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Abstract

Let (AZ, F ) be a bipermutative algebraic cellular automaton. We present conditions which force
a probability measure which is invariant for the N×Z-action of F and the shift map σ to be the Haar
measure on Σ, a closed shift-invariant subgroup of the Abelian compact group AZ. This generalizes
simultaneously results of B. Host, A. Maass and S. Mart́ınez [HMM03] and M. Pivato [Piv05]. This
result is applied to give conditions which also force an (F, σ)-invariant probability measure to be
the uniform Bernoulli measure when F is a particular invertible affine expansive cellular automaton
on AN.

1 Introduction

Let F : AM → AM with M = N or Z be a one-dimensional cellular automaton (CA). The study of
invariant measures under the action of F has been addressed from different points of view in the last two
decades. As ergodic theory is the study of invariant measures, it is thus natural to characterize them.
In addition, since F commutes with the shift map σ, it is important to describe invariant probability
measures for the semi-group action generated by F and σ. We remark that it easy to prove the existence
of such measures by considering a cluster point of the Cesàro mean under iteration of F of a σ-invariant
measure. This problem is related to Furstenberg’s conjecture [Fur67] that the Lebesgue measure on
the torus is the unique invariant measure under multiplication by two relatively prime integers. In the
algebraic setting, the study of invariant measures under a group action on a zero-dimensional group like
Ledrappier’s example [Led78], has been extensively considered in [Sch95] and [Ein05].

The uniform Bernoulli measure has an important role in the study of (F, σ)-invariant measures.
G.A. Hedlund has shown in [Hed69] that a CA is surjective iff the uniform Bernoulli measure on AM

is (F, σ)-invariant. Later, D. Lind [Lin84] shows for the radius 1 mod 2 automaton that starting from
any Bernoulli measure the Cesàro mean of the iterates by the CA converges to the uniform measure.
This result is generalized for a large class of algebraic CA and a large class of measures with tools from
stochastic processes in [MM98] and [FMMN00], and with harmonic analysis tools in [PY02] and [PY04].

However, the uniform Bernoulli measure is not the only (F, σ)-invariant measure, indeed every uni-
form measure supported on a (F, σ)-periodic orbit is (F, σ)-invariant. We want to obtain additional
conditions which allow us to characterize the uniform Bernoulli measure. We limit the study to CA
which have algebraic and strong combinatorial properties: the algebraic bipermutative CA. Let (AZ, F )
be a bipermutative algebraic CA; we examine the conditions that force an (F, σ)-invariant measure µ to
be the Haar measure of AZ, denoted by λAZ . When AZ is an infinite product of the finite group A, the
Haar measure is the uniform Bernoulli measure. B. Host, A. Maass and S. Mart́ınez take this direction
in [HMM03] and characterize (F, σ)-invariant measure of affine bipermutative CA of radius 1 when the
alphabet is Z/pZ with p prime. They show two theorems with different assumptions on the measure µ.
M. Pivato gives in [Piv05] an extension of the first one considering a larger class of algebraic CA but
with extra conditions on the measure and the kernel of F . The main result in the present paper provides
a generalization of the second theorem of [HMM03] which also generalizes Pivato’s result.
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To introduce more precisely previous work and this article, we need to provide definitions and
introduce some classes of CA. Let A be a finite set and M = N or Z. We consider AM, the configuration
space of M-indexed sequences in A. If A is endowed with the discrete topology, AM is compact and
totally disconnected in the product topology. The shift map σ : AM → AM is defined by σ(x)i = xi+1

for x = (xm)m∈M ∈ AM and i ∈M. Denote by A∗ the set of all finite sequences or words w = w0...wn−1

with letters in A; by |w| we mean the length of w ∈ A∗. Given w ∈ A∗ and i ∈ M, the cylinder set
starting at coordinate i with the word w is [w]i = {x ∈ AM : xi,i+|w|−1 = w}, the cylinder set starting
at 0 is simply denoted by [w].

A cellular automaton (CA) is a pair (AM, F ) where AM is called the configuration space, and F :
AM → AM is a continuous function which commutes with the shift. We can therefore consider (F, σ)
as a N ×M-action. By Hedlund’s theorem [Hed69], it is equivalent to give a local function which acts
uniformly and synchronously on the configuration space, that is to say, there is a finite segment U ⊂M
(named neighborhood) and a local rule F : AU → A, such that F (x)m = F ((xm+u)u∈U) for all x ∈ AM

and m ∈M. The radius of F is r(F ) = max{|u| : u ∈ U}; when U is as small as possible, it is called the
smallest neighborhood. If the smallest neighborhood is reduced to one point we say that F is trivial.

Let B be the Borel sigma-algebra of AM, we denote by M(AM) the set of probability measures
on AM defined on the sigma-algebra B. As usual, σµ (respectively Fµ) denotes the measure given by
σµ(B) = µ(σ−1(B)) (respectively Fµ(B) = µ(F−1(B))) for B a Borel set; this allows us to consider
the (F, σ)-action on M(AM). We say that µ ∈ M(AM) is σ-invariant (respectively F -invariant) iff
σµ = µ (respectively Fµ = µ); obviously µ is (F, σ)-invariant iff µ is σ-invariant and F -invariant. We
denote Iµ(σ) = {B ∈ B : µ(σ−1(B)4B) = 0} the algebra of σ-invariant sets mod µ. If AM has a
group structure and Σ is a closed σ-invariant subgroup of AM, the Haar measure on Σ, denoted λΣ,
is the unique measure in M(AM) with supp(µ) ⊂ Σ which is invariant by the action of Σ. We can

characterize λΣ using characters in ÂM, which are continuous morphisms from AM to C: indeed, µ = λΣ

iff supp(µ) ⊂ Σ and µ(χ) = 0 for all χ ∈ ÂM such that χ(Σ) 6= {1}, see [Gui68] for more detail. If A is a
finite group and AM is a product group, the Haar measure of AM corresponds to the uniform Bernoulli
measure defined on a cylinder set [u]i by:

λAM([u]i) =
1

|A||u|
.

Let (AM, F ) be a CA of smallest neighborhood U = [r, s] = {r, ..., s}. F is left-permutative iff for
any u ∈ As−r and b ∈ A, there is a unique a ∈ A such that F (au) = b; F is right-permutative iff for any
u ∈ As−r and b ∈ A there is a unique a ∈ A such that F (ua) = b. F is bipermutative iff it is both left
and right permutative.

If AM has a topological group structure and if σ : AM → AM is a continuous group endomorphism,
AM is called a group shift. By Hedlund’s Theorem [Hed69], the σ-commuting multiplication operator is
given by a local rule ∗ : A[r,s] × A[r,s] → A. We refer to [Kit87] for more details. If AM is an Abelian
group shift and F : AM → AM is a group endomorphisms which commutes with σ, then the CA (AM, F )
is called algebraic. If A has an Abelian group structure, AM is a compact Abelian group. We say that
(AM, F ) is a linear CA if F is a group endomorphism or equivalently if F is a morphism from AU to A.
In this case F can be written:

F =
∑
u∈U

fu ◦ σu

where for all u ∈ U, fu is an endomorphism of A which is extended coordinate by coordinate to AM.
We can write F as a polynomial of σ, F = PF (σ), where PF ∈ Hom(A)[X,X−1]. If A = Z/nZ, then an
endomorphism of A is the multiplication by an element of Z/nZ. We say that (AM, F ) is an affine CA
if there exists (AM, G) a linear CA and a constant c ∈ AM such that F = G+ c. The constant must be
σ-invariant.

A linear CA (AM, F ) where F =
∑
u∈[r,s] fu ◦σu is left (right) permutative of smallest neighborhood

[r, s] if fr (fs) is a group automorphism. An affine CA (AM, F + c), where (AM, F ) is linear and c ∈ AM,
is bipermutative if (AM, F ) is bipermutative. So if A = Z/pZ where p is prime, then any nontrivial
affine CA is bipermutative. However, if p is composite, then F is left (right) permutative iff the leftmost
(rightmost) coefficient of F is relatively prime to p.

Now we can recall the first theorem of [HMM03]:
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Theorem 1.1 ([HMM03]). Let (AZ, F ) be an affine bipermutative CA of smallest neighborhood U = [0, 1]
with A = Z/pZ, where p is prime, and let µ be an (F, σ)-invariant probability measure. Assume that:

1. µ is ergodic for σ;

2. the measure entropy of F is positive (hµ(F ) > 0).

Then µ = λAZ .

The second theorem of [HMM03] relaxes the σ-ergodicity into (F, σ)-ergodicity provided the measure
satisfies a technical condition on the sigma-algebra of invariant sets for powers of σ:

Theorem 1.2 ([HMM03]). Let (AZ, F ) be an affine bipermutative CA of smallest neighborhood U = [0, 1]
with A = Z/pZ where p is prime, and let µ be an (F, σ)-invariant probability measure. Assume that:

1. µ is ergodic for the N× Z-action (F, σ);

2. Iµ(σ) = Iµ(σp(p−1)) mod µ;

3. hµ(F ) > 0.

Then µ = λAZ .

M. Pivato gives in [Piv05] a result similar to Theorem 1.1, which applies to a larger class of algebraic
CA but with extra conditions on the measure and Ker(F ):

Theorem 1.3 ([Piv05]). Let AZ be any Abelian group shift, let (AZ, F ) be an algebraic bipermutative
CA of smallest neighborhood U = [0, 1] and let µ be an (F, σ)-invariant probability measure. Assume
that:

1. µ is totally ergodic for σ;

2. hµ(F ) > 0;

3. Ker(F ) contains no nontrivial σ-invariant subgroups.

Then µ = λAZ .

It is possible to extend Theorem 1.3 to a nontrivial algebraic bipermutative CA without restriction
on the neighborhood. In Section 2 of this paper we give entropy formulas for bipermutative CA without
restrictions on the neighborhood. These formulas are the first step to adapt the proof of Theorem 1.2 in
Section 3 in order to obtain our main result:

Theorem 3.3. Let AZ be any Abelian group shift, let (AZ, F ) be a nontrivial algebraic bipermutative
CA, let Σ be a closed (F, σ)-invariant subgroup of AZ, let k ∈ N such that every prime factor of |A|
divides k and let µ be an (F, σ)-invariant probability measure on AZ with supp(µ) ⊂ Σ. Assume that:

1. µ is ergodic for the N× Z-action (F, σ);

2. Iµ(σ) = Iµ(σkp1) with p1 the smallest common period of all elements of Ker(F );

3. hµ(F ) > 0;

4. every σ-invariant infinite subgroup of DΣ
∞(F ) = ∪n∈NKer(Fn) ∩ Σ is dense in Σ.

Then µ = λΣ.

Theorem 3.3 is a common generalization of Theorem 1.2 and Theorem 1.3 when A is a cyclic group and
AZ is the product group. To obtain a generalization of Theorem 1.3 for any Abelian group AZ, we must
take a weaker assumption for DΣ

∞, however we need a further restriction for the probability measure:

Theorem 3.4. Let AZ be any Abelian group shift, let (AZ, F ) be a nontrivial algebraic bipermutative
CA, let Σ be a closed (F, σ)-invariant subgroup of AZ, let k ∈ N such that every prime factor of |A|
divides k and let µ be an (F, σ)-invariant probability measure on AZ with supp(µ) ⊂ Σ. Assume that:
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1. µ is ergodic for σ;

2. Iµ(σ) = Iµ(σkp1) with p1 the smallest common period of all elements of Ker(F );

3. hµ(F ) > 0;

4. every (F, σ)-invariant infinite subgroup of DΣ
∞(F ) = ∪n∈NKer(Fn) ∩ Σ is dense in Σ.

Then µ = λΣ.

To do this some technical work is required on each of the assumptions. Presently we do not know how
to obtain a common generalization of Theorems 3.3 and 3.4.

In Section 4 we show how to replace and relax some assumptions of Theorems 3.3 and 3.4, in
particular how one obtains Theorems 1.2 and 1.3 as consequences. First we replace the assumption of
positive entropy of F by the positive entropy of Fn ◦ σm for some (n,m) ∈ N × Z. Then we give a
necessary and sufficient condition for DΣ

∞ to contain no nontrivial (F, σ)-invariant infinite subgroups.
This condition is implied by the assumption that Ker(F ) contains no nontrivial σ-invariant subgroups.

In Section 5 we restrict the study to linear CA and obtain rigidity results which cannot be deduced
from Theorem 1.2 and 1.3. For example, in Subsection 5.1, we can see that Theorem 3.3 works for
F = PF (σ) any nontrivial linear CA on (Z/pZ)Z with p prime. In this case Theorem 1.2 works only
for CA of radius 1 and Pivato’s result works only if PF is irreducible on Z/pZ. In Section 6 we give an
application of this work. We stray from the algebraic bipermutative CA case and show measure rigidity
for some affine one-sided invertible expansive CA (not necessary bipermutative) with the help of previous
results.

2 Entropy formulas for bipermutative CA

Let (AZ, F ) be a CA, B be the Borel sigma-algebra of AZ and µ ∈ M(AZ). We put Bn = F−n(B)
for n ∈ N. For P a finite partition of AZ and for B′ a sub sigma-algebra of B we denote Hµ(P) =
−
∑
A∈P µ(A) log(µ(A)) the entropy of P and Hµ(P|B′) = −

∑
A∈P

∫
A

log(Eµ(1A|B′))dµ the conditional
entropy of P given B′. Furthermore hµ(F ) denotes the entropy of the measure-preserving dynamical
system (AM,B, µ, F ). We refer to [Pet89] or [Wal82] for the definition and main properties.

We define the cylinder partitions P = {[a] : a ∈ A} and P[r,s] = {[u]r : u ∈ As−r}. The following
lemma is a more general version of the entropy formula in Lemma 4.3. of [HMM03] (where this Lemma
is proved for CA with radius 1):

Lemma 2.1. Let (AZ, F ) be a bipermutative CA of smallest neighborhood U = [r, s] with r ≤ 0 ≤ s and
let µ be an F -invariant probability measure on AZ. Then hµ(F ) = Hµ(P[0,s−r−1]|B1).

Proof. We have hµ(F ) = liml→∞ hµ(F,P[−l,l]) with:

hµ(F,P[−l,l]) = lim
T→∞

Hµ(P[−l,l]|
T∨
n=1

F−n(P[−l,l])) = Hµ(P[−l,l]|
∞∨
n=1

F−n(P[−l,l])).

Let l ≥ s − r. By bipermutativity of F , for T ≥ 1, it is equivalent to know (Fn(x)[−l,l])n∈[1,T ] and

to know F (x)[Tr−l,Ts+l]. This means that
∨T
n=1 F

−n(P[−l,l]) = F−1(P[Tr−l,Ts+l]). By taking the limit
as l→∞, we deduce (with the convention ∞.0 = 0):

∞∨
n=1

F−n(P[−l,l]) = F−1(P[∞.r−l,∞.s+l]).

So we have:
hµ(F,P[−l,l]) = Hµ(P[−l,l]|F−1P[∞.r−l,∞.s+l]).

Similarly, by bipermutativity of F , the knowledge of F (x)[∞.r−l,∞.s+l] and x[0,s−r−1] allows us to
know x[−l,l] and vice versa. We deduce:

P[0,s−r−1] ∨ F−1(P[∞.r−l,∞.s+l]) = P[−l,l] ∨ F−1(P[∞.r−l,∞.s+l]).
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Therefore,
hµ(F,P[−l,l]) = Hµ(P[0,s−r+1]|F−1(P[∞.r−l,∞.s+l])).

If r < 0 < s, then P[∞.r−l,∞.s+l] = B1. Otherwise, by taking the limit as l → ∞ and using the
martingale convergence theorem, we obtain hµ(F ) = Hµ(P[0,s−r−1]|B1).

When µ is an (F, σ)-invariant probability measure, it is possible to express the entropy of a right-
permutative CA according to the entropy of σ.

Proposition 2.2. Let (AZ, F ) be a right-permutative CA of neighborhood U = [0, s], where s is the
smallest possible value and let µ be an (F, σ)-invariant probability measure. Then hµ(F ) = s hµ(σ).

Proof. Let N ∈ N and l ≥ s. By right-permutativity, since U = [0, s], for all x ∈ AZ it is equivalent to
know (Fn(x)[−l,l])n∈[0,N ] and x[−l,l+Ns]; this means that:

N∨
n=0

F−n(P[−l,l]) = P[−l,l+Ns].

So for l ≥ s we have:

hµ(F,P[−l,l]) = lim
N→∞

1

N
Hµ(

N∨
n=0

F−n(P[−l,l]))

= lim
N→∞

1

N
Hµ(P[−l,l+Ns])

= lim
N→∞

− 1

N

∑
u∈ANs+2l

µ([u]) log(µ[u])

= lim
N→∞

−Ns+ 2l

N

1

Ns+ 2l

∑
u∈ANs+2l

µ([u]) log(µ[u])

= s hµ(σ).

We deduce that hµ(F ) = liml→∞ hµ(F,P[−l,l]) = s hµ(σ).

Remark 2.1. We have a similar formula for a left-permutative CA of neighborhood U = [r, 0]. Moreover,
it is easy to see that this proof is true for a right-permutative CA on AN.

Corollary 2.3. Let (AZ, F ) be a bipermutative CA of smallest neighborhood U = [r, s], and let µ be an
(F, σ)-invariant probability measure on AZ. We have:

hµ(F ) =


s hµ(σ) if s ≥ r ≥ 0,

(s− r)hµ(σ) if s ≥ 0 ≥ r,
−r hµ(σ) if 0 ≥ s ≥ r.

Proof. Cases where s ≥ r ≥ 0 or 0 ≥ s ≥ r can be directly deduced from Proposition 2.2.
When s ≥ 0 ≥ r, the CA (AZ, σ−r ◦F ) is bipermutative of smallest neighborhood [0, s−r]. Since σ is

bijective, we deduce that B is σ-invariant. Thus, F−1(B) = (σ−r ◦F )−1(B). Since µ is (F, σ)-invariant,
by Lemma 2.1, one has:

hµ(F ) = Hµ(P[0,s−r−1]|F−1(B)) = Hµ(P[0,s−r−1]|(σ−r ◦ F )−1(B)) = hµ(σ−r ◦ F ).

The result follows from Proposition 2.2.

Remark 2.2. It is not necessary to use Lemma 2.1. Corollary 2.3 can be proved by a similar method of
Proposition 2.2.

A bipermutative CA (AZ, F ) of smallest neighborhood U is topologically conjugate to ((At)N, σ)
where t = max(U∪ {0})−min(U∪ {0}), via the conjugacy ϕ : x ∈ AZ → (F (x)[0,t])n∈N. So the uniform
Bernoulli measure is a maximal entropy measure. Thus from Corollary 2.3 we deduce an expression of
htop(F ). This implies a result of [War00] which compute the topological entropy for linear CA on (Z/pZ)Z

with p prime by algebraic methods. Moreover this formula gives Lyapunov exponents for permutative
CA according to the definition of [She92] or [Tis00].
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3 Proof of main theorems

Now we consider (AZ, F ) a bipermutative algebraic CA of smallest neighborhood U = [r, s]. For y ∈ AZ

call Ty the translation x 7→ x + y on AZ. For every n ∈ N, we write Dn(F ) = Ker(Fn); if there is no
ambiguity we just denote it by Dn. Clearly Dn is a subgroup of Dn+1. Denote ∂Dn+1 = Dn+1 \ Dn

for all n ∈ N. By bipermutativity we have |Dn| = |D1|n = |A|(s−r)n where |.| denotes the cardinality of
the set. We can consider the subgroup D∞(F ) = ∪n∈NDn(F ) of AZ, we denote it by D∞ if there is no
ambiguity; it is dense in AZ since F is bipermutative. Every Dn is finite and σ-invariant so every x ∈ Dn

is σ-periodic. Let pn be the smallest common period of all elements of Dn. Then pn divides |Dn|!.
Let B be the Borel sigma-algebra ofAZ and let µ be a probability measure onAZ. Put Bn = F−n(B)

for every n ∈ N, it is the sigma-algebra generated by all cosets of Dn. For every n ∈ N and µ-
almost every x ∈ AZ, the conditional measure µn,x is defined for every measurable set U ⊂ AZ by
µn,x(U) = Eµ(1U |Bn)(x). Its main properties are:

(A) For µ-almost every x ∈ AZ, µn,x is a probability measure on AZ and supp(µn,x) ⊂ F−n({Fn(x)}) =
x+Dn.

(B) For all measurable sets U ⊂ AZ, the function x → µn,x(U) is Bn-measurable and µn,x = µn,y for
every y ∈ F−n({Fn(x)}) = x+Dn.

(C) Let G : AZ → AZ be a measurable map and let U be a measurable set. For µ-almost every
x ∈ AZ one has Eµ(1G−1(U)|G−1(B))(x) = Eµ(1U |B)(G(x)). So σmµn,x = µn,σm(x) and Fµn+1,x =

µn,F (x) for µ-almost every x ∈ AZ and every n ∈ N.

(D) Since Bn is Td-invariant for d ∈ Dn, by (C) one has µn,x = µn,x+d.

For all n ∈ N define ζn,x = T−xµn,x; it is a probability measure concentrated on Dn. The previous
four properties of conditional measures can be transposed to ζn,x:

Lemma 3.1. Fix n ∈ N. For µ-almost all x ∈ AZ, the following are true:

(a) ζn,x+d = T−dζn,x for every d ∈ Dn.

(b) σmζn,x = ζn,σm(x) for every m ∈ Z and Fζn+1,x = ζn,F (x).

(c) For every m ∈ pnZ, we have σmζn,x = ζn,x. Hence x→ ζn,x is σm-invariant.

Proof. (a) is by Property (D). (b) is by Property (C). And (c) is because supp(ζn,x) ⊂ Dn.

For n > 0 and d ∈ Dn we define:

En,d = {x ∈ AZ : ζn,x({d}) > 0} and En =
⋃

d∈∂Dn

En,d.

Then En,d is σpn -invariant by Lemma 3.1(c), and En is σ-invariant, because ∂Dn is σ-invariant. We
write η(x) = ζ1,x({0}) = µ1,x({x}). The function η is σ-invariant and E1 = {x ∈ AZ : η(x) < 1}.
Therefore one has:

η(Fn−1(x)) = µ1,Fn−1(x)({Fn−1(x)}) = µ1,Fn−1(x)(F
n−1(x+Dn−1)) =

(∗)
µn,x(x+Dn−1) = ζn,x(Dn−1),

where (∗) is by property (C). Thus En = {x ∈ AZ : ζn,x(Dn−1) < 1} = F−n+1(E1).
Let Σ ⊂ AZ be a closed (F, σ)-invariant subgroup of AZ. We denote DΣ

n = Dn ∩ Σ and ∂DΣ
n+1 =

DΣ
n+1 \DΣ

n for all n ∈ N and DΣ
∞ = D∞ ∩ Σ.

Remark 3.1. For µ an (F, σ)-invariant probability measure such that supp(µ) ⊂ Σ, we remark that for
every n ∈ N and µ-almost every x ∈ AZ, supp(µn,x) ⊂ x + DΣ

n ⊂ Σ and supp(ζn,x) ⊂ DΣ
n . So for all

n ∈ N and d ∈ ∂Dn, if d /∈ Σ one has µ(En,d) = 0.

Lemma 3.2. Let µ be a σ-invariant measure on AZ. If there exist k ∈ N such that Iµ(σ) = Iµ(σk) then
for all n ≥ 1 one has Iµ(σ) = Iµ(σk

n

).
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Proof. Applying the ergodic decomposition theorem to (AZ,B, µ, σ), to prove Iµ(σ) = Iµ(σk
n

) it is
equivalent to prove that almost every σ-ergodic component δ of µ is ergodic for σk

n

. The proof is done
by induction.

The base case Iµ(σ) = Iµ(σk
1

) is true by hypothesis. Let n ≥ 2 and assume that this property holds
for n−1 and does not hold for n. That is to say we consider a σ-ergodic component δ of µ (by induction

it is also σk
n−1

-ergodic) which is not σk
n

-ergodic. There exist λ ∈ C such that λk
n

= 1 and λk
n−1 6= 1

and a non constant function h : AZ → C such that h(σ(x)) = λh(x) for δ-almost every x ∈ AZ. We

deduce that hk(σ(x)) = λkhk(x) and hk(σk
n−1

(x)) = λk
n

hk(x) = hk(x) for δ-almost every x ∈ AZ. By

σk
n−1

-ergodicity of δ, hk is constant δ-almost everywhere, so λk = 1 which is a contradiction.

Remark 3.2. If k divides k′ then Iµ(σ) ⊂ Iµ(σk) ⊂ Iµ(σk
′
). So if Iµ(σ) = Iµ(σk

′
) one also has

Iµ(σ) = Iµ(σk).

We recall the main theorem:

Theorem 3.3. Let AZ be any Abelian group shift, let (AZ, F ) be a nontrivial algebraic bipermutative
CA, let Σ be a closed (F, σ)-invariant subgroup of AZ, let k ∈ N such that every prime factor of |A|
divides k and let µ be an (F, σ)-invariant probability measure on AZ with supp(µ) ⊂ Σ. Assume that:

1. µ is ergodic for the N× Z-action (F, σ);

2. Iµ(σ) = Iµ(σkp1) with p1 the smallest common period of all elements of Ker(F );

3. hµ(F ) > 0;

4. every σ-invariant infinite subgroup of DΣ
∞(F ) = ∪n∈NKer(Fn) ∩ Σ is dense in Σ.

Then µ = λΣ.

Proof. For all n ∈ Z, F is bipermutative iff σn◦F is bipermutative. Since F is nontrivial, by Corollary 2.3,
we deduce that hµ(σn ◦ F ) > 0 for all n ∈ Z. Moreover µ is σ-invariant. So we can assume that the
smallest neighborhood of F is [0, r] with r ∈ N.

Claim 1: For all n ∈ N, Iµ(σ) = Iµ(σkpn), where pn is the smallest common σ-period of Dn.

Proof: Let n ∈ N. Every x ∈ Dn is a σ-periodic point of σ-period pn, so by bipermutativity, every
y ∈ F−1({x}) is σ-periodic. Since σpn(y) ∈ F−1({x}), one has that pn divides the σ-period of y. We
deduce that pn divides pn+1. Moreover there exists d ∈ D1 such that σpn(y) = y + d, so σ|D1|pn(y) =
y + |D1|d = y. We deduce that pn+1 divides |A|rpn, because |D1| = |A|r. By induction pn divides
|A|r(n−1)p1. If m is large enough, then |A|r(n−1) divides km, hence pn divides |Ar(n−1)p1| which divides
(kp1)m. Thus, Iµ(σkpn) = Iµ(σ) by Remark 3.2, because Iµ(σ(kpn)m) = Iµ(σ) by Lemma 3.2 and
hypothesis (2) of Theorem 3.3. 3 Claim 1

Claim 2: For n ∈ N and d ∈ Dn, the measure Td(1En,d
µ) is absolutely continuous with respect to µ.

Proof: Let A ∈ B be such that µ(A) = 0. Since µ(A) =
∫
AZ µn,x(A)dµ(x), we deduce that µn,x(A) = 0

for µ-almost every x ∈ AZ. In particular, 0 = µn,x(A) ≥ µn,x({x + d}) = ζn,x({d}), for µ-almost
every x ∈ T−d(A) because x + d ∈ A. Thus x /∈ En,d so µ(T−d(A) ∩ En,d) = 0. This implies that
Td(1En,d

µ)(A) = 0, so Td(1En,d
µ) is absolutely continuous with respect to µ. 3 Claim 2

To prove the theorem, we consider χ ∈ ÂZ with µ(χ) 6= 0 and we show that χ(x) = 1 for all x ∈ Σ.
We consider Γ = {d ∈ DΣ

∞ : χ(d) = χ(σm(d)),∀m ∈ Z}, a σ-invariant subgroup of DΣ
∞. We want to

show that Γ is infinite and hence, dense in Σ by hypothesis (4). From this we will deduce that χ must
be constant.

Claim 3: There exists N ⊂ AZ with µ(N) = 1 and F (N) = N (up to a set of measure zero), satisfying
the following property: For any n ∈ N and d ∈ ∂DΣ

n , if there exists x ∈ En,d ∩N with ζn,x(χ) 6= 0, then
d ∈ Γ.
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Proof: For n ∈ N, the function x→ ζn,x is σkpn -invariant by Lemma 3.1(c). Since Iµ(σ) = Iµ(σkpn) by
Claim 1, we deduce that ζn,x is σ-invariant. So for µ-almost every x ∈ AZ and for any m ∈ Z, we have
σmζn,x = ζn,x (†). Since Td(1En,d

µ) is absolutely continuous with respect to µ by Claim 2, we have
σmζn,x+d = ζn,x+d (‡) too, for µ-almost every x ∈ En,d, for every d ∈ Dn and for every m ∈ Z. We can
compute:

T−σmdζn,x =
(†)
T−σmdσ

mζn,x = σmT−dζn,x =
(∗)
σmζn,x+d =

(‡)
ζn,x+d =

(∗)
T−dζn,x,

where (†) and (‡) are as above, and (∗) is by Lemma 3.1(a). So Tσmd−dζn,x = ζn,x and by integration
(1 − χ(σmd − d))ζn,x(χ) = 0 for µ-almost every x ∈ En,d. Thus, there exists N ⊂ AZ with µ(N) = 1,
such that for all d ∈ Dn and x ∈ En,d ∩N , if ζn,x(χ) 6= 0, then χ(σm(d))χ(d)−1 = χ(σm(d) − d) = 1.
Hence χ(σm(d)) = χ(d) for all m ∈ Z, which means d ∈ Γ. Moreover the set N is F -invariant up to a
set of measure 0, because µ is F -invariant, thus µ(F (N)) = Fµ(F (N)) = µ(F−1(F (N))) ≥ µ(N) = 1.
3 Claim 3

Claim 4: There exists n0 ∈ N such that, if we define B = {x ∈ N : Eµ(χ|Bn)(x) 6= 0,∀n ≥ n0}, then
µ(B) > 0. Moreover for all n ≥ n0, and any d ∈ ∂DΣ

n , if En,d ∩B 6= ∅, then d ∈ Γ.

Proof: One has limn→∞ Eµ(χ|Bn) = Eµ(χ| ∩m>1 Bm) by the Martingale Convergence Theorem, and
this function is not identically 0 because its integral is equal to µ(χ) 6= 0. Thus we can choose n0 such
that B = {x ∈ N : Eµ(χ|Bn)(x) 6= 0,∀n ≥ n0} satisfies µ(B) > 0. Moreover, we have:

Eµ(χ|Bn)(x) =

∫
AZ
χdµn,x = χ(x)ζn,x(χ).

By Claim 3, for any n ≥ n0 and any d ∈ ∂DΣ
n , if there is x ∈ En,d ∩B then d ∈ Γ. 3 Claim 4

Claim 5: µ(E1) > 0.

Proof: Let A ∈ P[0,r−1]. Let x ∈ A and d ∈ D1 such that x + d ∈ A. One has x[0,r−1] = (x + d)[0,r−1]

and F (x) = F (x+ d). By bipermutativity, one deduces that x = x+ d, that is to say d = 0. Therefore,
for any x ∈ A and for any d ∈ ∂D1, we have x+ d /∈ A. Thus, A∩F−1({F (x)}) = A∩ (x+D1) = {x}.
Thus, (A) implies that Eµ(1A|B1)(x) = µ1,x(A) = µ1,x({x}) = η(x). By Lemma 2.1,

hµ(F ) = Hµ(P[0,r−1]|B1)

= −
∑

A∈P[0,r−1]

∫
A

log
(
Eµ(1A|B1)

)
dµ

=

∫
AZ
− log(η(x))dµ(x)

≤
(∗)

∫
E1

− log(η(x))dµ(x),

where (∗) is because E1 = {x ∈ AZ : η(x) < 1}. But hµ(F ) > 0 by hypothesis (3). This proves Claim 5.
3 Claim 5

Claim 6: Γ is infinite.

Proof: For µ-almost every x ∈ AZ one has:

1

n

n+1∑
j=1

1Ej (x) =
(1)

1

n

n+1∑
j=1

1F−j+1(E1)(x) =
1

n

n∑
j=0

1E1(F j(x)) =
(2)

1

n2

n∑
j,k=0

1E1(σkF j(x))−→
(3)

µ(E1) >
(4)

0.

Here, (1) is because Ej = F−j+1(E1) for all j ∈ N, (2) is because E1 is σ-invariant, (3) is the Ergodic
Theorem and hypothesis 1, and (4) is by Claim 5.

It follows that for µ-almost every x ∈ AZ, there are infinitely many values of n > 0 such that x ∈ En.
Thus µ(

⋂
m∈N

⋃
n≥mEn) = 1. Since µ(B) > 0, we deduce that µ(

⋂
m∈N

⋃
n≥mEn ∩ B) > 0. For

all n ∈ N, if d /∈ supp(µ) ⊂ Σ, then Remark 3.1 implies that µ(En,d) = 0. We can conclude that
{d ∈ DΣ

∞ : ∃n ∈ N such that d ∈ ∂Dn and En,d ∩B 6= ∅} is infinite and by Claim 4, it is a subset of Γ.
Therefore Γ is infinite. 3 Claim 6
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If we consider Γ′ = (IdAZ−σ)Γ, we have an infinite σ-invariant subgroup of DΣ
∞ because Ker(IdAZ−σ)

is finite. Hypothesis (4) then implies that Γ′ is dense in Σ, but by construction, χ(Γ′) = {1}, so by

continuity of χ, χ(x) = 1 for all x ∈ Σ. Contrapositively, we must have µ(χ) = 0 for all χ ∈ ÂZ such
that χ(Σ) 6= {1}. Since supp(µ) ⊂ Σ, we conclude that µ = λΣ.

Remark 3.3. The proof of this theorem works if (AN, F ) is a right-permutative algebraic CA where all
x ∈ D1 = Ker(F ) are σ-periodic, but this last assumption is possible only if F is also left-permutative,
therefore it is a false generalization.

Remark 3.4. Let (AZ, F ) be a nontrivial algebraic bipermutative CA and let Σ be a closed (F, σ)-invariant
subgroup of AZ which verifies hypothesis (4) of Theorem 3.3. Let c ∈ Σ be a σ-invariant configuration.
We define the CA G = F + c. Let µ be a (G, σ)-invariant probability measure on AZ. If µ verifies the
assumptions of Theorem 3.3 for the N× Z-action induced by (G, σ), then µ = λΣ.

Assumption (4) becomes more natural when it is replaced by “every (F, σ)-invariant infinite subgroup
of DΣ

∞(F ) = ∪n∈NKer(Fn) ∩ Σ is dense in Σ”. It is not clear that this condition is implied by the
assumptions of Theorem 3.3. However if we consider a σ-ergodic measure we can prove:

Theorem 3.4. Let AZ be any Abelian group shift, let (AZ, F ) be a nontrivial algebraic bipermutative
CA, let Σ be a closed (F, σ)-invariant subgroup of AZ, let k ∈ N such that every prime factor of |A|
divides k and let µ be an (F, σ)-invariant probability measure on AZ with supp(µ) ⊂ Σ. Assume that:

1. µ is ergodic for σ;

2. Iµ(σ) = Iµ(σkp1) with p1 the smallest common period of all elements of Ker(F );

3. hµ(F ) > 0;

4. every (F, σ)-invariant infinite subgroup of DΣ
∞(F ) = ∪n∈NKer(Fn) ∩ Σ is dense in Σ.

Then µ = λΣ.

Proof. A measure σ-ergodic is (F, σ)-ergodic so results from Claim 1 to Claim 6 hold.

Claim 7: Let B′ = ∪j∈Zσj({x ∈ N : Eµ(χ|Bn)(x) 6= 0,∀n ∈ N}). Then µ(B′) = 1.

Proof: By Claim 4, µ(B) > 0 where B = {x ∈ N : Eµ(χ|Bn)(x) 6= 0,∀n ≥ n0}. Thus there exists

k ∈ [0, 3] such that Bn0 = {x ∈ N : <(ikEµ(χ|Bn0)) > 0,∀n ≥ n0} verifies µ(Bn0) > 0, where i2 = −1.
Since Bn0 ∈ Bn0 ⊂ Bn0−1, one has:∫

Bn0

<(ikEµ(χ|Bn0−1))(x)dµ =

∫
Bn0

<(ikEµ(χ|Bn0)(x))dµ > 0

So Bn0−1 = {x ∈ Bn0
: <(ikEµ(χ|Bn0−1)(x)) > 0} = {x ∈ N : <(ikEµ(χ|Bn)(x)) > 0,∀n ≥ n0 − 1}

verify µ(Bn0−1) > 0. By induction µ(B0) > 0, so µ(B′) > 0. Since B′ is σ-invariant, µ(B′) = 1 by
σ-ergodicity from hypothesis (1). 3 Claim 7

Claim 8: Let n ∈ N and let d ∈ ∂DΣ
n . If En,d ∩ B′ is nonempty then d ∈ Γ = {d′ ∈ DΣ

∞ : χ(d′) =
χ(σm(d′)),∀m ∈ Z}

Proof: Let d ∈ ∂DΣ
n and let x ∈ En,d ∩B′. There exists j ∈ Z such that:

0 6= Eµ(χ|Bn)(σj(x)) =

∫
AZ
χdµn,σj(x) = χ(σj(x))ζn,σj(x)(χ) =

(∗)
χ(σj(x))ζn,x(χ).

Here (∗) is because x → ζn,x is σkpn -invariant by Lemma 3.1(c) and Iµ(σ) = Iµ(σkpn) by Claim 1,
so x → ζn,x is σ-invariant. One deduces that ζn,x(χ) 6= 0. But x ∈ En,d ∩ N , so d ∈ Γ by Claim 3.
3 Claim 8

Claim 9: Let n ≥ 1 and let d ∈ ∂DΣ
n . For µ-almost all x ∈ En,d ∩B′ one has F (x) ∈ En−1,F (d) ∩B′.
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Proof: Let d ∈ ∂DΣ
n and x ∈ En,d ∩B′. One has:

ζn−1,F (x)({F (d)}) =
(1)
ζn,x(F−1({F (d)})) ≥ ζn,x({d}) >

(2)
0.

Here (1) is by Lemma 3.1(b) and (2) is because x ∈ En,d. We deduce that F (x) ∈ En−1,F (d). Since
µ(B′) = 1 by Claim 7 and µ is F -invariant, one has µ(∩n∈NF−n(B′)) = 1 so F (x) ∈ En−1,F (d) ∩B′ for
µ-almost all x ∈ En,d ∩B′. 3 Claim 9

Claim 10: ∩n∈NF−nΓ is infinite.

Proof: Let n ≥ 0. The set En = F−n+1(E1) is σ-invariant since E1 is σ-invariant and F commutes
with σ. Moreover µ(En) = µ(E1) > 0 by Claim 5. By σ-ergodicity (hypothesis (1)), µ(En) = 1 so
µ(En ∩ B′) = 1 by Claim 7. For all n ≥ 1, there exists dn ∈ ∂DΣ

n such that µ(En,dn ∩ B′) > 0, and
thus, by Claim 9, µ(En−k,Fk(dn) ∩B′) > 0 for all k ∈ [0, n]. That is to say F k(dn) ∈ Γ for k ∈ [0, n] by
Claim 8. One deduces that ∩n∈NF−nΓ is infinite since it contains dn for all n ∈ N. 3 Claim 10

If we consider Γ′′ = (IdAZ − σ)(∩n∈NF−nΓ), we have an infinite (F, σ)-invariant subgroup of DΣ
∞

because Ker(IdAZ − σ) is finite. We deduce that Γ′′ is dense in Σ by condition (4), but χ(Γ′′) = {1} by
construction, so by continuity of χ, χ(x) = 1 for all x ∈ Σ. Contrapositively, we must have µ(χ) = 0 for

all χ ∈ ÂZ such that χ(Σ) 6= {1}. Since supp(µ) ⊂ Σ, we conclude that µ = λΣ.

Corollary 3.5. Let AZ be any Abelian group shift, let (AZ, F ) be an algebraic bipermutative CA. Let Σ
be a closed (F, σ)-invariant subgroups of AZ such that there exists π : AZ → Σ a surjective continuous
morphism which commutes with F and σ ((Σ, σ, F ) is a dynamical and algebraic factor of (AZ, σ, F )).
Let k ∈ N be such that every prime factor of |A| divides k. Let µ be an (F, σ)-invariant probability
measure on AZ. Assume that:

1. µ is ergodic for the N× Z-action (F, σ);

2. Iµ(σ) = Iµ(σkp1) with p1 the smallest common period of all elements of Ker(F );

3. hπµ(F ) > 0;

4. every σ-invariant infinite subgroup of DΣ
∞ = ∪n∈NKer(Fn) ∩ Σ is dense in Σ.

Then πµ = λΣ.

4 A discussion about the assumptions

Comparing the assumptions of Theorems 3.3 and 3.4 with those of Theorems 1.1, 1.2 and 1.3 is not com-
pletely obvious. Already Theorems 3.3 and 3.4 consider bipermutative algebraic CA without restriction
on the neighborhood. In this section we discuss about the assumptions of these theorems and show that
Theorems 3.3 and 3.4 generalize Theorems 1.2 and 1.3 but the ergodic assumptions cannot be compared
with these of Theorem 1.1.

4.1 Class of CA considered

Theorems 3.3 and 3.4 consider algebraic bipermutative CA without restriction on the neighborhood.
The bipermutativity is principally used to prove the entropy formula of Lemma 2.1. We can hope such
formula for expansive CA. Subsection 4.3 gives a result in this direction. The next proposition shows
that it is equivalent to consider algebraic CA or the restriction of a linear CA.

Proposition 4.1. Let AZ be any Abelian group shift and let (AZ, F ) be an algebraic CA. There exist
(BZ, G) a linear CA and Γ a σBZ-invariant subgroup of BZ such that (AZ, σ, F ) is isomorphic to (Γ, σBZ , G)
in both dynamical and algebraical sense.
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Proof. Let (AZ, F ) be an algebraic CA. By B.P. Kitchens [Kit87, Proposition 2], there exists B′ a
finite Abelian group, Γ a Markov subgroup of B′Z and ϕ a continuous group isomorphism such that
ϕ ◦ σ = σB′Z ◦ ϕ. Define G′ = ϕ ◦ F ◦ ϕ−1. One has the following commutative diagram:

AZ σ,F−−−−→ AZyϕ yϕ
Γ

σB′Z ,G
′

−−−−−→ Γ

ϕ ◦ σ = σB′Z ◦ ϕ
ϕ ◦ F = G′ ◦ ϕ

G′ is continuous and commutes with σB′Z , so it is a CA on Γ′. We want to extend G′ to obtain a
linear CA. By G.A. Hedlund [Hed69], there exist a neighborhood U, H a subgroup of B′U and a local
function G′ : H → B′ which define G′. Moreover, by linearity, G′ is a group morphism. If we could
extend G′ to a morphism from BU to B (where B′ was a subgroup of B), we would obtain the local rule
of a linear CA.

There exist d, k ∈ N such that B′ can be viewed as a subgroup of (Z/dZ)k. If B = (Z/dZ)k, then H
can be viewed as a subgroup of BU. By the Fundamental Theorem of Finitely Generated Abelian Group
[Lan02, Theorem 7.8], there exist e1, ..., ek|U| a basis of BU and a1, ..., ak|U| ∈ N such that BU =

⊕
i〈ei〉

and H =
⊕

i〈aiei〉. For all i ∈ [1, k|U|], there exist fi ∈ B such that G′(aiei) = aifi because the order of
G′(aiei) is at most d

ai
. We define the morphism G : BU → B by G(ei) = fi for all i ∈ [1, k|U|]. G defines

a linear CA on BZ denoted G whose the restriction is (Γ, G′).

Remark 4.1. The study of algebraic CA can be restricted to the study of the restriction of linear CA to
Markov subgroups.

Since we consider σ-invariant measures, we can assume that the neighborhood of the CA is U = [0, r].
Moreover it is easy to show the next Proposition and consider CA of neighborhood U = [0, 1].

Proposition 4.2. Let (AZ, F ) be a CA of neighborhood U = [0, r]. There is a CA ((Ar)Z, G) of neigh-
borhood U = [0, 1] so that the topological system (AZ, F ) is isomorphic to the system ((Ar)Z, G) via the
conjugacy

φr : (xi)i∈Z ∈ AZ → ((x[ri,ri+r−1])i∈Z) ∈ (Ar)Z.

Furthermore one has:

(AZ, F ) is bipermutative ⇐⇒ ((Ar)Z, G) is bipermutative;

(AZ, F ) is algebraic ⇐⇒ ((Ar)Z, G) is algebraic;

(AZ, F ) is linear ⇐⇒ ((Ar)Z, G) is linear.

If µ ∈ M(AZ) is σ-totally ergodic then φrµ ∈ M((Ar)Z) is σ(Ar)Z-totally ergodic. Moreover, by
conjugacy, hµ(F ) > 0 is equivalent to hφrµ(G) > 0. So, as suggested in [Piv05], Theorem 1.3 holds for
algebraic bipermutative CA without any restriction on the neighborhood.

Corollary 4.3. Let AZ be any Abelian group shift, let (AZ, F ) be an algebraic bipermutative CA (without
restriction on the neighborhood) and let µ be an (F, σ)-invariant probability measure. Assume that:

1. µ is totally ergodic for σ;

2. hµ(F ) > 0;

3. Ker(F ) contains no nontrivial σ-invariant subgroups.

Then µ = λAZ .

Remark 4.2. The correspondence holds only if µ is supposed to be σ-totally ergodic. Indeed if µ is
σ-ergodic, φrµ is not necessarily σ(Ar)Z -ergodic
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4.2 Ergodicity of action

Assumption (1) of Theorem 3.3 characterizes the ergodicity of the action (F, σ) on the measure space
(AZ,B, µ). Since we want to characterize (F, σ)-invariant measures, it is natural to assume that µ is
(F, σ)-ergodic because every (F, σ)-invariant measure can be decomposed into (F, σ)-ergodic components.
The next relations are easy to check for an (F, σ)-invariant probability measure µ:

µ is (F, σ)-totally ergodic ⇒ µ is σ-totally ergodic ⇒ µ is σ-ergodic ⇒ µ is (F, σ)-ergodic;

µ is σ-totally ergodic ⇒ µ is (F, σ)-ergodic and Iµ(σ) = Iµ(σk) for every k ≥ 1.

Thus, hypothesis (1) of Theorem 1.3 implies hypothesis (1) and (2) of Theorem 3.4 which imply
hypothesis (1) and (2) of Theorem 3.3. However, we remark that the ergodicity assumption (1) of
Theorem 1.1 cannot be compared with hypothesis of Theorem 3.3. Indeed, there are probability measures
which are (F, σ)-ergodic with Iµ(σ) = Iµ(σk) for some k ≥ 1 which are not σ-ergodic. Conversely there
exist probability measures which are σ-ergodic with Iµ(σ) 6= Iµ(σk) for some k ≥ 1.

Secondly, if A = Z/pZ and F = a Id + b σ on AZ then p − 1 is a multiple of the common period
of every element of Ker(F ). So the spectrum assumption (2) of Theorem 1.2 implies hypothesis (2) of
Theorems 3.3 and 3.4. For Theorem 1.3 the total ergodicity of µ under σ is required. This property does
not seem to be very far from hypothesis (2) of Theorems 3.3 and 3.4. But condition (2) of Theorems 3.3
and 3.4 (concerning the σ-invariant set) shows the importance of the algebraic characteristic of the
system. The property of (F, σ)-total ergodicity of µ is more restrictive. With such an assumption
Einsiedler [Ein05] proves rigidity results for a class of algebraic actions that are not necessarily CA. To
finish, the next example shows that assumption (2) of Theorems 3.3 and 3.4 is necessary to obtain the
characterization of the uniform Bernoulli measure.

Example 4.3. Let A = Z/2Z and F = Id + σ on AZ. We consider the subgroup X1 = {x ∈ AZ :
x2n = x2n+1,∀n ∈ Z}, it is neither σ-invariant nor F -invariant. Let X2 = σ(X1) = {x ∈ AZ : x2n =
x2n−1,∀n ∈ Z}, X3 = F (X1) = {x ∈ AZ : x2n = 0,∀n ∈ Z} and X4 = F (X2) = {x ∈ AZ : x2n+1 =
0,∀n ∈ Z}. The set X = X1 ∪ X2 ∪ X3 ∪ X4 is (F, σ)-invariant. Let ν be the Haar measure on X1.
We consider µ = 1

4 (ν + σν + Fν + Fσν). It is easy to verify that µ is an (F, σ)-ergodic measure such
that hµ(σ) > 0. However Xi ∈ Iµ(σ2) r Iµ(σ) for all i ∈ [1, 4], hence hypothesis (2) is false, so we
cannot apply Theorem 3.3 and µ it is not the uniform Bernoulli measure. S. Silberger propose similar
constructions in [Sil05].

4.3 Positive entropy

Corollary 2.3 shows that for a nontrivial bipermutative CA (AZ, F ), the assumption of positive entropy
of F can be replaced by the positive entropy of Fn ◦σm for some (n,m) ∈ N×Z. So the positive entropy
hypothesis (3) of Theorems 3.3 and 3.4 can be replaced by the positive entropy of the action (F, σ) in
some given direction. We can find this type of assumption in [Ein05].

We can also expect a similar formula for an expansive CA F but in this case we have the inequality:
hµ(F ) > 0 iff hµ(σ) > 0. To begin we show an inequality for a general CA.

Proposition 4.4. Let (AZ, F ) be a CA of neighborhood U = [r, s] 3 0 (not necessarily the smallest
possible one) and µ be an (F, σ)-invariant probability measure on AZ. Then hµ(F ) ≤ (r − s)hµ(σ).

Proof. By definition, forN ∈ N, l ∈ N and x ∈ AZ, the knowledge of x[rN−l,sN+l] determines (Fn(x)[−l,l])n∈[0,N ].

This means that P[rN−l,sN+l] is a refinement of
∨N
n=0 F

−n(P[−l,l]). So for l ≥ max(s,−r) we have:

hµ(F,P[−l,l]) = lim
N→∞

1

N
Hµ(

N∨
n=0

F−n(P[−l,l]))

≤ lim
N→∞

1

N
Hµ(P[rN−l,Ns+l])

= lim
N→∞

−N(s− r) + 2l

N

1

N(s− r) + 2l

∑
u∈AN(s−r)+2l

µ([u]) log(µ[u])

= (s− r)hµ(σ).

We deduce that hµ(F ) = liml→∞ hµ(F,P[−l,l]) ≤ (s− r)hµ(σ).
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Let (AZ, F ) be a positively expansive CA. There exists re, the constant of expansivity, such as for
all x, y ∈ AZ if x 6= y there exists n ∈ N which verifies Fn(x)[−re,re] 6= Fn(y)[−re,re]. Then (AZ, F ) is

topologically conjugate to the one-sided subshift (SF , σ), where SF ⊂ BN, with B = A2re+1, and where
SF = {(F i(x)[−re,re])i∈N : x ∈ AZ}, via the conjugacy φF : x ∈ AZ → (F i(x)[−re,re])i∈N ∈ SF . Define

FT : SF → SF by FT ◦ φF (x) = φF ◦ σre(x) for every x ∈ AZ. (SF , FT ) is an invertible one-sided CA.
Define the radius of expansivity rT = max{r(FT ), r(F−1

T )}.

Proposition 4.5. Let (AZ, F ) be a positively expansive CA and µ an (F, σ)-invariant probability mea-
sure, then hµ(F ) ≥ 1

rT
hµ(σ).

Proof. By definition of rT , for N ∈ N, l ≥ re and x ∈ AZ, the knowledge of (Fn(x)[−l,l])n∈[0,rTN ] implies

the knowledge of x[−N−l,N+l]. This means that
∨rTN
n=0 F

−n(P[−l,l]) is a refinement of P[−N−l,N+l]. A
computation similar to that in the previous proof shows that rT hµ(F ) ≥ hµ(σ).

This result can be viewed as a rigidity result. Indeed for an expansive CA (AZ, F ), the measure
entropy of F and σ are linked for an (F, σ)-invariant measure. This is a first step in the research of
Lyapunov exponents for expansive CA [Tis00].

4.4 (F, σ)-invariant subgroups of D∞

Now let us discuss assumption (4) of Theorems 3.3 and 3.4 which is an algebraic condition on the CA.
We can remark that Theorems 1.1 and 1.2 have no such assumption because they concern a particular
class of CA which verifies this assumption: F = a Id + b σ on (Z/pZ)Z with p prime. By Proposition 4.2
it is easy to modify the proof of Theorem 1.3 to consider nontrivial algebraic bipermutative CA without
restriction on the neighborhood (Corollary 4.3). But it is necessary to compare the assumption “Ker(F )
contains no nontrivial σ-invariant subgroups” with “every σ-invariant infinite subgroup of D∞ is dense
in AZ”. We show that the second property is more general and give in Subsection 5.1 a general class of
examples where it is the case.

If H ⊂ AZ, denote by 〈H〉 the subgroup generated by H, 〈H〉σ the smallest σ-invariant subgroup
which contains H and 〈H〉F,σ the smallest (F, σ)-invariant subgroup which contains H. Let Σ be a closed
(F, σ)-invariant subgroup. If H ⊂ Σ, then we remark that 〈H〉, 〈H〉σ and 〈H〉F,σ are subgroups of Σ.

Proposition 4.6. Let (AZ, F ) be an algebraic CA and let Σ be a closed (F, σ)-invariant subgroup of AZ.
The following propositions are equivalent:

1. DΣ
∞ contains no nontrivial (F, σ)-invariant infinite subgroups.

2. There exist m ∈ N and n0 ≥ 0 such that DΣ
n0
⊂ 〈d〉F,σ for all d ∈ ∂DΣ

n0+m.

3. There exists m ∈ N such that DΣ
n0
⊂ 〈d〉F,σ for all n0 ∈ N∗ and d ∈ ∂DΣ

n0+m.

4. There exists m ∈ N such that DΣ
1 ⊂ 〈d〉F,σ for all d ∈ ∂DΣ

m+1.

Proof. (2) ⇒ (1) Let Γ be an (F, σ)-invariant infinite subgroup of DΣ
∞. We prove by induction that

DΣ
n ⊂ Γ for all n ≥ n0. Since Γ is infinite and DΣ

n is finite for all n ∈ N, we deduce that there exists
n′ ≥ 0 such that there exists d ∈ Γ ∩ ∂DΣ

n′+n0+m. By F -invariance of Γ we have Fn
′
(d) ∈ Γ ∩ ∂DΣ

n0+m,

thus DΣ
n0
⊂ 〈Fn′(d)〉F,σ ⊂ Γ.

Let n ≥ n0 and assume that DΣ
n ⊂ Γ. We want to show that DΣ

n+1 ⊂ Γ. As before, since Γ is
infinite and F -invariant we can find d ∈ Γ ∩ ∂DΣ

n+1+m. From Fn+1−n0(d) ∈ Γ ∩ ∂DΣ
n0+m, we deduce

DΣ
n0
⊂ 〈Fn+1−n0(d)〉F,σ. Let d′ ∈ DΣ

n+1. Then Fn+1−n0(d′) ∈ DΣ
n0
⊂ 〈Fn+1−n0(d)〉F,σ and consequently

there exists a finite subset V ⊂ Z × N such that Fn+1−n0(d′) =
∑

(u,m′)∈V cu,m′σ
u ◦ Fm′+n+1−n0(d)

where cu,m′ ∈ Z. We deduce that d′ −
∑

(u,m′)∈V cu,m′σ
u ◦ Fm′(d) ∈ DΣ

n+1−n0
⊂ DΣ

n ⊂ Γ. But d ∈ Γ,

so σn ◦ Fm′ ∈ Γ for all (n,m′) ∈ V. Thus, d′ ∈ Γ. This holds for any d′ ∈ DΣ
n+1. Thus, DΣ

n+1 ⊂ Γ. By
induction, DΣ

k ⊂ Γ for all k ∈ N. Finally, DΣ
∞ = ∪n∈NDΣ

n ⊂ Γ.
(1) ⇒ (4) By contradiction, we assume that for all m ∈ N there exists d ∈ ∂DΣ

m+1 such that
〈d〉F,σ ∩ DΣ

1 6= DΣ
1 . Since DΣ

1 is a finite group there exists a strict subgroup H of DΣ
1 such that

∆ = {d ∈ DΣ
∞|〈d〉F,σ ∩ DΣ

1 ⊂ H} is infinite. Observe that F (∆) ⊂ ∆. For all d′ ∈ ∆ we denote
∆d′ = {d ∈ ∆|d′ ∈ 〈d〉F,σ}. Let (ni)i∈N be an increasing sequence such that ∆ ∩ ∂DΣ

ni
6= ∅. If
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d ∈ ∆∩ ∂DΣ
ni+1

, we have d′ = Fni+1−ni(d) ∈ 〈d〉F,σ, so that d ∈ ∆d′ , and also d′ ∈ ∆∩ ∂DΣ
ni

. So we can

construct by induction an infinite sequence (di)i∈N of DΣ
∞ such that di ∈ ∆ ∩ ∂DΣ

ni
and di+1 ∈ ∆di for

all i ∈ N. Thus Γ =
⋃
i∈N〈di〉F,σ is an infinite (F, σ)-invariant subgroup of DΣ

∞ such that Γ ∩DΣ
1 ⊂ H,

which contradicts (1).
(4)⇒ (3) Let m ∈ N such that DΣ

1 ⊂ 〈d〉F,σ for all d ∈ ∂DΣ
m+1. We prove by induction that for all

n ≥ 1 and d ∈ ∂DΣ
n+m one has DΣ

n ⊂ 〈d〉F,σ. For n = 1 it is the assumption. Assume that the property is
true for n ∈ N∗. Let d ∈ ∂DΣ

n+1+m, since Fn(d) ∈ ∂DΣ
m+1, one has DΣ

1 ⊂ 〈Fn(d)〉F,σ. If d′ ∈ DΣ
n+1, then

Fn(d′) ∈ DΣ
1 and we deduce the existence of V ⊂ Z×N such that Fn(d′) =

∑
(u,m′)∈V cu,m′σ

u◦Fm′+n(d)

where cu,m′ ∈ Z. From d′ −
∑

(u,m′)∈V cu,m′σ
u ◦ Fm′(d) ∈ DΣ

n and from the fact that DΣ
n ⊂ 〈F (d)〉F,σ

because F (d) ∈ ∂DΣ
n+m, we deduce that d′ −

∑
(u,m′)∈V cu,m′σ

u ◦ Fm′(d) ∈ 〈F (d)〉F,σ ⊂ 〈d〉F,σ. Thus,

d′ ∈ 〈d〉F,σ. One deduces that DΣ
n+1 ⊂ 〈d〉F,σ.

(3)⇒ (2) is trivial.

Corollary 4.7. If DΣ
1 = Ker(F )∩Σ contains no nontrivial σ-invariant subgroups then DΣ

∞ contains no
nontrivial (F, σ)-invariant infinite subgroups.

Proof. If DΣ
1 = Ker(F ) ∩Σ contains no nontrivial σ-invariant subgroups, for all d ∈ ∂DΣ

1 , the subgroup
〈d〉F,σ must be equal to DΣ

1 . By Proposition 4.6, one deduce that DΣ
∞ contains no nontrivial (F, σ)-

invariant infinite subgroups.

For a linear CA (AZ, F ) where A = Z/nZ, the σ-invariant subgroups coincide with the (F, σ)-
invariant subgroups. From Corollary 4.7 we get directly that Theorem 3.3 is stronger than Theorem 1.3
in this case. Moreover, if we consider the case of the Theorem 1.2, that is to say that A = Z/pZ with
p prime and F = a Id + b σ with a 6= 0 and b 6= 0, then Ker(F ) ' Z/pZ does not contain nontrivial
σ-invariant subgroups. So Theorem 3.3 generalizes also Theorem 1.2.

WhenA is not cyclic, the σ-invariant subgroups does not necessarily coincide with the (F, σ)-invariant
subgroups. In this case we do not know if Theorem 3.3 implies Theorem 1.3. However Corollary 4.7
implies that Theorem 3.4 is stronger than Theorem 1.3 for every algebraic bipermutative CA.

5 Extensions to some linear CA

5.1 The case A = Z/pZ
Theorem 1.2 concerns linear CA on (Z/pZ)Z of smallest neighborhood U = [0, 1]. We will show that
this implies the fourth assumption of Theorem 3.3. In fact we can show that the fourth assumption
is directly implied when we consider a nontrivial linear CA on (Z/pZ)Z. This allows us to prove the
following result.

Proposition 5.1. Let A = Z/pZ, let (AZ, F ) be a nontrivial linear CA with p prime and let µ be an
(F, σ)-invariant probability measure on AZ. Assume that:

1. µ is ergodic for the N× Z-action (F, σ);

2. Iµ(σ) = Iµ(σp p1) with k ∈ N∗ and p1 the smallest common period of all elements of Ker(F );

3. hµ(F ) > 0.

Then: (a) µ = λAZ .

(b) Moreover p1 divides
∏r−1
i=0 (pr − pi) where r = max{U, 0} − min{U, 0} and U is the smallest

neighborhood of F .

Proof. Proof of (a): By (F, σ)-invariance of µ, we can compose F with σ and assume that the smallest
neighborhood of F is [0, r] with r ∈ N \ {0}. So F =

∑
u∈[0,r] fu ◦ σu = PF (σ) where PF is a polynomial

with coefficients in Z/pZ with f0 6= 0 and fr 6= 0. We remark that F is bipermutative.
Case 1: First we assume that PF is irreducible on Z/pZ. We can view D1(F ) as a Z/pZ vector

space and consider the isomorphism σ1 : D1(F ) → D1(F ), the restriction of σ at the subgroup D1(F ).
By bipermutativity of F , D1 ' (Z/pZ)r. Moreover PF (σ1) = 0; since PF is irreducible and its degree
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is equal to the dimension of D1, we deduce that PF is the characteristic polynomial of σ1. Since PF is
irreducible, D1(F ) is σ1-simple, so D1(F ) contains no nontrivial σ-invariant subgroups, see [AB93, §VI.8]
for more detail. By Corollary 4.7, D∞(F ) also contains no nontrivial (F, σ)-invariant infinite subgroup,
so hypothesis (4) of Theorem 3.3 is verified.

Case 2: Now we assume that PF = Pα where P is irreducible on Z/pZ and α ∈ N. We have
Dn(PF (σ)) = Ker(Pαn(σ)) = Dαn(P (σ)) for all n ∈ N. So D∞(PF (σ)) = D∞(P (σ)). Now we are in
the previous case and the fourth condition of Theorem 3.3 is verified.

Case 3: In the general case PF = Pα1
1 ...Pαl

l where Pi is irreducible and αi ∈ N for all i ∈ [1, l]. Let
Γ be an (F, σ)-invariant infinite subgroup of D∞(PF (σ)). By the kernel decomposition Lemma [AB93,
§VI.4], we have Dn(PF (σ)) = Dn(Pα1

1 (σ)) ⊕ ... ⊕Dn(Pαl

l (σ)) for every n ∈ N. Moreover Dn(PF (σ)) ∩
Γ is a σ-invariant subspace of Dn(PF (σ)) considered as a Z/pZ-vector space and Dn(PF (σ)) ∩ Γ =
(Dn(Pα1

1 (σ)) ∩ Γ)⊕ ...⊕ (Dn(Pαl

l (σ)) ∩ Γ). We deduce that

D∞(PF (σ)) ∩ Γ =
⊕
i∈[1,l]

(D∞(Pα1
i (σ)) ∩ Γ) =

(∗)

⊕
i∈[1,l]

(D∞(Pi(σ)) ∩ Γ),

where (∗) follows as in Case 2. There exists i ∈ [1, l] such that Γ ∩D∞(Pi(σ)) is an infinite subgroup.
By Case 1, one has Γ ∩ D∞(Pi(σ)) = D∞(Pi(σ)), so D∞(Pi(σ)) ⊂ Γ. We deduce that Γ is dense,
because D∞(Pi(σ)) is dense, because Pi(σ) is bipermutative. Thus the fourth condition of Theorem 3.3
is verified; part (a) of the proposition follows.

Proof of (b): If x ∈ Ker(F ), then the coordinates of x verify xn+r = −f−1
r

∑r−1
i=0 fixn+i for all n ∈ Z.

This recurrence relation can be expressed with a matrix. For all n ∈ Z one has Xn+1 = AXn where

Xn =

xn+r−1

...
xn

 and A =



−fr−1f
−1
r · · · · · · · · · −f0f

−1
r

1 0 · · · · · · 0

0
. . .

. . .
...

...
. . .

. . .
. . .

...
0 · · · 0 1 0

 .

A is invertible because f0 6= 0 6= fr, and for all n ∈ Z one has Xn = AnX0. Thus the period of Xn

divides the period of A, which divides the cardinality of the set of invertible matrices on Z/pZ of size r,

that is to say the number of bases of (Z/pZ)r, which is
∏r−1
i=0 (pr − pi).

Remark 5.1. Proposition 5.1 still holds if ((Z/pZ)Z, F ) is an affine CA.

Remark 5.2. Proposition 5.1 extends to the case when A is a finite field and F =
∑
u∈U fuσ

u is a linear
CA where each coefficient fu is the multiplication by an element of the field.

Let ((Z/pZ)Z, F ) be a nontrivial linear CA where PF (σ) =
∑
u∈[0,r] fu ◦ σu is a polynomial with

coefficients in Z/pZ with f0 6= 0 and fr 6= 0. In this case Theorem 1.3, generalized to nontrivial algebraic
bipermutative CA without restriction on the neighborhood, holds only if Ker(F ) contains no nontrivial
σ-invariant subgroups, which is equivalent to the irreducibility of PF . Proposition 5.1 holds for every
linear CA on (Z/pZ)Z.

5.2 The case A = Z/pZ× Z/qZ
Now we consider A = Z/pZ×Z/qZ with p and q distinct primes and (AZ, F ) a linear bipermutative CA.
In this case D∞ contains infinite σ-invariant subgroups which are not dense in AZ. For example DΓ1

∞
and DΓ2

∞ where Γ1 = (Z/pZ)Z × {0(Z/qZ)Z} and Γ2 = {0(Z/pZ)Z} × (Z/qZ)Z. The measures λΓ1
and λΓ2

are (F, σ)-totally ergodic with positive entropy for σ. If µ is an (F, σ)-invariant measure which verifies
conditions of the Theorem 3.3, we cannot conclude that µ = λAZ . But if we consider the natural factor
π1 : AZ → Γ1 and π2 : AZ → Γ2, then by Corollary 3.5, one has π1µ = λΓ1

or π2µ = λΓ2
. A natural

conjecture is this: if every cellular automaton factor of F has positive entropy, then µ = λAZ . The
problem is to rebuild the measure starting from π1µ and π2µ.
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5.3 The case A = Z/pkZ
In this case we do not know under what extra conditions an (F, σ)-invariant measure is the Haar measure.
Moreover some linear CA are not bipermutative. The next lemma shows how to remove this condition
when you consider a power of the CA.

Lemma 5.2. Let (AZ, F ) be a linear CA with A = Z/pkZ, where p is prime, k ≥ 1 and F =
∑
i∈[r,s] fi σ

i,

with fi ∈ Z/pkZ. Let Û = {i ∈ [r, s] : fi coprime with p}, r̂ = min Û and ŝ = max Û. Assume Û is not
empty and r̂ < ŝ.

Then F p
k−1

is bipermutative of smallest neighborhood U′ = [pk−1r̂, pk−1ŝ].

Proof. We can write F = PF (σ) with PF ∈ Z/pkZ[X,X−1]. We decompose PF = P1 + pP2 where
P1 =

∑
i∈Û fiX

i. By Fermat’s little theorem and induction on j ≥ 1, we can easily prove that:

(P1 + pP2)p
j

= (P1)p
j

mod pj+1.

So we have P p
k−1

F = P p
k−1

1 =
∑
i∈[pk−1r̂,pk−1ŝ] giX

i where gi ∈ Z/pkZ. Moreover gpk−1r̂ = fp
k−1

r̂ and

gpk−1ŝ = fp
k−1

ŝ are relatively prime to p. We deduce that F p
k−1

= P p
k−1

F (σ) is bipermutative of smallest
neighborhood U′ = [pk−1r̂, pk−1ŝ].

Now we can deduce from Corollary 2.3 an entropy formula for general linear CA on (Z/pkZ)Z.

Corollary 5.3. Let (AZ, F ) be a linear CA with A = Z/pkZ, where p is prime, k ≥ 1, and F =∑
i∈[s,r] fi σ

i with fi ∈ Z/pkZ. Let r̂ < ŝ be as in Lemma 5.2. Let µ be an (F, σ)-invariant probability

measure on AZ. Then hµ(F ) = (max(r̂, 0)−min(ŝ, 0))hµ(σ).

Corollary 5.4. Let (AZ, F ) be a linear CA with A = Z/pkZ, where p is prime, k ≥ 1, and F =∑
i∈[s,r] fi σ

i with fi ∈ Z/pkZ. Assume that for at least two i ∈ [s, r], fi is relatively prime with p. Let

Σ be a closed (F, σ)-invariant subgroup of AZ and let µ be an (F, σ)-invariant probability measure on AZ

with supp(µ) ⊂ Σ. Assume that:

1. µ is ergodic for the N× Z-action induced by (F, σ);

2. Iµ(σ) = Iµ(σpp1) with p1 the smallest common period of all elements of Ker(F );

3. hµ(σ) > 0;

4. every σ-invariant infinite subgroup of DΣ
∞(F ) = ∪n∈NKer(Fn) ∩ Σ is dense in Σ.

Then µ = λΣ.

Example 5.3. Let A = Z/4Z, we consider the CA (AZ, F ) defined by F = Id+σ+2σ2. Then Σ = {0, 2}Z
satisfies the conditions of Corollary 5.4. In this case the only (F, σ)-invariant probability measure of
positive entropy known are λAZ and λΣ.

6 Measure rigidity for some affine one-sided expansive CA

An invertible onesided CA (AN, F ) is called expansive if there exists a constant re ∈ N such that for
all x, y ∈ AN, if x 6= y there exists n ∈ Z which verifies Fn(x)[0,re] 6= Fn(y)[0,re]. Expansive CA are
different from positively expansive CA because we look also the past of the orbit. M. Boyle and A. Maass
introduced in [BM00] a class of onesided invertible expansive CA which have remarkable combinatorial
properties. Further properties were obtained in [DMS03]. We study this class of examples from the
point of view of measure rigidity. This class of CA is not bipermutative so we cannot apply directly
Theorem 3.3. However, in some case, it is possible to associate a “dual” CA which correspond to the
assumptions of Theorem 3.3. This is a first step to study measure rigidity for expansive CA.

We are going to recall some properties obtained in [BM00]. Let F : AN → AN be a CA such that
r(F ) = 1. Associate to F the equivalence relation over A: aRF b iff F (· a) = F (· b) as a function from A
to A; and we write PRF

the partition induced by RF and CRF
(a) the class associated to a. Define also

πF : A → A by πF (a) = F (aa) for any a ∈ A.
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Proposition 6.1 ([BM00]). A onesided CA F : AN → AN with r(F ) = 1 is invertible with r(F−1) = 1
iff the following conditions hold:

1. πF is a permutation,

2. F is left permutative,

3. ∀a ∈ A, SuccF (a) := Im(F (a ·)) ⊂ πF (CRF
(a)).

If F is an expansive invertible CA with r(F ) = r(F−1) = 1, then (AN, F ) is topologically conjugate
to the bilateral subshift (SF , σ) where SF = {(F i(x)0)i∈Z : x ∈ AN} via the conjugacy φF : x ∈
AN → (F i(x)0)i∈N ∈ SF . Define FT : SF → SF by FT (φF (x)) = φF (σ(x)) for every x ∈ AN. If F is
expansive then (SF , FT ) is a CA (defined on SF instead of a fullshift). Invertible expansive CA with
r(F ) = r(F−1) = r(FT ) = 1 can be characterized as follows:

Proposition 6.2 ([BM00]). A onesided invertible CA F : AN → AN with r(F ) = r(F−1) = 1 is
expansive with r(FT ) = 1 iff the following conditions are verified:

1. |C ∩ πF (C ′)| ≤ 1 for any C, C ′ ∈ PRF
,

2. ∀a ∈ A, SuccF (a) := Im(F (a ·)) = πF (CRF
(a)).

Such a CA is said to be in Class (A). The alphabet A of a CA in Class (A) has cardinality n2 for
some n ∈ N.

Write B = PRF
. In [BM00], the authors show that (SF , σ) is conjugate to the full shift (BZ, σ) by

ϕ : SF → BZ such that ϕ((ai)i∈Z) = (CRF
(ai))i∈Z. The CA (SF , FT ) determines by ϕ a CA (BZ, F̃T ) on

BZ and (SF , FT ) is conjugate to (BZ, F̃T ). To sum up we have:

(AN, σ) ≡ (SF , FT ) ≡ (BZ, F̃T ),
(AN, F ) ≡ (SF , σ) ≡ (BZ, σ),

(where ≡ means topologically conjugate).

Proposition 6.3. If F is in Class (A) then F̃T is bipermutative.

Proof. Let (AN, F ) be a CA in the class (A) and let α, α′, β, γ, δ ∈ B such that F̃T (α, β, γ) = F̃T (α′, β, γ) =
δ. Suppose β = ϕ(b), for some b ∈ SF . Then b ∈ πF (γ) by condition (2) of Proposition 6.2, so
b ∈ β ∩ πF (γ), which is a singleton set by condition (1). Hence β and γ uniquely determine b. Likewise,
if α = ϕ(a) and α′ = ϕ(a′) for some a, a′ ∈ SF , then we must have a, a′ ∈ F (b, δ). But F (b, .) : A → A
is constant on δ by definition of the partition PRF

, so a = a′ so α = α′. We deduce that the function

F̃T (·, β, γ) : B → B is injective. So it is bijective because B is finite. Thus, (B, F̃T ) is left-permutative.

In the same way we can prove that (B, F̃T ) is right-permutative by applying Propositions 6.1 and 6.2
to F−1 instead. The result follows.

A natural question after this proposition is to characterize the CA F in class (A) such that F̃T is
algebraic to apply previous theorems. We have only the next sufficient condition:

Proposition 6.4. Let (AN, F ) be a linear CA, F = f0Id + f1σ where f0 and f1 are endomorphisms of
A extended coordinate by coordinate to AN.

(a) F is invertible with r(F−1) = 1 iff f0 is an automorphism and f1 ◦ f−1
0 ◦ f1 = 0.

(b) F is in Class (A) iff f0 is an automorphism, Imf1 = f0(Kerf1) and Imf1 ∩Kerf1 = {0}.
(c) When (AZ, F ) is in Class (A), the CA (PZ

RF
, F̃T ) is linear.

Proof. First we remark that b ∈ CRF
(b′) iff f0(a) + f1(b) = f0(a) + f1(b′) for all a ∈ A; this is equivalent

to b ∈ b′ + Kerf1. So CRF
(b) = b+ Kerf1 for all b ∈ A. Thus, PRF

∼= A/Kerf1. Moreover SuccF (a) =
Im(F (a ·)) = f0(a) + Imf1 for all a ∈ A, and πF = f0 + f1.

Proof of (a): Assuming f0 is an automorphism and f1 ◦f−1
0 ◦f1 = 0, it is possible to express F−1 as:

F−1 = f−1
0 Id− f−1

0 ◦ f1 ◦ f−1
0 σ. Conversely, if F is invertible with r(F−1) = 1, by Proposition 6.1, f0 is

an automorphism because F is left-permutative and f1 ◦ f−1
0 ◦ f1 = 0 because for some a ∈ A one has:

f0(a) + Im(f1) = SuccF (a) ⊂ πF (CRF
(a)) = f0(a) + f1(a) + f0(Kerf1),
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that is to say Imf1 ⊂ f0(Kerf1).
Proof of (b): As in the proof of (a), one has SuccF (a) = πF (CRF

(a)) for any a ∈ A iff Imf1 =
f0(Kerf1). Moreover, if |C ∩ πF (C ′)| ≤ 1 for any C,C ′ ∈ PRF

, then 0 + Kerf1 ∩ πF (0 + Kerf1) =
Kerf1 ∩ f0(Kerf1) = Kerf1 ∩ Imf1 = {0}. Conversely, for any b, b′ ∈ A one has CRF

(b) ∩ πF (CRF
(b)) =

b + Kerf1 ∩ πF (b′) + Imf1, so if Kerf1 ∩ Imf1 = {0} then CRF
(b) ∩ πF (CRF

(b)) contains at most one
element. Characterization of linear CA in Class (A) follows from Proposition 6.2.

Proof of (c): Let (AN, F ) be a CA in the class (A). We will show that (PZ
RF

, F̃T ) is linear. Since A is
finite Abelian and Imf1 ∩Kerf1 = {0} by (b), one has Imf1⊕Kerf1 = A. Moreover Imf1 and Kerf1 are
isomorphic to the same group, denoted B, because f0 is an automorphism and Imf1 = f0(Kerf1) by (b).
An element a ∈ A is written

(
x
y

)
where x ∈ Imf1 ' B and y ∈ Kerf1 ' B. One has PRF

' A/Kerf1 '
Imf1 ' B. We want to show that (BZ, F̃T ) is linear. We can write f0 and f1 as 2 × 2-matrices with
coefficients in Hom(B):

f0 =

[
f0,11 f0,12

f0,21 f0,22

]
and f1 =

[
f1,11 f1,12

f1,21 f1,22

]
.

Since Imf1 = f0(Kerf1) one has f0,22 = 0 and since f0 is an automorphism we deduce that f0,12

and f0,21 are automorphisms of B. Since the second coordinate corresponds to the kernel of f1, one has
f1

12 = f1
22 = 0 and since Imf1 ∩Kerf1 = {0} one has f1,21 = 0. Moreover f1,11 is an automorphism of B

since it is the restriction of f1 at Imf1. So we have:

f0 =

[
f0,11 f0,12

f0,21 0

]
, f−1

0 =

[
0 f−1

0,21

f−1
0,12 −f−1

0,12 ◦ f0,11 ◦ f−1
0,21

]
and f1 =

[
f1,11 0

0 0

]
.

These formulas are illustrated by the next diagram which represents the action of F and F−1 on a
neighborhood:

...(
f0,11(x0) + f0,12(y0) + f1,11(x1)

f0,21(x0)

)
(
x0

y0

) (
x1

y1

)
· · ·

(
f−1

0,21(y0)

f−1
0,12(x0)− f−1

0,12 ◦ f0,11 ◦ f−1
0,21(y0) + f−1

0,12 ◦ f1,11 ◦ f−1
0,21(y1)

)
...

We deduce that F̃T = f−1
1,11 ◦ σ − f

−1
1,11 ◦ f0,11 ◦ Id− f−1

1,11 ◦ f0,12 ◦ f0,21 ◦ σ−1, so (BZ, F̃T ) is linear.

With Proposition 5.1 and the conjugacy relations it is possible to characterize the uniform Bernoulli
measure of some linear CA in Class (A):

Proposition 6.5. Let (AN, F ) be an affine invertible CA in Class (A) with |A| = p2 with p prime. Let
µ be an (F, σ)-invariant probability measure on AN. Assume that:

1. µ is ergodic for the Z× N-action (F, σ);

2. Iµ(F ) = Iµ(F p(p−1)(p2−1));

3. hµ(σ) > 0.

Then µ = λAN .

Proof. By Proposition 6.4, F̃T is a linear bipermutative CA of neighborhood [−1, 1] on BZ, where B =

Z/pZ . There exist φ : AN → BZ such that (AN, F, σ) and (BZ, σ, F̃T ) are conjugate via φ, so:

1. φµ is ergodic for the N× Z-action (F̃T , σ);
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2. Iφµ(σ) = Iφµ(σp(p−1)(p2−1)) =
(∗)
Iφµ(σp(p−1)), where (∗) is by Remark 3.2;

3. hφµ(F̃T ) > 0.

By Proposition 5.1(a) we deduce that φµ = λBZ so µ = λAN .

The next example shows two CA of class (A) with |A| = 22.

Example 6.1. Let A = Z/2Z × Z/2Z, we define two CA (AN, F1) and (AN, F2) in Class (A) by:

F1

((
x0

y0

)(
x1

y1

))
=

[
1 1
1 0

](
x0

y0

)
+

[
1 0
0 0

](
x1

y1

)
and

F2

((
x0

y0

)(
x1

y1

))
=

[
0 1
1 0

](
x0

y0

)
+

[
1 0
0 0

](
x1

y1

)

The first coordinate corresponds to the class of PRFi
and the second coordinate corresponds to the

class of PR
F
−1
i

. For i ∈ {1, 2}, let µi be such that:

1. µi is (Fi, σ)-ergodic and Iµi(F ) = Iµi(F
6)

2. ∃(n,m) ∈ N× Z such that hµi
(σn ◦ Fmi ) > 0

All the hypothesis of Proposition 6.5 are satisfied, we can conclude that µi = λAN for all i ∈ {1, 2}.
To see where Theorem 1.3 does not hold when we assume µ σ-totally ergodic, we are going to exhibit

Ker(F̃Ti ) for i ∈ {1, 2}.
For F1 one has:

F̃T1 (α, β, γ) = α+ β + γ.

This formula is illustrated by the next diagram which represents the action of F1 and F−1
1 on a

neighborhood:
...(

x0 + x1 + y0

x0

)
(
x0

y0

) (
x1

y1

)
· · ·

(
y0

y0 + y1 + x0

)
...

So we have:

D1(F̃T1 ) = Ker(F̃T1 ) = {∞000∞,∞ 011∞,∞ 110∞,∞ 101∞} ∼= Z/2Z× Z/2Z.

Ker(FT1 ) contains no nontrivial σ-invariant subgroups. Then µ1 = λAN by Theorem 3.3 and Corollary 4.7.
In this case, if µ was σ-totally ergodic, then we could have also applied Theorem 1.3 to conclude that
µ = λAN .

For F2 one has:

F̃T2 (α, β, γ) = α+ γ.
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This formula is illustrated by the next diagram which represents the action of F2 and F−1
2 on a

neighborhood:
...(

x1 + y0

x0

)
(
x0

y0

) (
x1

y1

)
· · ·

(
y0

y1 + x0

)
...

One obtains:

D1(F̃T2 ) = Ker(F̃T2 ) = {∞00∞,∞ 11∞,∞ 01∞,∞ 10∞} ∼= Z/2Z× Z/2Z,

D2(F̃T2 ) = 〈D1 ∪ {∞0001∞,∞ 0111∞,∞ 0011∞}〉σ.

We remark that ∀d ∈ ∂D2 one has D1 ⊂ 〈d〉σ, so µ2 = λAN by Theorem 3.3 and Proposition 4.6.
We can also remark that in this case {∞00∞,∞ 11∞} is a nontrivial σ-invariant subgroup of Ker(F ) so
Theorem 1.3 would not apply, even if we assumed that µ was σ-totally ergodic.
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