift ⌃ ⇢ AZ is weakly-specified if there exists N 2 N such that for all u, v 2 L⌃ there exist n  N and a �-periodic

point x 2 ⌃ such that x[0,|u|�1] = u and x[n+|u|,n+|u|+|v|�1] = v.
Specification (resp. weakly-specification) implies mixing (resp. transitivity) and density of �-periodic points. Let ⌃ be a

weakly-specified mixing subshift. By compacity there exists N 2 N such that for any x, y 2 ⌃ and i 2 N there exist w 2 L⌃ ,
|w|  N, and j 2 Z such that x(�1,i]w�j(y)[i+|w|,1) 2 ⌃ . If ⌃ is specified this property is true with |w| = n and n � N.



M. Sablik / Theoretical Computer Science 400 (2008) 1–18 3

Subshifts of finite type and sofic subshifts. A subshift ⌃ is of finite type if there exist a finite subset U ⇢ Z and F ⇢ AU such
that x 2 ⌃ if and only if �m(x)U 2 F for all m 2 Z. The diameter of U is called an order of ⌃ .

A subshift ⌃ 0 ⇢ BZ is sofic if it is the image of a subshift of finite type ⌃ ⇢ AZ by a map ⇧ : AZ ! BZ,
⇧ ((x

i

)
i2Z) = (⇡(x

i

))
i2Z, where ⇡ : A ! B.

A transitive sofic is weakly-specified and a mixing sofic is specified. For precise statements and proofs about sofic
subshifts and subshifts of finite type see [17] or [13].

1.3. The time dimension: N-action of a cellular automaton on AZ

Cellular automata. A cellular automaton (CA) F : AZ ! AZ is given by a local rule which acts uniformly and synchronously
on the configuration space. That is, there are a finite segment or neighborhood U ⇢ Z and a local rule F : AU ! A such that
F(x)

m

= F((x
m+u

)
u2U) for all x 2 AZ andm 2 Z. The radius of F is r(F) = max{|u| : u 2 U}. By Hedlund’s theorem [11], a cellular

automaton is a pair (AZ, F) where F : AZ ! AZ is a continuous function which commutes with the shift.

Consideration of the past: Bijective CA. When the CA is bijective, since AZ is compact, F�1 is also a continuous function which
commuteswith �. By Hedlund’s theorem, (AZ, F�1) is a CA.We remark that the radius of F�1 can be arbitrary large compared
to the radius of F. In this case one can study the Z-action F on AZ and not only F as an N-action. This means that we can
consider positive (future) and negative (past) iterates of a configuration.

1.4. The space-time view

Let (AZ, F) be a CA. Since � and F commute, they generate the Z ⇥ N-action (�, F) on AZ. Similarly, if F is bijective, it is
also possible to consider the Z⇥Z-action (�, F) onAZ. This point of view is used to study the space-time diagrams produced
by cellular automata. Nevertheless, the strong influence of the shift in the dynamics of the action (�, F) forces us to restrict
our study to some sub-semi-groups of Z⇥ N.

Let K = N or Z (when K = Z the CA is considered to be bijective). LetM be a sub-semi-group of Z⇥K. IfM itself contains
a sub-semi-group of Z⇥ {0} then the dynamics of the restriction of (�, F) toM contains the dynamics of a power of � which
is still meaningful. So we are interested in sub-semi-groups of rank oneM = (p, q)Kwhere (p, q) 2 Z⇥ K \ {0}. In this case
it is equivalent to consider a direction ↵ = p

q

2 Q and study the directional dynamics of slope ↵.
In view of considering the dynamics of a CA in irrational directions, the semi-group Z ⇥ K is embedded into R2 . Put

S = R+ if K = N and S = R if K = Z. One defines the suspension of the Z⇥N-action (�, F) as the R⇥ S-action on AZ ⇥T⇥T
(where T is the 1-dimensional torus) defined for all (m, n) 2 R⇥ S by:

T

(m,n) : AZ ⇥ T⇥ T �! AZ ⇥ T⇥ T
(x,�1,�2) 7�! (�bm+�1c � F

bn+�2c(x), {m + �1}, {n + �2})
where b·c and {·} are the integer and fractional parts respectively. In the next section we define directional dynamics for
every slope ↵ 2 Rwithout using the notion of suspension. However the process is equivalent.

2. Directional sensitivity

In this section we define directional sensitivity to initial conditions. To compare the orbits of close points we consider
two points of view:

(i) A topological point of view: points are chosen in a subshift ⌃ ⇢ AZ, this follows ideas in [15];
(ii) A measure-theoretical point of view: points are chosen according to a �-invariant probability measure µ, this follows

ideas in [9].
Let ⌃ be a subshift of AZ and assume K = N or Z. Let x 2 AZ, ↵ 2 R and " > 0. The ball (relative to ⌃ ) centered at x 2 ⌃

of radius " is given by B⌃(x, ") = {y 2 ⌃ : d
C

(x, y) < "} and the tube of slope ↵ centered at x of width " is:

D

↵
⌃(x, ",K) = {y 2 ⌃ : d

C

(�bn↵c � F

n(x),�bn↵c � F

n(y)) < ",8n 2 K}.
One assumes K = Zwhenever the CA is bijective. If ⌃ = AZ one omits in the notation the subscript ⌃ .

2.1. A topological point of view

2.1.1. Topological definitions
Definition 2.1. Assume K = N or Z. Let (AZ, F) be a CA, ⌃ ⇢ AZ be a subshift and ↵ 2 R.
• The set Eq↵

K(⌃, F) of (K,⌃)-equicontinuous points of slope ↵ is defined by

x 2 Eq

↵
K(⌃, F) () 8" > 0, 9� > 0, B⌃(x, �) ⇢ D

↵
⌃(x, ",K).

• (AZ, F) has (K,⌃)-equicontinuous points of slope ↵ if Eq↵
K(⌃, F) 6= ;.
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Fig. 1. u is a N-blocking word of slope ↵.

• (AZ, F) is (K,⌃)-equicontinuous of slope ↵ if

8" > 0, 9� > 0,8x 2 ⌃, B⌃(x, �) ⇢ D

↵
⌃(x, ",K).

• (AZ, F) is (K,⌃)-sensitive of slope ↵ if

9" > 0,8� > 0,8x 2 ⌃, 9y 2 B⌃(x, �) r D

↵
⌃(x, ",K).

• (AZ, F) is (K,⌃)-expansive of slope ↵ if

9" > 0,8x 2 ⌃, D

↵
⌃(x, ",K) = {x}.

Since the domain of a CA is a two sided fullshift, it is possible to break up the concept of expansivity into right-expansivity
and left-expansivity. The intuitive idea is that information can move by the action of a CA to the right and to the left in a two
sided fullshift.

• (AZ, F) is (K,⌃)-right-expansive of slope ↵ if there exists " > 0 such that E↵
⌃(x, ",K)\ E

↵
⌃(y, ",K) = ; for all x, y 2 ⌃ such

that x[0,+1) 6= y[0,+1).
• (AZ, F) is (K,⌃)-left-expansive of slope ↵ if there exists " > 0 such that E↵

⌃(x, ",K) \ E

↵
⌃(y, ",K) = ; for all x, y 2 ⌃ such

that x(�1,0] 6= y(�1,0].

Thus the CA (AZ, F) is (K,⌃)-expansive of slope ↵ if it is (K,⌃)-left-expansive and (K,⌃)-right-expansive of slope ↵.

Remark 2.1. If ⌃ ⇢ ⌃ 0 then ⌃ \ Eq

↵
K(⌃ 0, F) ⇢ Eq

↵
K(⌃, F). Moreover, one has Eq↵

Z(⌃, F) ⇢ Eq

↵
N(⌃, F).

Remark 2.2. To make the concept of expansivity relevant one supposes that ⌃ is infinite. If not, one needs a finite number
of cells to distinguish all points of ⌃ .

Remark 2.3. For CA on AN we just consider right-expansivity of slope ↵.

2.1.2. Directional equicontinuity and blocking particles
To translate equicontinuity concepts into space-time diagrams properties, we need the notion of a blocking word of slope

↵. Thewall generated by a blocking word can be interpreted as a particle which has the direction ↵ and kills any information
coming from the right or the left. The notion of particle is recurrent in the study of CA (for instance see [3]).

Definition 2.2. Assume K = N or Z. Let (AZ, F) be a CA with neighborhood U = [r, s] (also of F�1 if K = Z). Let ⌃ ⇢ AZ be
a subshift, ↵ 2 R, e 2 N with e � max(b↵c + 1 + s,�b↵c + 1 � r) and u 2 L⌃ with |u| � e. The word u is a (K,⌃)-blocking
word of slope ↵ and width e if there exists p 2 [0, |u| � e] such that:

8x, y 2 [u]0 \ ⌃,8n 2 K,�bn↵c � F

n(x)[p,p+e�1] = �bn↵c � F

n(y)[p,p+e�1].

The evolution of a cell i 2 Z depends on the cells [i + r, i + s]. Thus, due to condition on e, it is easy to deduce that if u is a
(K,⌃)-blocking word of slope ↵ and width e, then for all j 2 Z, x, y 2 [u]

j

\ ⌃ such that x]�1,j] = y]�1,j] and n 2 K one has
F

n(x)
i

= F

n(y)
i

for i  b↵nc + p + e + j. Similarly for all x, y 2 [u]
j

\ ⌃ such that x[j,1) = y[j,1), one has F

n(x)
i

= F

n(y)
i

for all
i � b↵nc + p. Intuitively, no information can cross the wall of slope ↵ and width e generated by the (K,⌃)-blocking word
(see Fig. 1).

The proof of the classification of CA given in [15] can be easily adapted to obtain a characterization of CA which have
equicontinuous points of slope ↵.

Proposition 2.1. Assume K = N or Z. Let (AZ, F) be a CA, ⌃ ⇢ AZ be a transitive subshift and ↵ 2 R. The following properties
are equivalent:
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1. (AZ, F) is not (K,⌃)-sensitive of slope ↵;
2. (AZ, F) has a (K,⌃)-blocking word of slope ↵;
3. Eq

↵
K(⌃, F) 6= ; is a �-invariant dense G� set.

Proof. Let U = [r, s] be a neighborhood of F (and also of F�1 if K = Z).
(1) ) (2) Let e � max(b↵c + 1+ s,�b↵c + 1� r). If (AZ, F) is not (K,⌃)-sensitive of slope ↵, then there exist x 2 ⌃ and

k, p 2 N such that for all y 2 ⌃ verifying x[0,k] = y[0,k] one has:

8n 2 K, �bn↵c � F

n(x)[p,p+e�1] = �bn↵c � F

n(y)[p,p+e�1].

Thus x[0,k] is a (K,⌃)-blocking word of slope ↵ and width e.
(2) ) (3) Let u be a (K,⌃)-blocking word of slope ↵. Since (⌃,�) is transitive, then there exists x 2 ⌃ containing

an infinitely many occurrences of u in positive and negative coordinates. Let k 2 N. There exists k1 � k and k2 � k such
that x[�k1,�k1+|u|�1] = x[k2,k2+|u|�1] = u. Since u is a (K,⌃)-blocking word of slope ↵ relatively to ⌃ , for all y 2 ⌃ such that
y[�k1,k2+|u|�1] = x[�k1,k2+|u|�1] one has

�bn↵c � F

n(x)[�k,k] = �bn↵c � F

n(y)[�k,k] 8n 2 K.

One deduces that x 2 Eq

↵
K(⌃, F).

Moreover, since ⌃ is transitive, the subset of points in ⌃ containing infinitely many occurrences of u in positive and
negative coordinates is a �-invariant dense G� set of ⌃ .

(3) ) (1) Follows directly from definitions. ⇤

Remark 2.4. When ⌃ is not transitive one can show that any (K,⌃)-equicontinuous point of slope ↵ contains a (K,⌃)-
blocking word of slope ↵. Reciprocally, a point x 2 ⌃ containing infinitely many occurrences of a (K,⌃)-blocking word of
slope ↵ in positive and negative coordinates is a (K,⌃)-equicontinuous point of slope ↵. However, if ⌃ is not transitive, the
existence of a (K,⌃)-blocking word does not imply that one can repeat it infinitely many times.

2.1.3. A directional classification
Thanks to Proposition 2.1 it is possible to establish a classification as in [15], but following a given direction.

Theorem 2.2. Assume K = N or Z. Let (AZ, F) be a CA, ⌃ ⇢ AZ be a transitive subshift and ↵ 2 R. One of the following cases
holds:

1. Eq

↵
K(⌃, F) = ⌃ () (AZ, F) is (K,⌃)-equicontinuous of slope ↵;

2. ; 6= Eq

↵
K(⌃, F) 6= ⌃ () (AZ, F) is not (K,⌃)-sensitive of slope ↵ () (⌃, F) has a (K,⌃)-blocking word of slope ↵;

3. (AZ, F) is (K,⌃)-sensitive of slope ↵ but is not (K,⌃)-expansive of slope ↵;
4. (AZ, F) is (K,⌃)-expansive of slope ↵.

Proof. First we prove the first equivalence. From definitions we deduce that if (AZ, F) is (K,⌃)-equicontinuous of slope ↵
then Eq

↵
K(⌃, F) = ⌃ . In the other direction, put D(x, y) = sup({d

C

(�bn↵c � F

n(x),�bn↵c � F

n(y)) : 8n 2 N}) for all x, y 2 ⌃ . The
function D : ⌃2 ! R is a distance and Eq

↵
K(⌃, F) is the set of continuous points of the function Id : (⌃, d

C

) ! (⌃,D).
By compacity, if this function is continuous on ⌃ , then it is uniformly continuous. One deduces that (AZ, F) is (K,⌃)-
equicontinuous of slope ↵.

The second equivalence and the classification follow directly from Proposition 2.1. ⇤

2.2. A measure-theoretical point of view

Gilman in [9] defines the notion of µ-almost sensibility to the initial conditions for any Bernoulli measure µ. It is
possible to naturally extend this definition for all �-invariant measures. Furthermore, as in the topological case, the µ-
almost sensitivity to initial conditions can be defined for a slope ↵ 2 R.

2.2.1. Measure-theoretical definitions
The definition of an equicontinuous point x is that the tube of slope ↵ centered at x has nonempty interior. To adapt

this notion to the measurable case, we replace the nonempty interior condition by a positive measure condition. The next
lemma justifies this point of view. It was adapted to any probability measure from [9] where only Bernoulli measures are
considered.

Denote M(AZ) the set of probability measures on AZ. Let M�(AZ) be the set of �-invariant probability measures on
AZ (that is, µ 2 M�(AZ) if µ(��1(B)) = µ(B) for all measurable subsets B of AZ) and put Merg

� (AZ) the set of �-ergodic
probability measures on AZ (a measure is �-ergodic if all �-invariant measurable subsets are trivial). Of course Merg

� (AZ) ⇢
M�(AZ) ⇢ M(AZ). A measure µ 2 M�(AZ) is �-strongly mixing if for all measurable sets A and B µ(A\��n

B) ! µ(A)µ(B)
as n ! +1.
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Lemma 2.3. Let µ 2 M(AZ) and E be a measurable set with µ(E) > 0. For µ-almost all x 2 E, one has:

lim
n!1

µ(E \ B(x, 2�n))

µ(B(x, 2�n))
= 1.

Proof. For m 2 N, we consider the set:

E

m

=
(

x 2 E : lim inf
n!1

µ(E \ B(x, 2�n))

µ(B(x, 2�n))
� 1 � 1

m

)

.

Ifµ(E
m

) = µ(E) for allm 2 N, the property is shown. Now, assume that there existsm 2 N such thatµ(E
m

) 6= µ(E). Replacing
E by E \ E

m

one can assume that µ(E) > 0 and that for infinitely many n 2 N and all x 2 E one has:

(Ñ)
✓

1 � 1
m

◆

µ(B(x, 2�n)) > µ(E \ B(x, 2�n)).

The measure µ is regular, then, since µ(E) > 0, it is possible to assume that E is closed and thus compact. So there exist
j 2 Z, k, l 2 N and l + 1 different words u

i

2 Ak for i 2 [0, l] such that the cylinders [u
i

]
j

cover E and verify:

(Ö) µ(E) >
✓

1 � 1
m

◆

l

X

i=0
µ([u

i

]
j

).

Let n > max(|j|, |j + k � 1|) such that (Ñ) holds. For all i 2 [0, l], it is possible to decompose [u
i

]
j

as a disjoint union of longer
cylinders [u

i

]
j

= [
h

[v
i,h]�n

where v

i,h 2 A2n+1. Using (Ñ) and (Ö) one obtains the following contradiction:

µ(E) >
✓

1 � 1
m

◆

X

i,h

µ([v
i,h]�n

) > µ(E). ⇤

Definition 2.3. Assume K = N or Z. Let (AZ, F) be a CA and µ 2 M�(AZ).

• The set Eq↵
K(F,µ) of (K,µ)-almost equicontinuous points of slope ↵ is defined by

x 2 Eq

↵
K(F,µ) () 8" > 0, µ(D↵(x, ",K)) > 0.

• (AZ, F) is (K,µ)-equicontinuous of slope ↵ if µ(Eq↵
K(AZ, F)) > 0;

• (AZ, F) is (K,µ)-almost equicontinuous of slope ↵ if µ(Eq↵
K(F,µ)) > 0;

• (AZ, F) is (K,µ)-almost expansive of slope ↵ if there exists " > 0 such that µ(D↵(x, ",K)) = 0 for all x 2 AZ.

Remark 2.5. It is not necessary to specify the set of definition of the CA since this information is contained in the support
of the measure supp(µ). Moreover Eq↵

K(F,µ) ⇢ supp(µ).

Remark 2.6. Since Eq

↵
K(⌃, F) and Eq

↵
K(F,µ) are �-invariant, if µ is �-ergodic and they have positive measure then their

measure is one.

Remark 2.7. One has Eq↵
Z(F,µ) ⇢ Eq

↵
N(F,µ).

2.2.2. Directional almost equicontinuity and almost blocking particle
As in the topological case,wedefine thenotion ofµ-almost blockingwallwhich allows to see theµ-almost equicontinuity

of slope ↵ as a property of the space-time diagrams. In this case, particles are given by µ-almost blocking walls which stop
the information µ-almost surely.

Definition 2.4. Assume K = N or Z. Let (AZ, F) be a CA with neighborhood U = [r, s] (also F

�1 if K = Z) and µ 2 M�(AZ).
Let ↵ 2 R, e � max(b↵c + 1 + s,�b↵c + 1 � r) and U = (u

n

)
n2N 2 (Ae)N. The sequence U is a (K,µ)-almost blocking wall of

slope ↵ and width e if:

µ
⇣n

x 2 AZ : Fn � �bn↵c(x)[0,e�1] = u

n

8n 2 K
o⌘

> 0.

When U has these properties, denote W

↵
K(U, i) = {x 2 AZ : F

n � �bn↵c(x)[i,i+e�1] = u

n

8n 2 K} for i 2 Z. For all i 2 Z, one
has µ(W↵

K(U, i)) > 0 since µ is �-invariant and ��i(W↵
K(U, 0)) = W

↵
K(U, i).

For all i 2 Z, define:

W

↵
K(U, i)0 =

(

x 2 W

↵
K(U, i) : lim

n!1
µ(W↵

K(U, i + j) \ B(�j(x), 2�n))

µ(B(�j(x), 2�n))
= 1 8j 2 Z

)

.

Since µ is �-invariant, by Lemma 2.3, one has µ(W↵
K(U, 0)) = µ(W↵

K(U, 0)0).

Remark 2.8. If the interior ofW↵
K(U, 0) is not empty, there exists u 2 A⇤ and p 2 N such that [u] ⇢ W

↵
K(U, p); u is aK-blocking

word of (AZ, F).

As in the topological case, there exists a characterization of µ-almost equicontinuity by using µ-almost blocking walls.
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Proposition 2.4. Assume K = N or Z. Let (AZ, F) be a CA, µ 2 M�(AZ) and ↵ 2 R. The following properties are equivalent:

1. (AZ, F) is (K,µ)-almost equicontinuous of slope ↵;
2. Eq

↵
K(F,µ) 6= ;;

3. for all e � max(b↵c + 1 + s,�b↵c + 1 � r) there exists a (K,µ)-almost blocking wall of slope ↵ and width e;
4. there exist e � max(b↵c + 1 + s,�b↵c + 1 � r) and a (K,µ)-almost blocking wall of slope ↵ and width e.

Proof. It easily follows that (1) ) (2) ) (3) ) (4). We prove that (4) ) (1).
Let U = (u

n

)
n2N 2 (Ae)N be a (K,µ)-blocking wall of slope ↵ 2 R. Let Y be the set of y 2 AZ whose forward and backward

orbits for the shift intersect W↵
K(U, 0)0 infinitely many times, that is:

Y =
\

n2N

⇣

� [
i�n

W

↵
K(U, i)0� \ � [

i�n

W

↵
K(U, i)0�

⌘

.

By Poincaré’s recurrence Theorem µ(Y) > 0. We want to show that Y \ supp(µ) ⇢ Eq

↵
K(F,µ).

Let y 2 Y \ supp(µ) and m 2 N. Consider i, j 2 N such that i  �m, j � m � E and y 2 W

↵
K(U, i)0 \ W

↵
K(U, j)0. By definition

of W↵
K(U, i)0, there exists p � max(�i, j) such that

µ(W↵
K(U, i) \ B(y, 2�p)) � 2

3
µ(B(y, 2�p)) and µ(W↵

K(U, j) \ B(y, 2�p)) � 2
3
µ(B(y, 2�p)).

We deduce that

µ(W↵
K(U, i) \ W

↵
K(U, j) \ B(y, 2�p)) � 1

3
µ(B(y, 2�p)).

Moreover, for all x 2 W

↵
K(U, i)\W

↵
K(U, j)\B(y, 2�p), it is easy to see that �b↵nc �Fn(x)[i,j+e�1] = �b↵nc �Fn(y)[i,j+e�1] for all n 2 K,

thus x 2 D

↵(y, 2�m,K). Since y 2 supp(µ), one has µ(D↵(y, 2�m,K)) � 1
3µ(B(y, 2�p)) > 0. It follows that y 2 Eq

↵
K(F,µ). ⇤

2.2.3. A directional classification
The next proposition characterizes the µ-almost equicontinuous points of slope ↵ which are not equicontinuous:

Proposition 2.5. Let (AZ, F) be a CA, µ 2 M�(AZ) and ↵ 2 R. A point x 2 Eq

↵(F,µ) r Eq

↵(supp(µ), F) if and only if
µ(B(x, �)) > µ(B(x, �) \ D

↵(x, ")) > 0 for all " > 0 and � > 0.

Proof. Assume there exist " > 0 and � > 0 such that µ(B(x, �)) = µ(B(x, �) \ D

↵(x, ")). One has µ(B(x, �) r D

↵(x, ")) = 0.
However B(x, �) r D

↵(x, ") is open. Thus, B(x, �) = D

↵(x, ") since x 2 supp(µ).
The converse follows from the definition. ⇤

As in the topological case, we have a similar classification in the measurable case.

Theorem 2.6. Assume K = N or Z. Let (AZ, F) be a CA, µ 2 M�(AZ) and ↵ 2 R. One of the following cases hold:

1. (AZ, F) is (K,µ)-equicontinuous of slope ↵ () there exists u, a K-blocking word of slope ↵, such that µ([u]0) > 0;
2. (AZ, F) is (K,µ)-almost equicontinuous of slope ↵ but not (K,µ)-equicontinuous () Eq

↵
K(F,µ)\Eq↵

K(AZ, F) 6= ; () there
exists U, a (K,µ)-almost blocking wall of slope ↵, such that the interior of W↵(U, 0) is empty;

3. (AZ, F) is (K,µ)-almost expansive of slope ↵.

Proof. The classification in three classes follows from Proposition 2.4. It is just necessary to prove the first equivalence. One
can adapt the proof of [5] to the case of directional dynamics.

Assume that (AZ, F) is (K,µ)-equicontinuous of slope ↵. Every point of Eq↵
K(AZ, F) contains aK-blockingword of slope ↵.

Moreover, there are countablemanyK-blockingwords. Sinceµ(Eq↵
K(AZ, F)) > 0, one deduces that there exists aK-blocking

word u such that µ([u]0) > 0.
In the other direction, we consider u, a K-blocking word of slope ↵, such that µ([u]0) > 0. Define the set:

Y =
\

n2N

⇣

� [
i�n

[u]
i

� \ � [
in

[u]
i

�

⌘

.

By Poincaré’s recurrence Theoremµ(Y) > 0.Moreover, by Proposition 2.2, one has Y ⇢ Eq

↵
K(AZ, F). One deduces that (AZ, F)

is (K,µ)-equicontinuous. ⇤

3. Sets of directions with a certain kind of dynamics

When we look to the action induced by a CA in a given direction we obtain similar classifications as P. Kůrka or R. H.
Gilman. Thus, this is not revealing of the spatio-temporal behavior of the CA. Our proposition is to consider sets of directions
which have a certain kind of dynamical behavior.
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3.1. Sets of directions and their relations

Assume K = N or Z. Let (AZ, F) be a CA, ⌃ be a subshift and µ 2 M�(AZ).
• Sets with topological equicontinuous properties:

AK(⌃, F) = {↵ 2 R : Eq↵
K(⌃, F) 6= ;},

and A

0
K(⌃, F) = {↵ 2 R : Eq↵

K(⌃, F) = ⌃}.
One has A0

K(⌃, F) ⇢ AK(⌃, F).
Moreover, AZ(⌃, F) ⇢ AN(⌃, F) \ AN(⌃, F�1) and A

0
Z(⌃, F) ⇢ A

0
N(⌃, F) \ A

0
N(⌃, F�1).

• Sets with topological expansive properties:

BK(⌃, F) = {↵ 2 R : (AZ, F) is (K,⌃)-expansive of slope ↵},
B

r

K(⌃, F) = {↵ 2 R : (AZ, F) is (K,⌃)-right-expansive of slope ↵},
and B

l

K(⌃, F) = {↵ 2 R : (AZ, F) is (K,⌃)-left-expansive of slope ↵}.
One has BK(⌃, F) = B

r

K(⌃, F) \ B

l

K(⌃, F).

Moreover,
⇣

B

l

N(⌃, F) \ B

r

N(⌃, F�1)
⌘

[
⇣

B

r

N(⌃, F) \ B

l

N(⌃, F�1)
⌘

⇢ BZ(⌃, F).

• Sets with measurable equicontinuous properties:

CK(F,µ) = {↵ 2 R : (AZ, F) is (K,µ)-almost equicontinuous},
and C

0
K(F,µ) = {↵ 2 R : (AZ, F)is (K,µ)-equicontinuous}.

One has C0
K(F,µ) ⇢ CK(F,µ).

Moreover CZ(F,µ) ⇢ CN(F,µ) \ CN(F
�1,µ) and C

0
Z(F,µ) ⇢ C

0
N(F,µ) \ C

0
N(F

�1,µ).

Remark 3.1. The set of directionswhich are (K,⌃)-sensitive isR\AK(⌃, F) and the set of directionswhich are (K,µ)-almost
expansive is R \ CK(F,µ). So it is not necessary to study these sets.

The next proposition shows the link between topological and measure-theoretical equicontinuous properties.
Proposition 3.1. Assume K = N or Z. Let (AZ, F) be a CA and µ 2 M�(AZ). One has:

C0
K(F,µ) ⇢ AK(supp(µ), F) ⇢ CK(F,µ).

Proof. For ↵ 2 R one has Eq↵
K(AZ, F) \ supp(µ) ⇢ Eq

↵
K(supp(µ), F), so

C

0
K(F,µ) ⇢ AK(supp(µ), F).

Let ↵ 2 R, x 2 Eq

↵
K(supp(µ), F) and " > 0. There exists p 2 N such that [x[�p,p]]\ supp(µ) ⇢ D

↵
supp(µ)(x, ",K). One deduces

that µ(D↵
supp(µ)(x, ",K)) � µ([x[�p,p]]) > 0 since x 2 supp(µ). That is, x 2 Eq

↵
K(F,µ). Thus Eq

↵
K(supp(µ), F) ⇢ Eq

↵
K(F,µ); and

consequently
AK(supp(µ), F) ⇢ CK(F,µ). ⇤

The next proposition shows the link between expansivity and equicontinuous properties.
Proposition 3.2. Assume K = N or Z. Let (AZ, F) be a CA, ⌃ be an infinite subshift and µ 2 M�(AZ) which does not charge
atoms (that is µ({x}) = 0 for all x 2 AZ).

In the topological case,
⇣

Br

K(⌃, F) [ Bl

K(⌃, F)
⌘

\ AK(⌃, F) = ;.

In particular, if BK(⌃, F) 6= ; then AK(⌃, F) = ;.
In the measure-theoretical case,

⇣

Br

K(supp(µ), F) [ Bl

K(supp(µ), F)
⌘

\ CK(F,µ) = ;.

In particular, if BK(supp(µ), F) 6= ; then CK(F,µ) = ;.
Proof. Let (AZ, F) be (K,⌃)-right expansive of slope ↵ and constant of expansivity ". One has:

D

↵
⌃(x, ",K) ⇢ {y 2 ⌃ : y

i

= x

i

8i � 0}.
Then the interior of D↵

⌃(x, ",K) is empty. Thus Eq↵
K(⌃, F) = ;.

Analogously, one proves B

l

K(⌃, F) \ AK(⌃, F) = ;. In the case BK(⌃, F) 6= ;, one has B

r

K(⌃, F) [ B

l

K(⌃, F) = R, so
AK(⌃, F) = ;.

In the measurable case, (AZ, F) is (K, supp(µ))-right expansive with slope ↵ and constant of expansivity ". Let x 2
supp(µ). One has:

µ(D↵(x, ",K))  µ({y 2 supp(µ) : y
i

= x

i

8i � 0}) = 0,
since µ does not charge the atom {x}. One deduces that x /2 Eq

↵
K(F,µ). Thus Br

K(supp(µ), F) \ CK(F,µ) = ;.
Similarly, one deduces B

l

K(supp(µ), F) \ CK(F,µ) = ;. In the case BK(supp(µ), F) 6= ;, one has B

r

K(supp(µ), F) [
B

l

K(supp(µ), F) = R, so CK(F,µ) = ;. ⇤
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3.2. Directional dynamics: Factors, inclusions and products

For completeness, we explain how directional dynamics behaves with factor maps, inclusions and products. The proofs
are left to the reader.

Suppose K = N or Z. Let (AZ, F), (BZ,G) be Ca and ⌃ ⇢ AZ, ⌃ 0 ⇢ BZ be subshifts. Consider a morphism ⇡ : AZ ! BZ

between the actions (�,G) and (�, F) and a measure µ 2 M�(AZ).
• If ⇡ is surjective and open (send open sets into open sets) and ⇡(⌃) = ⌃ 0, then

A

0
K(⌃, F) ⇢ A

0
K(⌃ 0,G), AK(⌃, F) ⇢ AK(⌃ 0,G), and CK(F,µ) ⇢ CK(G,⇡⇤µ).

• If ⇡ is injective and ⇡(⌃) ✓ ⌃ 0 then:

A

0
K(⌃ 0,G) ⇢ A

0
K(⌃, F), AK(⌃ 0,G) ⇢ AK(⌃, F), CK(G,⇡⇤µ) ⇢ CK(F,µ), BK(⌃, F) ⇢ BK(⌃ 0,G).

• Consider the product CA ((A ⇥ B)Z, F ⇥ G). One has:

A

0
K(⌃ ⇥ ⌃ 0, F ⇥ G) = A

0
K(⌃, F) \ A

0
K(⌃ 0,G), AK(⌃ ⇥ ⌃ 0, F ⇥ G) = AK(⌃, F) \ AK(⌃ 0,G),

CK(F ⇥ G,µ ⇥ ⌫) = CK(F,µ) \ CK(G, ⌫), BK(⌃ ⇥ ⌃ 0, F ⇥ G) = BK(⌃, F) \ BK(⌃ 0,G).

3.3. Some examples

Example 3.1 (All Directions are Equicontinuous). Let (AZ, F) be a nilpotent CA. That is, there exist y 2 AZ and n 2 N such
that Fn(x) = y for all x 2 AZ. Then AN(AZ, F) = R = A

0
N(A

Z, F) and B

r

N(A
Z, F) = B

l

N(A
Z, F) = ;.

Example 3.2 (Unique Equicontinuous Integer Direction). Assume K = N or Z. Let ↵ 2 Z and consider the CA (AZ,�↵). One
proves AK(AZ,�↵) = A

0
K(AZ,�↵) = {�↵}, that is, the CA has a unique equicontinuous direction �↵. It also holds that

B

r

N(A
Z,�↵) =]�↵,+1), Bl

N(A
Z,�↵) = (�1,�↵[ and BN(AZ,�↵) = ;, so the CA is right or leftN-expansive in all directions

different from �↵. It is not N-expansive but it is Z-expansive and BZ(AZ,�↵) = R \ {�↵}.
Example 3.3 (Equicontinuous Points for Directions Contained in a Closed Interval). LetA = {0, 1} and [r, s] ⇢ Z. For all x 2 AZ

one define F(x)
i

= x

r+i

· · · x
s+i

(the product of the coordinates of [r, s]). One remarks that u = 0 is a (N,AZ)-blocking
word of slope ↵, for all ↵ 2 [�s,�r]. One has AN(AZ, F) = [�s,�r]. Moreover it is easy to see that A0

N(A
Z, F) = ; and

B

l

N(A
Z, F) = B

r

N(A
Z, F) = BN(AZ, F) = ;.

Example 3.4 (Open Cone of Expansive Directions). A CA of neighborhood U = [r, s] is left-permutative (resp. right-
permutative) if for any u 2 As�r and b 2 A there is a unique a 2 A such that F(au) = b (respectively F(ua) = b). A CA
is bipermutative if it is left and right-permutative.

If (AZ, F) is left-permutative, then B

l

N(A
Z, F) = (�1,�r[. If (AZ, F) is right-permutative, then B

r

N(A
Z, F) =] � s,+1).

Thus, if (AZ, F) is bipermutative, then BN(AZ, F) =] � s,�r[.
Example 3.5 (Just Gliders: µ-almost Equicontinuous Points). Let A = {�1, 0, 1}, U = [�1, 1] and the local function defined
by:

F(a, b, c) =

8

>

>

<

>

>

:

1 if a = 1 and 2b + c � 0,
�1 if c = �1 and a + 2b  0,
0 in the other cases.

It is possible to interpret space-time diagrams as a background of 0’s where there are 1 particles which go to the right
and �1 particles which go to the left. Two opposite particles disappear when they collide.

Let µ 2 M�(AZ). We consider the CA (AZ, F). One proves that AN(AZ, F) = A

0
N(A

Z, F) = ;. If µ([1]0) > 0 then
CN(F,µ) = {1} and if µ([�1]0) > 0 then CN(F,µ) = {�1}.
Example 3.6. LetA = {0,M, R, L, I}. Consider (AZ, F) be the CA defined by F(abc) = L if c 2 {L, I} and a, b 2 A\{R}, F(abc) = R

if a 2 {D, I} and b, c 2 A \ {G}, F(abc) = I if (a 2 {R, I} and b or c 2 {L, I}) or (c 2 {L, I} and a or b 2 {R, I}), abc = 0. In this
example there is a “background” of 0 where there are particles M, which act as walls, and there particles L and R which go
to the left and to the right respectively, they rebound on the walls and intersect as I. This is a classical example of bijective
CA with equicontinous points [16].

We can verify that Bl

N(A
Z, F) =]�1,�1[ and B

r

N(A
Z, F) =]1,+1[ so BN(AZ, F) = ;, but BZ(AZ, F) =]�1,�1[[]1,1[.

For the equicontinuity, one has AN(AZ, F) = AZ(AZ, F) = {0} and A

0
N(A

Z, F) = A

0
Z(A

Z, F) = ;.
Example 3.7 (All Directions are Sensitive and N-Expansive Direction do not Exist). The relations given in Section 3.2 allow to
say that A0

N((A ⇥ A)Z,� ⇥ ��1) = AN((A ⇥ A)Z,� ⇥ ��1) = BN((A ⇥ A)Z,� ⇥ ��1) = ;.
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3.4. Multiplication and addition

Multiplication by a rational. Let (AZ, F) be a CA of neighborhood U = [r, s]. We want to construct a CA where the set of
directions which have a certain kind of dynamics is the same as (AZ, F) multiplied by a rational ↵ = p

q

.
Let A↵ = A1 ⇥ · · · ⇥ A

q

where A
i

= A for all i 2 [1, q]. One defines the CA (AZ
↵, F↵) of neighborhood U↵ = [pr, ps] by the

local rule:
F↵ : (A1 ⇥ ... ⇥ A

q

)[pr,ps] �! A1 ⇥ ... ⇥ A
q

(a1
r

, ..., aq
r

), ..., (a1
s

, ..., aq
s

) 7�! (Fp(aq
pr

, ..., aq
ps

), a10, ..., a
q�1
0 ).

It is easy to verify that

A

0
K(AZ

↵, F↵) = ↵A0
K(AZ, F) , AK(AZ

↵, F↵) = ↵AK(AZ, F) and B(AZ
↵, F↵) = ↵B(AZ, F).

Moreover

CK(F↵,µ ⇥ ... ⇥ µ) = ↵CK(F,µ) and C

0
K(F↵,µ ⇥ ... ⇥ µ) = ↵C0

K(F,µ).

Thus if F = �l with l 2 N, the associated CA (AZ
↵, F↵) verifies A0

K(AZ
↵, F↵) = {↵}.

In the same way, if (AZ, F) is the CA defined in the Example 3.3, the associated CA (AZ
↵, F↵) verifies AK(AZ

↵, F↵) =
[�↵s,�↵r].

To finish, if (AZ, F) is bipermutative of neighborhood [r, s] (Example 3.4), the associated CA (BZ,G) verifies B(AZ,G) =
] � ↵s,�↵r[.
Addition of a rational. Let (AZ, F) be a CA and ↵ = p

q

2 Q. Consider the CA (A↵,eF) wheree

F = F ⇥ ... ⇥ F. One verifies that
A

0
K(AZ,eF � �↵) = A

0
K(AZ, F) � ↵, AK(AZ,eF � �↵) = AK(AZ, F) � ↵, CK(AZ,eF � �↵) = CK(AZ, F) � ↵ and B(AZ,eF � �↵) =

B(AZ, F) � ↵.

4. Sets of directions with equicontinuous properties

If a CA has a direction verifying an equicontinuous property, then this direction is delimited by blocking walls which
indicate the propagation of information. If there exist two directions verifying equicontinuous properties, we are going to
see that all the propagation of information disappears and the CA evolves towards a trivial configuration. This phenomenon
appears when we characterize AK(⌃, F), A0

K(⌃, F) and CK(F,µ).

4.1. Directions with equicontinuous points

Definition 4.1. Let (AZ, F) be a CA and ⌃ be a subshift. (AZ, F) is ⌃-nilpotent if the ⌃-limit set defined by

⇤⌃(F) = \
n2N[

m�n

F

m(⌃),

is finite. By compacity, there exists n 2 N such that Fn(⌃) = ⇤
F

(⌃).

We observe that in general ⌃ is not F-invariant.
We are interested in the directions containing equicontinuous points.

Theorem 4.1. Let (AZ, F) be a CA of neighborhood U = [r, s] and ⌃ ⇢ AZ be a weakly-specified subshift. One of the following
cases holds:

• AN(⌃, F) = R, which is equivalent to (AZ, F) is ⌃-nilpotent;
• there exist ↵0,↵00 2 [�s,�r], with ↵0 < ↵00, such that ]↵0,↵00[⇢ AN(⌃, F) ⇢ [↵0,↵00] ⇢ [�s,�r];
• there exists ↵ 2 [�s,�r] such that AN(⌃, F) = {↵};
• AN(⌃, F) = ;.

Proof. Claim 1: AN(⌃, F) is convex (we just need the transitivity of ⌃).

Proof: Assume there exist ↵0 < ↵00 such that Eq↵0
N (⌃, F) 6= ; and Eq

↵00
N (⌃, F) 6= ;. We can consider two (N,⌃)-blocking words

u

0 and u

00 of slope ↵0 and ↵00 respectively. So there exist e0, e00 � max(b↵00c + 1 + s,�b↵0c + 1 � r), p0 2 [0, |u0| � e

0] and
p

00 2 [0, |u00| � e

00] such that for all x0, y0 2 [u0]0 \ ⌃ , for all x00, y00 2 [u00]0 \ ⌃ and for all n 2 N:
�bn↵0c � F

n(x0)[p0,p0+e

0�1] = �bn↵0c � F

n(y0)[p0,p0+e

0�1]

and �bn↵00c � F

n(x00)[p00,p00+e

00�1] = �bn↵00c � F

n(y00)[p00,p00+e

00�1].

Since ⌃ is transitive, there exists w 2 L⌃ such that u = u

0
wu

00 2 L⌃ . For all x, y 2 [u]0 \ ⌃ and for all n 2 N one has:

F

n(x)[p0+b↵0
nc,|u0|+p

00+e

00�1+b↵00
nc] = F

n(y)[p0+b↵0
nc,|u0|+p

00+e

00�1+b↵00
nc].

This implies that u is a (N,⌃)-blocking word of slope ↵ for all ↵ 2 [↵0,↵00]. 3 Claim 1
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Fig. 2. AN(⌃, F) ⇢ [�s,�r].

Claim 2: If (AZ, F) is not ⌃-nilpotent then AN(⌃, F) ⇢ [�s,�r].

Proof: Let u be a (N,⌃)-blocking word of slope ↵ > �r and width e. There exists p 2 [0, |u| � e] such that

8n 2 N,8x, y 2 [u]0 \ ⌃, Fn(x)[bn↵c+p,bn↵c+p+e�1] = F

n(y)[bn↵c+p,bn↵c+p+e�1].

Let z 2 ⌃ \ [u]0 be a �-periodic configuration. The sequence (Fn(z))
n2N is ultimately periodic of preperiod m and period

p. Denote ⌃ 0 the subshift generated by (Fn(z))
n2[m,m+p�1], ⌃ 0 is finite since F

n(z) is a �-periodic configuration for all n 2 N.
Let q be the order of the subshift of finite type ⌃ 0.
Since ⌃ is a weakly-specified subshift, there exists N 2 N such that for all u, v 2 L⌃ there exist k  N and x 2 ⌃ a

�-periodic point such that x[0,|u|�1] = u and x[k+|u|,k+|u|+|v|�1] = v. Let n 2 N such that |u| + N � rn + q  ↵n + q (it is possible
since ↵ > �r), we want to prove that Fn(⌃) ⇢ ⌃ 0.
The set [rn, sn] is a neighborhood of (AZ, Fn). Let v 2 L⌃((s � r)n + q). There exist x 2 ⌃ and k  N, such that

x(�1,|u|�1] = z(�1,|u|�1] and x[|u|+k,|u|+k+|v|�1] = v. Since u is a (N,⌃)-blocking word of slope ↵, the choice of n implies
that F

n(x)[|u|+N�rn,|u|+N�rn+q�1] = F

n(z)[|u|+N�rn,|u|+N�rn+q�1] (see Fig. 2). One deduces that the image of the function F

n :
L⌃([rn, sn + q]) ! Aq is contained in L⌃ 0(q). One deduces that Fn(⌃) ⇢ ⌃ 0 so (AZ, F) is ⌃-nilpotent.
The same proof holds for ↵ < �s. 3 Claim 2

Since AN(⌃, F) is convex, if AN(⌃, F) 6= ; then it is a segment of R. If (AZ, F) is not ⌃-nilpotent, the conditions on the
boundaries of AN(⌃, F) follow from Claim 2. ⇤

Remark 4.1. If moreover⌃ is specified, the same proof shows that there existsA1 ⇢ A such that⇤
F

(⌃) = {1
a

1 : a 2 A1}.
Example 4.1. Consider ({0, 1}Z,�) on ⌃ = {�1(01)1 , �1(10)1 }. ⌃ is a transitive subshift of finite type (so it is weakly-
specified) which is not mixing. One has AK(⌃, F) = A

0
K(⌃, F) = R and ⇤�(⌃) = ⌃ which does not contain �-uniform

configuration.

Example 4.2. Consider ({0, 1}AZ
, F) such that F(x)

i

= x

i�1 · x

i

· x

i+1. Let ⌃ the subshift such that L⌃ \ {0m1n : n �
log2(m)} \ {1n0m : n � log2(m)} = ;. ⌃ is a transitive F-invariant subshift and according the relation verifies by ⌃ , the
word 100001 is blocking of slope 2. However ⇤

F

(⌃) = {x 2 {0, 1}Z : 10n1 is not a subword of x} is infinite.
Corollary 4.2. Let (AZ, F) be a bijective CA and ⌃ ⇢ AZ be a mixing sofic subshift. Denote U = [r, s] a neighborhood of F and
U0 = [r0, s0] a neighborhood of F�1. One of the following cases holds:

• there exists ↵ 2 [max(�s,�s

0),min(�r,�r

0)] such that AZ(⌃, F) = {↵};
• AZ(⌃, F) = ;.

Proof. One has AZ(⌃, F) ⇢ AN(⌃, F)\AN(⌃, F�1), so we can apply Theorem 4.1 to characterize AZ(⌃, F). Since F is bijective,
if⌃ is infinite, it is impossible that AN(⌃, F) contains two different directions with equicontinuous points. Thus the two first
cases of Theorem 4.1 are eliminated. ⇤

4.2. Directions of equicontinuity

Theorem 4.3. Let (AZ, F) be a CA of neighborhood U = [r, s] and ⌃ ⇢ AZ be a weakly-specifed subshift. One of the following
cases holds:

1. A0
N(⌃, F) = R, in this case (AZ, F) is ⌃-nilpotent;

2. there exists ↵ 2 [�s,�r]\Q such that A0
N(⌃, F) = {↵}, in this case there exist a preperiodm � 0 and a period p > 0 such that

�b(m+p)↵c � F

m+p = �bm↵c � F

m;
3. A0

N(⌃, F) = ;.

Proof. Claim 1: A0
N(⌃, F) contains two distinct directions if and only if (AZ, F) is ⌃-nilpotent.
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Fig. 3. N-Equicontinuity of slope ↵0 and ↵00 and nilpotent CA.

Proof: If (AZ, F) is⌃-nilpotent, one obtains a �-periodic configuration after finitelymany steps. One deduces that Eq↵
N(⌃, F) =

⌃ for all ↵ 2 R.
Assume that (AZ, F) is (N,⌃)-equicontinuous of slope ↵0 and ↵00 with ↵0 > ↵00. By definition, there exist e � max(b↵0c +

1 + s,�b↵00c + 1 � r) and k, p 2 N such that for all x 2 ⌃ , for all i 2 Z, n 2 N and z 2 [x[i,i+k]]i \ ⌃ one has:

�b↵0
nc � F

n(x)[i+p,i+p+e�1] = �b↵0
nc � F

n(z)[i+p,i+p+e�1]

and �b↵00
nc � F

n(x)[i+p,i+p+e�1] = �b↵00
nc � F

n(z)[i+p,i+p+e�1].

Let z 2 ⌃ be a�-periodic configuration. The sequence (Fn(z))
n2N is ultimately periodic of preperiodm and period p. Denote

⌃ 0 the subshift generated by (Fn(z))
n2[m,m+p�1], ⌃ 0 is finite since F

n(z) is a �-periodic configuration for all n 2 N. Let q be the
order of the subshift of finite type ⌃ 0.
Since ⌃ is a weakly-specified subshift, there exists N 2 N such that for all x, y 2 ⌃ , for all i 2 Z, there exists w 2 L⌃ ,

|w|  N, and j 2 Z such that x(�1,i[w�j(y)[i+|w|,+1) 2 ⌃ .
Let n 2 N and i 2 Z be such that bn↵00c+ i+k+p+N  0  q  bn↵0c+ i+p; such integers exist because↵0 > ↵00. Let x 2 ⌃ ,

there exist w 2 A⇤ such that |w|  N, j 2 Z and y = x[�1,i+k]w�j(z)[i+k+1+|w|,1]. Since y 2 [x[i,i+k]]i, the states F

n(y)[0,q�1] do
not depend of coordinates of y larger than i + k (see Fig. 3). One deduces that Fn(x)[0,q�1] = F

n(y)[0,q�1]. Analogously in the
other side, one obtains that Fn(�j(z))[0,q�1] = F

n(y)[0,q�1]. Thus Fn(x)[0,q�1] = F

n(�j(z))[0,q�1]. Since x is arbitrary, one deduces
that Fn(⌃) ⇢ ⌃ 0, so (AZ, F) is ⌃-nilpotent.
Thus, if A0

N(⌃, F) 6= ; and (AZ, F) is not ⌃-nilpotent, the set A

0
N(⌃, F) is reduced to {↵}. By Theorem 4.1, one has

↵ 2 [�s,�r]. The claim follows.
3 Claim 1

Claim 2: If A0
N(⌃, F) = {↵} then ↵ 2 Q and (�b↵nc � F

n)
n

is ultimately periodic.

Proof: By definition, there exist k, p 2 N such that for all x 2 ⌃ , for all n 2 N and z 2 [x[�p,k]]i \ ⌃ one has:

�b↵nc � F

n(x)0 = �b↵nc � F

n(z)0.

Thus the sequence (�b↵nc � F

n(x)0)n2N is uniquely determined by the knowledge of x[�p,k]. For all n 2 N, put p
n

= b↵nc and
consider the function

f

n

: L⌃([�p, k]) �! A
u 7�! F

n(x)0 where x 2 [u][p
n

�p,p
n

+k] \ ⌃ .

Since there exist a finite number of functions from L⌃([�p, k]) to A, we deduce that there exist n1 < n2 such that
f

n1 = f

n2 . We want to prove that f
n1+1 = f

n2+1 and p

n1+1 � p

n1 = p

n2+1 � p

n2 .
For all x 2 ⌃ ,

F

n1+1(x)0 = f

n1+1(x[p
n1+1�p,p

n1+1+k]) =
?
F((f

n1(x[p
n1�p+u,p

n1+k+u]))u2U),

where U is the neighborhood of (AZ, F). Moreover,

F

n2+1(x)0 = F((f
n2(x[p

n2�p+u,p
n2+k+u]))u2U)

= F((f
n1(x[p

n2�p+u,p
n2+k+u]))u2U

=⇤ f

n1+1(x[p
n2+p

n1+1�p

n1�p,p
n2+p

n1+1�p

n1+k]),
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where ⇤ follows from ?. Since F

n2+1(x)0 = f

n2+1(x[p
n2+1�p,p

n2+1+k]), one deduces that fn1+1 = f

n2+1 and p

n1+1�p

n1 = p

n2+1�p

n2 .
Thus the sequences (f

n

)
n2N and (p

n

)
n2N are ultimately periodic. We deduce that ↵ 2 Q and (�b↵nc � F

n)
n

is ultimately
periodic. 3 Claim 2
⇤

Corollary 4.4. Let (AZ, F) be a CA and ⌃ be a mixing sofic subshift. If A0
N(⌃, F) = {↵} then there exixts m 2 N such that

Bl

N(F
m(⌃), F) =] � 1,↵[ and Br

N(F
m(⌃), F) =]↵,+1[.

Proof. By previous theorem, the sequence (�b↵nc � F

n)
n2N is ultimately periodic of preperiod m and period p. Thus, for all

n 2 N the restriction of �b↵(n+p)c � F

n+p to F

m(⌃) is the identity. The result is plain. ⇤

Remark 4.2. In this case, since F

m(⌃) is not reduced to one point (F is not ⌃-nilpotent), one deduces that AN(⌃, F) =
A

0
N(⌃, F).

Corollary 4.5. Given a CA (AZ, F) and ↵ 2 R, it is undecidable to know whether (AZ, F) is N-equicontinuous of slope ↵.

Proof. By the result of Culik, Pachl and Yu [6], it is undecidable to know if a CA is nilpotent. However, if it is possible to know
the N-equicontinuity of slope ↵, then to decide if a CA is nilpotent, it would be enough to know if (AZ, F) and (AZ,� � F) are
N-equicontinuous of slope ↵. Thus, the N-equicontinuity of slope ↵ is undecidable. ⇤

Remark 4.3. There is another proof of this result in [7].

Corollary 4.6. Let (AZ, F) be a CA and ⌃ ⇢ AZ a mixing sofic subshift. If (AZ, F) is bijective and (N,⌃)-equicontinuous of slope
↵ 2 Q, then (AZ, F�1) is (N,⌃)-equicontinuous of slope �↵. Thus, one has A0

Z(⌃, F) = A0
N(⌃, F).

Proof. By previous proposition, there existm, p 2 N such that Fm+p��b(m+p)↵c = F

m��bm↵c where F

p��bp↵c = Id. One deduces
that (F�n � ��bn↵c)

n2N is periodic of period p. It follows the (N,⌃)-equicontinuity of slope �↵ of (AZ, F�1). ⇤

4.3. Directions of µ-almost equicontinuity

In the measurable point of view, the property Eq

↵
K(⌃, F) = ⌃ is translated to µ(Eq↵

K(F,µ)) = 1 which is equivalent to
Eq

↵
K(F,µ) 6= ; when µ is �-ergodic. Now we study µ-almost equicontinuous directions.

Definition 4.2. The following notion was introduced in [14]. Let (AZ, F) and µ 2 M�(AZ). The µ-limit set of F is given by

u /2 L(⇤µ(F)) () lim
n!1 µ(F�n([u]0)) = 0.

Thus (AZ, F) is said µ-nilpotent if ⇤µ(F) is finite.

Proposition 4.7. AssumeK = N or Z. Let (AZ, F) be a CA and µ 2 M�(AZ) be a �-ergodic probability measure. The set CK(F,µ)
is convex.

Proof. Let U

0 and U

00 be two (K,µ)-almost blocking walls of slope ↵0 and ↵00 respectively with ↵0 < ↵00 and common
width e. By �-ergodicity of µ, there exists k 2 N such that µ(W↵0

K (U0, 0) \ W

↵00
K (U00, k)) > 0. By Lemma 2.3, there exist

x 2 W

↵0
K (U0, 0) \ W

↵00
K (U00, k) and r 2 N such that µ(X) > 0 where

X = W

↵0
K (U0, 0) \ W

↵00
K (U00, k) \ [x[�r,k+r]]�r

.

Moreover, for all z 2 X and for all n 2 N, one has Fn(x)
i

= F

n(z)
i

for all i 2 [b↵0
nc, b↵00

nc + k + e].
Let ↵ 2 [↵0,↵00]. Put U = (Fn(x)[b↵nc,b↵nc+e�1])n2N. Since U

0 and U

00 are (K,µ)-almost blocking walls, one deduces that
X ⇢ W

↵
K(U, 0). Then µ(W↵

K(U, 0)) > 0, that is to say U is a µ-almost blocking wall of slope ↵ and width e. ⇤

Theorem 4.8. Let (AZ, F) be a CA of neighborhood U = [r, s] and µ 2 M�(AZ) be a �-strongly mixing probability measure. One
of the following cases hold:

1. (AZ, F) is µ-nilpotent;
2. there exists ↵ such that CN(F,µ) = {↵};
3. CN(⌃, F) = ;.
Proof. We are going to prove that if CN(F,µ) has at least two distinct elements, then there exists A1 ⇢ A such that
⇤µ(F) = {1

a

1 : a 2 A1}.
Let U0 and U

00 be two (N,µ)-almost blocking walls of slope ↵0 and ↵00 respectively, with ↵0 < ↵00. By �-ergodicity of µ,
there exists k 2 N such that µ(W↵0

N (U0, 0) \W

↵00
N (U00, k)) > 0. By Lemma 2.3 there exist x 2 W

↵0
N (U0, 0) \W

↵00
N (U00, k) and r 2 N

such that µ(X) > 0 where

X = W

↵0
N (U0, 0) \ W

↵00
N (U00, k) \ [x[�r,k+r]]�r

.

Moreover, for all z 2 X and for all n 2 N, one has Fn(x)
i

= F

n(z)
i

for all i 2 [b↵0
nc, b↵00

nc + k].
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Fig. 4. µ-almost equicontinuity of slope ↵0 and ↵00 and the set ⇤µ(F).

Assume ↵0  0. Let " > 0. Sinceµ is � strongly mixing, there exists l 2 N such that for all j � lwe haveµ(X\��j(X)) > 0.
By �-ergodicity of µ, there exists h 2 N such that the set

Y

"
l

= {y 2 AZ : 9j 2 [l, l + h] such that �j(y) 2 X}
verifies µ(Y"

l

) � 1 � ". Consider N 2 N such that b↵0
Nc + l + h  b↵00

Nc + k, this is possible since ↵0 < ↵00; this inequality
is verified for all n � N. Let n � N and y 2 Y

"
l

. There exists j 2 [l, l + h] such that �j(y) 2 X. So for all z 2 ��j(X), one has
F

n(y)
i

= F

n(z)
i

for all i 2 [b↵0
nc + j, b↵00

nc + k+ j] (see Fig. 4). Since µ(X \��j(X)) > 0 there exists z 2 X \��j(X). We deduce
that

F

n(y)
i

= F

n(z)
i

= F

n(x)
i

for all i 2 [b↵0
nc, b↵00

nc + k] \ [b↵0
nc + j, b↵00

nc + k + j] 6=
(⇤)

;,

where (⇤) follows from the inequality verified by every n � N. So, there exists a 2 A such that:
F

n

⇤µ[a]b↵0
nc+j

= F

n

⇤µ[a] � µ(Y"
l

) � 1 � ".

It follows that if u is not a power of an element of A then F

nµ[u] converges to 0. This proves the result when ↵0  0. The
case ↵0 � 0 is analogous. ⇤

Corollary 4.9. Given a CA (AZ, F), ↵ 2 R and µ a non-trivial Bernoulli measure, it is undecidable to know if (AZ, F) is (N,µ)-
equicontinuous of slope ↵.
Proof. By the result of Boyer, Poupet and Theyssier [4], it is undecidable to know if a CA is µ-nilpotent. However, if it is
possible to decide the (N,µ)-equicontinuity of slope ↵, to know if a CA is nilpotent it would be enough to verify if (AZ, F)
and (AZ,� � F) are (N,µ)-equicontinuous of slope ↵. Thus, the (N,µ)-equicontinuity of slope ↵ is undecidable. ⇤

5. Directional expansivity

The directional expansivity was first studied for general Zd-action in [1]. There are a lot of studies of expansive properties
for CA. The most connected to directional dynamics is the work of Nasu [18] or [19]. In this section we establish that
expansive directions are contained in an open cone. This shows that CA with an expansive direction have a strong
information transfer. Indeed, each direction in the open cone contains all the information of the initial configuration. Of
course this transfer of information is bounded by the neighborhood of the CA; the information cannot go faster than the
computations of the CA. However, we do not know if the bounds of the cone can be irrational.

5.1. Characterization of K-expansivity

We will need some additional notations.
Notation. Let V,V0 ⇢ Z⇥ K. We say that V codes V0 relatively to (⌃, F), denoted V `K

⌃,F V0, if for all x, y 2 ⌃ ,
(Fn(x)

m

)(m,n)2V = (Fn(y)
m

)(m,n)2V =) (Fn(x)
m

)(m,n)2V0 = (Fn(y)
m

)(m,n)2V0 .

That is, for all x 2 ⌃ the knowledge of (Fn(x)
m

)(m,n)2V allows us to know (Fn(x)
m

)(m,n)2V0 with the local rule F (and the local
rule F

�1 if K = Z). If there is no ambiguity, we write ` instead of `K
⌃,F . If V ⇢ V0 one has V0 ` V.

Let ↵ 2 R, r0, r00 2 Z and N 2 N. Denote
V↵

K([r0, r00],N) = {(bm + n↵c, n) 2 Z⇥ K : n 2 [�N,N] \ K, r0  m  r

00}.
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Fig. 5. V↵
N([0, r"], 2r

T

) ` {0} ⇥ [0, r" + 2].

First of all, let us establish a lemma which allows to characterize the K-right-expansivity and K-left-expansivity.

Lemma 5.1. Assume K = N or Z. Let (AZ, F) be a CA, ⌃ ⇢ AZ be a subshift and ↵ 2 R. The following properties are equivalent:

1. (AZ, F) is (K,⌃)-right-expansive (resp. (K,⌃)-left-expansive) of slope ↵ with expansivity constant " = 2�r" ;
2. there exists r" 2 N such that for all R > r" there is rT 2 Nwhich verifies V↵

K([0, r"], rT) ` V↵
K([0, R], 0) (resp. V↵

K([�r", 0], r
T

) `
V↵

K([�R, 0], 0));
3. there exists r", rT 2 N such that V↵

K([0, r"], rT) ` V↵
K([0, r" + 1], 0) (resp. V↵

K([�r", 0], r
T

) ` V↵
K([�r" � 1, 0], 0)).

Proof. The definition of the (K,⌃)-right-expansivity is translated by the coding formalism: (AZ, F) is (K,⌃)-right-
expansive of slope ↵ if and only if there exists r" 2 N such that V↵

K([0, r"],+1) ` V↵
K([0,+1), 0).

(1) ) (2) By expansivity of slope ↵, there exists r" such that V↵
K([0, r"],+1) ` V↵

K([0,+1), 0). Let R > r", then
V↵

K([0, R], 0) is a finite subset of V↵
K([0,+1), 0). One deduces that there exists a finite subset of V↵

K([0, r"],+1) which
allows us to code V↵

K([0, R], 0) relatively to (⌃, F). So, there exists r
T

2 N such that V↵
K([0, r"], rT) ` V↵

K([0, R], 0).
(2) ) (3) This implication is direct.
(3) ) (1) Assume there exists r", rT 2 N such that V↵

K([0, r"], rT) ` V↵
K([0, r" + 1], 0). So, one has V↵

K([0, r"], rT + 1) `
V↵

K([0, r" + 1], 1). By r

T

iterations of the same process, one obtains V↵
K([0, r"], 2rT) ` V↵

K([0, r" + 1], r
T

) (see Fig. 5). By
�-invariance, one has V↵

K([0, r" + 1], r
T

) ` V↵
K([0, r" + 2], 0), so V↵

K([0, r"], 2rT) ` V↵
K([0, r" + 2], 0). By recurrence one

deduces that for all n 2 N it holds that V↵
K([0, r"], nrT) ` V↵

K([0, r" + n], 0). The (K,⌃)-right-expansivity of slope ↵ of (AZ, F)
follows. ⇤

Remark 5.1. The integers r" and r

T

depend on↵; in case of ambiguitywe can denote themby r

↵
" and r

↵
T

. In fact, r
T

corresponds
to the radius of the transverse CA (see [2]).

5.2. Directional N-expansivity

The previous lemma allows to describe the sets B

r

N(⌃, F), Bl

N(⌃, F) and BN(⌃, F). For more convenience, we denote V↵

instead of V↵
N .

Theorem 5.2. Let (AZ, F) be a CA of neighborhood U = [r, s] and ⌃ ⇢ AZ an infinite transitive subshift.

• If Br

N(⌃, F) 6= ; then there exists ↵0 � �s such that Br

N(⌃, F) =]↵0,+1) ⇢] � s,+1).
• If Bl

N(⌃, F) 6= ; then there exists ↵00  �r such that Bl

N(⌃, F) = (�1,↵00[⇢ (�1,�r[.
• If BN(⌃, F) 6= ; then there exist ↵0,↵00 2 R with �s  ↵0  ↵00  �r such that BN(⌃, F) =]↵0,↵00[⇢] � s,�r[.

Proof. Claim 1: If ↵0 2 Br

N(⌃, F) then [↵0,+1) ⇢ Br

N(⌃, F).

Proof: By Lemma 5.1, there exists r↵0
" , r↵

0
T

2 N such that V↵0
K ([0, r↵0

" ], r
T

) ` V↵0
K ([0, r↵0

" + 1], 0).
Let ↵ 2 [↵0,+1). Put r↵" = b(↵ � ↵0)r↵

0
T

c + r

↵0
" . One has

V↵
K([0, r↵" ], r

T

) ` V↵
K

([0, r↵" ], 0) [ V↵0
K ([r↵" � r

↵0
" , r↵" ], r↵0

T

) ` V↵
K

([0, r↵" + 1], 0).

One deduces that ↵ 2 B

r

N(⌃, F). 3 Claim 1

Claim 2: Br

N(⌃, F) is open.
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Fig. 6. B

r

N(⌃, F) is open.

Proof: Let ↵ 2 B

r

N(⌃, F). By Lemma 5.1, there exist r", rT 2 N such that V↵([0, r"], rT) ` V↵([0, r" + 2], 0). One defines

↵0 = b↵ r

T

c � 1
r

T

.

Thus, V↵0
([0, r" + 1], r

T

) � V↵([0, r"], rT) and V↵0
([0, r" + 1], r

T

) ` V↵([0, r" + 2], 0) (see Fig. 6). One deduces that
↵0 2 B

r

N(⌃, F). According to the previous step, one has ↵ 2]↵0,+1) ⇢ B

r

N(⌃, F). 3 Claim 2

Claim 3: Br

N(⌃, F) ⇢] � s,+1).

Proof: If (AZ, F) is (N,⌃)-right-expansive of slope ↵, there exists r" 2 N such that if x[0,+1) 6= y[0,+1) then
F

n(x)[�r"+b↵nc,r"+b↵nc] 6= F

n(y)[�r"+b↵nc,r"+b↵nc] for some n 2 N. Since the neighborhood of (AZ, Fn) is [nr, ns], the differences
between x[0,+1) and y[0,+1) coming from (Fi(x)[�k+b↵nc,k+b↵nc])i2[0,n] 6= (Fi(y)[�k+b↵nc,k+b↵nc])i2[0,n] appear in the interval
[0, k + b↵nc + sn]. If ⌃ is infinite, then to have (N,⌃)-right-expansivity of slope ↵ the right extremity of the interval must
tend to +1. This needs ↵ 2] � s,+1[. 3 Claim 3

Fromprevious steps, one deduces that ifBr

N(⌃, F) 6= ;, there exists↵0 � �s such thatBr

N(⌃, F) =]↵0,+1). Symmetrically,
if Bl

N(⌃, F) 6= ;, then there exists ↵00  �r such that B

l

N(⌃, F) = (�1,↵00[. The result on BN(⌃, F) follows from the
intersection of previous sets. ⇤

Remark 5.2. Let (AZ, F) be a CA and let ⌃ ⇢ AZ be a subshift. If Br

N(⌃, F) 6= ; (resp. Bl

N(⌃, F) 6= ;) then for all x, y 2 ⌃ such
that x(�1,k] = y(�1,k] (resp. x[k,+1) = y[k,+1)) for some k 2 Z then F

n(x) 6= F

n

T

(y) (if not, it is not possible to distinguish �i(x)
and �i(y) for all i 2 Z). By definition (AZ, F) is said right-closing (resp. left-closing) on ⌃ .

Therefore, if ⌃ is an F-invariant transitive subshift of finite type such that Br

N(⌃, F) [ B

l

N(⌃, F) 6= ; then F : ⌃ ! ⌃ is
surjective since it is right or left-closing (see [17]).

5.3. Directional Z-expansivity

Here we are going to consider bijective CA to be able to speak about directional Z-expansivity. As for the Z-expansive
CA, the study of the directional Z-expansivity is not easy. Already, the set BZ(AZ, F) is not necessarily convex (consider the
identity map where BZ(AZ, Id) = R \ {0}; or Example 3.6). However, Claim 2 of Theorem 5.2 can be adapted to show that
BZ(⌃, F) is open. This proof does not hold for Br

Z(⌃, F) and B

l

Z(⌃, F); those last ones are not necessarily open.

Proposition 5.3. Let (AZ, F) be a bijective CA and⌃ ⇢ AZ be a subshift. The set of (Z,⌃)-expansive directions, BZ(⌃, F), is open
and there exist ↵0 < ↵00 such that (�1,↵0[[]↵00,+1) ⇢ BZ(⌃, F).

Proof. Let ↵ 2 BZ(⌃, F). By Lemma 5.1, which characterizes the (Z,⌃)-expansivity, there exists r", rT 2 N such that
V↵

Z([�r", r"], rT) ` V↵
Z([�r" � 2, r" + 2], 0). One defines

↵1 = b↵ r

T

c � 1
r

T

and ↵2 = b↵ r

T

c + 1
r

T

.

Let↵000 2 [↵1,↵2]. One hasV↵000
Z ([�r"�1, r"+1], r

T

) � V↵
Z([�r", r"], rT), soV↵000

Z ([�r"�1, r"+1], r
T

) ` V↵
Z([�r"�2, r"+2], 0).

One deduces that ↵000 2 BZ(⌃, F). Thus [↵1,↵2] is a neighborhood of ↵ included in BZ(⌃, F). Thus BZ(⌃, F) is open.
A bijective CA is open, so it is right and left-closing. Since it is right-closing, there exists m

0
F

2 N such that if x[�m

0
F

,0[ =
y[�m

0
F

,0[ and F(x)[�m

0
F

,m0
F

] = F(y)[�m

0
F

,m0
F

] then x0 = y0. By Lemma 5.1, one deduces that m

0
F

2 B

r

N(⌃, F). In the same way
there exist m

00
F

,m0
F

�1 ,m
00
F

�1 2 N such that m

00
F

2 B

l

N(⌃, F), m0
F

�1 2 B

r

N(⌃, F�1) and m

00
F

�1 2 B

l

N(⌃, F�1). One deduces that
(�1,min(m00

F

,�m

0
F

�1)[[]max(m0
F

,�m

00
F

�1),+1) ⇢ BZ(⌃, F). ⇤
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Modifying Example 3.6 thanks to Sections 3.2 and 3.4, it is possible to construct a CA (AZ, F) such that

BZ(A
Z, F) =

[

k2[1,n]
]↵l

k

,↵r

k

[,

where �1 = ↵l

1 < ↵r

1 < ↵l

2  ↵r

2 < · · · < ↵l

n�1  ↵r

n�1 < ↵l

n

< ↵r

n

= +1 with ↵l

k

and ↵r

k

in Q for all k 2 [1, n]. However,
we do not know examples where BZ(⌃, F) has another form.

6. Conclusion: A directional classification according to dynamical properties

We have studied CA as Z ⇥ N-action (or Z ⇥ Z-action when we want to consider the past for a bijective CA) in order to
emphasize the spatio-temporal structures produced by this type of dynamics. We study the sensibility to initial conditions
from two points of view. The first one privileges points chosen in a subshift⌃ and the second one privileges points which are
chosen according to a �-invariant probability measureµ. We also study sets of directions which have extreme and opposite
dynamical behaviors, namely, equicontinuous and expansive properties:

• If A0
N(⌃, F) 6= ; or AN(⌃, F) 6= ; or CN(F,µ) 6= ;, there is a direction delimited by blocking walls which indicates the

propagation of information. If there are two directions, all propagation is killed and the CA evolves towards a trivial
configuration.

• If BN(⌃, F) 6= ;, there exists an open cone where from each direction it is possible to recover from it the information
contained in the initial configuration.

According to the topological point of view, the different results of this paper can be summarized to obtain the following
classification.

Theorem 6.1. Let (AZ, F) be a CA of neighborhood U = [r, s]. Let ⌃ ⇢ AZ be a weakly-specified subshift. One of the following
cases hold:

C1. A0
N(⌃, F) = AN(⌃, F) = R. In this case (AZ, F) is ⌃-nilpotent, moreover Br

N(⌃, F) = Bl

N(⌃, F) = ;.
C2. There exists ↵ 2 [�s,�r] \ Q such that A0

N(⌃, F) = AN(⌃, F) = {↵}. In this case there exist m, p 2 N such that
the sequence (Fn � �b↵nc)

n2N is ultimately periodic of preperiod m and period p. Moreover, Bl

N(F
m(⌃), F) =] � 1,↵[ and

Br(Fm(⌃), F) =]↵,+1[.
C3. There exists ↵0,↵00 2 [�s,�r], ↵0  ↵00 such that ]↵0,↵00[⇢ AN(⌃, F) ⇢ [↵0↵00]. In this case A0

N(⌃, F) = Br

N(⌃, F) =
Bl

N(⌃, F) = ;.
C4. There exists ↵ 2 [�s,�r] such that AN(⌃, F) = {↵} and A0

N(⌃, F) = ;. In this case Br

N(⌃, F) and Bl

N(⌃, F) can be empty or
not, but BN(⌃, F) = ;.

C5. There exist ↵0,↵00 2 [�s,�r] such that BN(⌃, F) =]↵0,↵00[. In this case AN(⌃, F) = A0
K(⌃, F) = ;.

C6. All directions are sensitive and N-expansive directions do not exist. In this case AN(⌃, F) = A0
N(⌃, F) = BN(⌃, F) = ; but

Br

N(⌃, F) and Bl

N(⌃, F) can be empty or not.

There exist examples in each class of the preceding classification:

Class C1. C2. C3. C4. C5. C6.

Example 3.1 3.2 3.3 3.6 3.4 3.7

There are still a lot of open questions. Here we address some of them:

• Can the bounds of AN(⌃, F), CN(F,µ) and BN(⌃, F) be irrational ?
• Is AN(⌃, F) closed ?
• Can BZ(⌃, F) be different than a union of open segments with rational bounds ?
• Is it true that:

AN(⌃, F)
?= AZ(⌃, F) and CN(⌃, F)

?= CZ(⌃, F).

• It is possible to define dynamics according to a curve defined by h : K! Z. One only has to define the tube D

h

⌃(x, ",K) =
{y 2 ⌃ : d

C

(Fn ��h(n)(x), Fn ��h(n)(y)) < ",8n 2 K} and replace D

↵
⌃(x, ",K) by D

h

⌃(x, ",K) in the definitions of Subsection 1.3.
It is easy to do a similar theory but we have no example where the slope is not linear.



18 M. Sablik / Theoretical Computer Science 400 (2008) 1–18

Acknowledgements

I would like to thank Guillaume Theyssier for discussions around rational and irrational equicontinuous directions and
Alejandro Maass for his attentive reading during the process of correction. I thank Nucleus Millennium P04-069F and Ecos-
Conicyt for financial support.

References

[1] Mike Boyle, Douglas Lind, Expansive subdynamics, Trans. Amer. Math. Soc. 349 (1) (1997) 55–102.
[2] François Blanchard, Alejandro Maass, Dynamical properties of expansive one-sided cellular automata, Israel J. Math. 99 (1997) 149–174.
[3] N. Boccara, J. Nasser, M. Roger, Particle-like structures and their interactions in spaci-temporal patterns generated by one-dimensional deterministic

cellular-automata rules, Phys. Rev. A 44 (1991) 866–875.
[4] Laurent Boyer, Victor Poupet, Guillaume Theyssier, On the complexity of limit sets of cellular automata associated with probability measure, MFCS,

2006.
[5] François Blanchard, Pierre Tisseur, Some properties of cellular automatawith equicontinuity points, Ann. Inst. H. Poincaré Probab. Statist. 36 (5) (2000)

569–582.
[6] Karel Culik II, Jan Pachl, Sheng Yu, On the limit sets of cellular automata, SIAM J. Comput. 18 (4) (1989) 831–842.
[7] Bruno Durand, Enrico Formenti, Georges Varouchas, On undecidability of equicontinuity classification for cellular automata, in: Discrete Models for

Complex Systems, DMCS ’03 (Lyon) (DiscreteMath. Theor. Comput. Sci. Proc., AB), Assoc. DiscreteMath. Theor. Comput. Sci, Nancy, 2003, pp. 117–127.
electronic.

[8] Manfred Denker, Christian Grillenberger, Karl Sigmund, Ergodic Theory on Compact Spaces, in: Lecture Notes in Mathematics, vol. 527, Springer-
Verlag, Berlin, 1976.

[9] Robert H. Gilman, Classes of linear automata, Ergodic Theory Dynam. Systems 7 (1) (1987) 105–118.
[10] Eli Glasner, Ergodic Theory via Joinings, in: Mathematical Surveys and Monographs, vol. 101, American Mathematical Society, Providence, RI, 2003.
[11] Gustav A. Hedlund, Endormorphisms and automorphisms of the shift dynamical system, Math. Systems Theory 3 (1969) 320–375.
[12] Mike Hurley, Attractors in cellular automata, Ergodic Theory Dynam. Systems 10 (1) (1990) 131–140.
[13] Bruce P. Kitchens, One-sided, two-sided and countable state Markov shifts, in: Symbolic Dynamics, Universitext, Springer-Verlag, Berlin, 1998.
[14] Petr Kůrka, Alejandro Maass, Limit sets of cellular automata associated to probability measures, J. Statist. Phys. 100 (5-6) (2000) 1031–1047.
[15] Petr Kůrka, Languages, equicontinuity and attractors in cellular automata, Ergodic Theory Dynam. Systems 17 (2) (1997) 417–433.
[16] Petr Kůrka, Cellular automata with vanishing particles, Fund. Inform. 58 (3-4) (2003) 203–221.
[17] Douglas Lind, Brian Marcus, An Introduction to Symbolic Dynamics and Coding, Cambridge University Press, Cambridge, 1995.
[18] Masakazu Nasu, Endomorphisms of expansive systems on compact metric spaces and the pseudo-orbit tracing property, Trans. Amer. Math. Soc. 352

(10) (2000) 4731–4757.
[19] Masakazu Nasu, The dynamics of expansive invertible onesided cellular automata, Trans. Amer. Math. Soc. 354 (10) (2002) 4067–4084. electronic.
[20] Stephen Wolfram, Universality and complexity in cellular automata, Physica D 10 (1–2) (1984) 1–35. Cellular automata (Los Alamos, NM, 1983).


	Directional dynamics for cellular automata: A sensitivity to initial condition approach
	Introduction
	Different actions on the configuration space AZ
	General semi-group actions
	The space dimension: Z-action of the shift on AZ
	The time dimension: N-action of a cellular automaton on AZ
	The space-time view

	Directional sensitivity
	A topological point of view
	Topological definitions
	Directional equicontinuity and blocking particles
	A directional classification

	A measure-theoretical point of view
	Measure-theoretical definitions
	Directional almost equicontinuity and almost blocking particle
	A directional classification


	Sets of directions with a certain kind of dynamics
	Sets of directions and their relations
	Directional dynamics: Factors, inclusions and products
	Some examples
	Multiplication and addition

	Sets of directions with equicontinuous properties
	Directions with equicontinuous points
	Directions of equicontinuity
	Directions of mu-almost equicontinuity

	Directional expansivity
	Characterization of K-expansivity
	Directional N-expansivity
	Directional Z-expansivity

	Conclusion: A directional classification according to dynamical properties
	Acknowledgements
	References


