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Abstract. In this article we introduce a general process to construct σ-invariant pseudo-distance. An other

σ-invariant object is the set of σ-invariant probability measures. We give a general framework for studying

the action of cellular automata on this set and establish some properties of the dynamics of the action of
cellular automata on this space.

Introduction

A cellular automaton is a complex system defined by a local rule which acts synchronously and uniformly
on the configuration space. These simple models have a wide variety of different dynamical behaviors. Let
A be a finite alphabet and M = Zd′ × Nd′′ . A cellular automaton can be defined as a continuous function
on the full-shift AM endowed with the product topology (also called the Cantor topology) which commutes
with the shift σ. Generally a cellular automaton is studied as a N-action on AM endowed with the distance
of Cantor without worrying about the M-action σ. There is a lot of studies of the dynamical properties of
the N-action generated by a cellular automaton which classify them according to certain behaviors.

These classifications are based on the product topology. So, the distance considered privileges the central
coordinates whereas there may be no reason to give more importance to coordinates around the origin.
Thus, simple cellular automata such as the powers of the shift are sensitive to the initial conditions. This
does not correspond to the intuitive idea which computer scientists or physicists have when they observe
the extremely regular space-time diagrams of these cellular automata. The principal shortcoming of these
classifications is to consider only the action of the cellular automaton without considering the shift M-action.
Indeed, space-time diagrams of a cellular automata (AM, F ) are not so different from that of (AM, σm ◦ F )
for m ∈ M. However, if F is not nilpotent, σm ◦ F is sensitive for m taked quite far from the origin. The
reason is that Cantor topology is non-homogeneous, thus a simple transport of information is enough to
obtain sensitivity.

One point of view can be to address the M×N-action (σ, F ) in order to put emphasize the spatiotemporal
structure. Since the M-action σ is M-expansive, the M × N-action (σ, F ) is also M × N-expansive and the
dynamic is so strong: it contains the dynamic of σ. Thus we must to study the dynamic of restrictions
of this action at sub-semi-group of M × N. In [Sab06] we give general definitions to talk about directional
dynamics even in irrational directions; the purpose is to study the sets of direction which have a certain kind
of dynamics.

An other point of view is to kill the M-action of σ and consider the N-action of F on σ-invariant object in
order to make disappear the notion of signal. In this direction, G. Cattaneo, E. Formenti, L. Margara et J.
Mazoyer [CFMM97] introduce another topology defined by the Besicovitch pseudo distance which measures
the density of the differences between two configurations in order to give the same importance at all cells.
For this distance, the shift is an isometry. However, with this topology we lose the compactness of the space
which is the traditional framework of topological dynamics. There exists other σ-invariant distances as the
Weyl pseudo-distance [BFK97]

In this article, we begin by giving a general framework to define σ-invariant pseudo-distances using sub-
measures on M. This type of distance measure the quantity of defect between two configurations according
to the sub-measure. We give some properties of the pseudo-distances obtained according the properties of
the sub-measures. This allows to find again properties of Cantor, Besicovitch and Weyl pseudo-distances.
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An other natural σ-invariant object is the set of σ-invariant probability measures Mσ(AM). Indeed, a
cellular automaton acts on this space by:

F∗µ(B) = µ(F−1(B)) for all Borel sets B ⊂ AM.

For the weak∗ topology, this set is compact and metrizable; moreover the shift has the same behavior as the
identity. So this space seems more adapted than Besicovitch space. We can consider the N-action of F∗ on
Mσ(AZ). In this space the shift has the same behavior as the identity and a sensitive cellular automaton is
not only capable of transporting information but it is also able to createnew information.

P. Kurka shows in [Kůr03] that it has an unique attractor and particulary studies the support of the
measure in this attractor. In this article we consider properties of sensibility to initial condition. This
approach can be interesting when we use cellular automata to simulate. Indeed, generally we choose an
arbitrary configuration according a distribution, this approach describes how evolute the mistake when we
chose the initial configuration with a distribution near from the expected distribution.

The different pseudo-distances defined on AM induce pseudo-distances on Mσ(AM) by way of joinings.
We begin by doing a general study of the action of a cellular automaton on these spaces. Then we study
more precisely two of them, the distance induced by the distance of Cantor and the distance induced by
the Besicovitch pseudo-distance. For the Cantor distance, we obtain a distance compatible with the weak∗

topology denoted d∗. For the Besicovitch pseudo-distance we obtain a distance, denoted dMB , similar to
the distance of Kantorivich, see [Ver04] for a historical approach. First we recover some of the remarkable
properties of these metrics even if it is well known by specialists of egodic theory in view to give a self contain
article. After we establish some properties of the induced map F∗ on the space of σ-invariant measures with
these different metrics. The more interesting dynamical properties obtained in these spaces are:

• There is not expansive cellular automata in (Mσ(AM), d∗) and (Mσ(AM), dMB ). But we do not know
results if we restrict the action to the space to σ-ergodic probability measures.

• There is not transitive cellular automaton in (Mσ(AM), dMB ). This result can be related to the
similar result in AM endowed with the Besicovitch topology which is proved thanks to Kolmogorov
complexity [BCF03]. In the space (Mσ(AM), d∗), we do not know if there is a such result.

• If the cellular automata has equicontinuous points of slope α for the Cantor metric then Eqd∗(F∗) 6= ∅
and EqdMB (F∗) 6= ∅ where Eqd∗(F∗) and EqdMB (F∗) are respectively the sets of equicontinuous points

in (Mσ(AM), d∗) and in (Mσ(AM), dMB ). However we do not know if these two sets coincide.
• If (AM, F ) is a linear cellular automata, then Eqd∗(F∗) = ∅ but we do not know if F∗ is d∗-sensitive.

1. Action of a cellular automaton on AM and M(AM) (Backgrounds)

1.1. Space of configurations. Let M = Zd′ × Nd′′ . For all m ∈ M, denote |m| the distance of m to the
origin point. Let A be a finite set. We consider AM, the configuration space of M-indexed sequences in A.
If A is endowed with the discrete topology, AM is compact, perfect and totally disconnected in the product
topology. Moreover one can define a metric on AM compatible with this topology:

∀x, y ∈ AM, dC(x, y) = 2−min{|i|:xi 6=yi i∈M}.

Let U ⊂ M. For x ∈ AM, denote xU ∈ AU the restriction of x to U. For a pattern w ∈ AU, one defines
the cylinder centered on w by [w]U = {x ∈ AZ : xU = w}.

The action of M on itself allows to define an action on AM by shift. For all m ∈ M this action is defined
by:

σm : AM −→ AM

(xi)i∈M 7−→ (xi+m)i∈M.

If m ∈ M is invertible in (M,+), then the map σm is an homeomorphism. When M = N or Z, we just
denote σ instead of σ1.

1.2. Measures on AM. Let B be the Borel sigma-algebra of AM. Denote byM(AM) the set of probability
measures on AM defined on the sigma-algebra B. Usually M(AM) is endowed with weak∗ topology: a
sequence (µn)n∈N of M(AM) converge to µ ∈ M(AM) if and only if for all finite subset U ⊂ M and for all
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pattern u ∈ AU, one has limn→∞ µn([u]U) = µ([u]U). In the weak∗ topology, the setM(AM) is compact and
metrizable. A metric is defined by:

d∗(µ, ν) =
∑
n∈N

1

Card(AUn)

∑
u∈AUn

|µ([u]Un)− ν([u]Un)|,

where Un = {m ∈M : |m| ≤ n}.
The M-action σ acts naturally on M(AM) by:

σm∗ (µ(B)) = µ(σ−m(B)), for all m ∈M, µ ∈M(AM) and B ∈ B.

A probability measure µ ∈ M(AM) is said σ-invariant if σm∗ µ = µ for all m ∈ M. Denote Mσ(AM) the
set of σ-invariant probability measure. A probability measure µ ∈M(AM) is σ-ergodic if for all σ-invariant
subset B ∈ B (σ−m(B) = B µ-almost everywhere for all m ∈M) are trivial (i.e. µ(B) = 0 or 1). The set of
σ-ergodic probability measure is denoted by Merg

σ (AZ). By Birkoff’s theorem, one has:

1

Card(Un)

∑
m∈Un

1[u]U

µ−pp−→
n→∞

µ([u]U) for all pattern u ∈ AU.

Mσ(AM) is a compact convex subset ofM(AM) andMerg
σ (AM) is the set of extremal points ofMσ(AM),

see [DGS76] for more details. Now we are going to give some examples of measure.

Example 1.1. Let x ∈ AM. Define the Dirac measure in x by δx(A) = 1 if x ∈ A and 0 if not, where A ∈ B.
The set of Dirac’s measure is dense in M(AM) for the weak∗ topology.

Moreover, one has d′C(x, y) = dM(δx, δy) where d′C is a distance equivalent to dC defined by:

d′C(x, y) =
∑
n∈N

1

2nCard(AUn)

∑
u∈AUn

|1[u]Un
(x)− 1[u]Un

(y)| for all x, y ∈ AM.

One remarks that if the configuration is not σ-uniform, the Dirac measure associated is not σ-invariant.
However, if we take a σ-periodic configuration x of periodic pattern xP where P ⊂ M is a finite subset, one
constructs a σ-ergodic measure by taking the mean of the Dirac’s measures of the σ-orbit:

δ̃x =
1

Card(P)

∑
m∈P

δσm(x).

Example 1.2. For all a ∈ A, put pa ∈ [0, 1] a real such that
∑
a∈A pa = 1. Define the Bernoulli measure

according to the probability vector (pa)a∈A by:

λ(pa)a∈A([u]U) =
∏
m∈U

pum
for all u ∈ LAM([u]U).

If all pa are equal to 1
Card(A) , one obtains the uniform Bernoulli measure which is just denoted by λAM .

1.3. Action of a cellular automaton.

1.3.1. Definition of cellular automaton. A cellular automaton (CA) is a pair (AM, F ) where F : AM → AM

is defined by F (x)m = F ((xm+u)u∈U) for all x ∈ AM and m ∈ M where U ⊂ M is a finite set named
neighborhood and F : AU → A is a local rule. By Hedlund’s theorem [Hed69], it is equivalent to say that it
is a continuous function which commutes with the shift (σm ◦ F = F ◦ σm for all m ∈ M). If the smallest
neighborhood is reduced to one point we say that F is trivial.

Remark 1.3. It is easy to remark that F is lipschitz for the distance dC . More precisely, for all x, y ∈ AM,
one has:

dC(F (x), F (y)) ≤ 2−r(F )dC(x, y).
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1.3.2. General definitions about dynamical systems. Let (X, d) be a metric space and F : X → X be
a continuous function. There is a lot of definitions to precise the sensitivity to initial conditions of the
dynamical system generated by the N-action of F on X. We recall here some of them:
• x ∈ X is an equicontinuous point if for all ε > 0, there exists δ > 0, such that for all y ∈ X, if d(x, y) < δ

then d(Fn(x), Fn(y)) < ε for all n ∈ N. Denote Eqd(F ) the set of equicontinuous points. If x /∈ Eqd(F ), it
is a sensitive point.
• (X,F ) is equicontinuous if for all ε > 0, there exists δ > 0, such that for all x, y ∈ X, if d(x, y) < δ then

d(Fn(x), Fn(y)) < ε for all n ∈ N.
• (X,F ) is sensitive if there exists ε > 0 such that for all δ > 0 and x ∈ X, there exists y ∈ X and n ∈ N

such that d(x, y) < δ and d(Fn(x), Fn(y)) > ε
• (X,F ) is N-expansive if there exists ε > 0 such that for all x 6= y there exists n ∈ N such that

d(Fn(x), Fn(y)) > ε.
In an intuitive sense, sensitivity and expansivity denote a certain complexity of the dynamical system

whereas equicontinuity denotes a strong regularity.

Proposition 1.1. Let (X, d,M, T ) be a dynamical system, it is easy to show the next property:

• If (X,T ) is sensitive then EqM(X,T ) = ∅. But generally, the reciprocal is not true.
• If X is perfect, then the M-expansivity of (X,T ) imply the M-sensitivity of (X,T ).
• If X is compact, (X,T ) is M-equicontinuous if and only if EqM(X,T ) = X.

1.3.3. Action of a cellular automaton on AM. Let (AM, F ) be a CA. Since F : AM → AM is continuous
and commutes with σ, it is possible to consider the M × N-action (σ, F ) on AM. Since the M-action σ is
expansive, the M × N-action (σ, F ) is also M × N-expansive and the dynamic is so strong: it contains the
dynamic of σ. Thus we must to study the dynamic of restrictions of this action at sub-semi-group of M×N.
In [Sab06] we give general definitions to talk about directional dynamics. We recall here the definition of
equicontinuity of slope α, equicontinuous point of slope α and blocking wall of slope α which are used in
this article; we remark that in this case M = Z.

Definition. Let (AZ, F ) be a CA and let α ∈ R.
For all x ∈ AZ and ε > 0 one defines the ball centered on x of ray ε and the tube of slope α centered on

the point x of width e by:

BdC (x, ε) = {y ∈ AZ : dC(x, y) < ε},
EαdC (x, ε) = {y ∈ AZ : dC(σbnαc ◦ Fn(x), σbnαc ◦ Fn(y)) < ε,∀n ∈ N}.

It is possible to define dynamics of slope α:

• The set EqαdC (F ) of dC-equicontinuous point of slope α is defined by

x ∈ Eqα(F )⇐⇒ ∀ε > 0,∃δ > 0 such that BdC (x, ε) ⊂ EαdC (x, ε).

• (AZ, F ) is dC-equicontinuous of slope α if

∀ε > 0,∃δ > 0 such that ∀x ∈ AZ, BdC (x, ε) ⊂ EαdC (x, ε).

By compacity, this is equivalent to EqαdC (F ) = AZ.

To traduce equicontinuous properties in space-time diagrams, we need the notion of blocking word of
slope α. The wall generated by the blocking word can be interpreted as a particle which has the direction α
and which kills every information that can come from the right or from the left.

Definition. Let (AZ, F ) be a CA, let U = [r, s] be a neighborhood of F , let α ∈ R, let e ∈ N with
e ≥ max(bαc + 1 + s,−bαc + 1 − r) and let u ∈ LΣ with |u| ≥ e. The word u is a blocking word of slope α
and width e if there exists p ∈ [0, |u| − e] such that:

∀x, y ∈ [u]0 ∩ Σ,∀n ∈ N, σbnαc ◦ Fn(x)[p,p+e] = σbnαc ◦ Fn(y)[p,p+e].

The evolution of a cell i ∈ Z depends on the cells [i+ r, i+ s]. Thus, due to the inequality fulfilled by e,
it is easy to see that if u is a blocking word of slope α and width e, for all j ∈ Z, for all x, y ∈ [u]j ∩ Σ such
that x]−∞,j] = y]−∞,j], for n ∈ N one has Fn(x)i = Fn(y)i for all i ≤ bαnc + p + e + j. Similarly for all
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The information cannot cross the blocking wall

Time

Blocking wall of slope α

Neighborhood of F

u
0

0 p

n

bnαc+ p

Figure 1. u is a blocking word of slope α.

x, y ∈ [u]j ∩ Σ such that x[j,∞[ = y[j,∞[, one has Fn(x)i = Fn(y)i for all i ≥ bαnc+ p. Concretely, in other
words, no information can cross the wall of slope α and width ε generated by the blocking word.

Adapting prove of [Kůr97], it is shown in [Sab06] that EqαdC (F ) 6= ∅ if and only if there exists a blocking
word of slope α.

1.3.4. Action of a cellular automaton on Mσ(AM). Let (AM, F ) be a CA and µ ∈ M(AM). The cellular
automaton acts on M(AM) by

F∗µ(B) = µ(F−1(B)) for all B ∈ B.

The map µ 7→ F∗µ is called the extension of F. It is continuous and preserves convex combinations. Thus,
F∗ :M(AM) →M(AM) defines a dynamical system. However, for all x ∈ AM one has F∗δx = δF (x). Thus

the map x 7→ δx allows to consider (AM, (F∗, σ)) as a sub-system of (M(AM), (F∗, σ∗)), so the dynamics of
F∗ :M(AM)→M(AM) contains the dynamics of F : AM → AM. Moreover, the weak∗ topology onM(AM)
privileges the origin. Thus it is preferable to restrict the initial space.

Since F commutes with the shift, if µ ∈Mσ(AM) then F∗µ ∈Mσ(AM). In the weak∗ topology,Mσ(AM)
is closed, so compact. Thus one can study the dynamical system F∗ :Mσ(AM)→Mσ(AM).

In the same way, if µ ∈ Merg
σ (AM) then F∗µ ∈ Merg

σ (AM). However Merg
σ (AM) is not necessary closed

for the weak∗ topology.
In section 3, we endowed Mσ(AM) with different distances to study the action F∗.

2. Different σ-invariant pseudo-distances on AM

In this section one describes a generic method to obtain pseudo-distances on AM from sub-measures on
the lattice M. By this method we obtain classical pseudo-distance like the distance of Cantor, but also the
pseudo-distances of Besicovitch and Weyl introduced in [CFMM97] and [BFK97].

2.1. Sub-measures and pseudo-distances associated.

Definition. A sub-measure on the set M is a function ϕ : P(M)→ [0,∞] such that:

• ϕ(∅) = 0,
• ϕ(U) <∞ if U is finite,
• ϕ(U′) ≤ ϕ(U′ ∪ U′′) ≤ ϕ(U′) + ϕ(U′′) for all subset U′ and U′′ of M.
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A sub-measure ϕ is bounded if there exists M such that ϕ(U) < M for all U ⊂ M. Let ϕ and ψ be two
sub-measures, one says ϕ ≤ ψ if ϕ(U) ≤ ψ(U) for all U ⊂M.

Recall Un = {m ∈ M : |m| ≤ n}. A sub-measure is finitely approximated if there exists a subsequence of
sub-measures (ϕn)n∈N, where ϕn is defined on Un, such that ϕ(U) = limn→∞ ϕn(U) for all U ⊂M.

For a sub-measure ϕ, one defines the sub-measure ϕ∞ by ϕ∞(U) = limn→∞ ϕ(U \ Un) for all U ⊂M.

Notation. Let ϕ be a sub-measure, one defines Null(ϕ) = {U ⊂ M : ϕ(U) = 0}. This set is an ideal of the
ring (P(M),M,∩) where M is the symmetric difference.

Let x, y ∈ AM, denote ∆(x, y) = {m ∈ M : xm 6= ym} the set of defaults between two configurations. It
is easy to see that ∆(x, z) ⊂ ∆(x, y) ∪∆(y, z) for all x, y, z ∈ AM. One defines x 'ϕ y if ∆(x, y) ∈ Null(ϕ).
Since Null(ϕ) is an ideal, 'ϕ defines an equivalence relation on AM.

Proposition 2.1. Let ϕ be a sub-measure on M. Put dϕ(x, y) = ϕ(∆(x, y)), for all x, y ∈ AM. The function

dϕ is a pseudo-distance on AM. By quotient, (Xϕ, d̃ϕ) is a metric space where Xϕ = AM/ 'ϕ.

Proof. For all x, y, z ∈ AM one has ∆(x, z) ⊂ ∆(x, y) ∪ ∆(y, z), the triangular inequality of dϕ follows.
Moreover, ∆(x, x) = ∅ and ∆(x, y) = ∆(y, x), so one obtains the reflexivity and the symmetry of dϕ. It is

possible to quotient AM by the equivalence relation 'ϕ, the pseudo-distance dϕ becomes a distance d̃ϕ on
Xϕ. �

Example 2.1. Let
ϕC(U) = 2−min{|m|:m∈U},

for all U ⊂M. The distance associated correspond at the distance of Cantor on AM.

Example 2.2. Let

ϕB(U) = lim sup
n→∞

Card(U ∩ Un)

Card(Un)
,

for all U ⊂ M. The pseudo-distance associated is the pseudo-distance of Besicovitch denoted dB which is
introduced in [CFMM97]. This distance is called Hamming distance in ergodic theory, see [Gla03].

One remarks that ϕB is finitely approximated by the family of sub-measures defined by:

ϕn(U) = sup
k≥n

Card(U ∩ Uk)

Card(Uk)
for all U ⊂M and all n ∈ N.

Example 2.3. Let

ϕW (U) = lim sup
n→∞

sup
k∈M

Card(U ∩ (k + Un))

Card(Un)
,

for all U ⊂M. The pseudo-distance associated is the pseudo-distance of Weyl denoted dW [BFK97].

Example 2.4. Let ϕ a sub-measure. It is possible to define a sub-measure invariant under the action of M;
for all U ⊂M put:

ϕ′(U) = lim sup
n→∞

1

Card(Un)

∑
i∈Un

ϕ((U− i) ∩M).

If ϕ(U) = 1 if and only if 0 ∈ U, one obtains ϕ′ = ϕB .

Example 2.5. Let f : M→ R+. For all U ⊂M, denote ϕf (U) =
∑
m∈U f(m). It is a sub-measure of M.

Following the construction of ϕB , it is possible to construct a family of sub-measures. For all U ⊂M put

ϕ̂f (U) = lim sup
n→∞

ϕf (U ∩ Un)

ϕf (Un)
.

Following the construction of ϕW , it is possible to construct a family of sub-measures. For all U ⊂M put

ϕ̃f (U) = lim sup
n→∞

sup
k∈M

ϕf (U ∩ (Un + k))

ϕf (Un)
.

Put ∂Un = Un \ Un−1. If f verifies limn→∞ ϕf (Un) = +∞ and limn→∞
ϕf (∂Un)
ϕf (Un) = 0 then ϕ̂f and ϕ̃f are

sub-measure invariant under the action of M.
If f is the constant function equal to 1, we obtain ϕ̃f = ϕB and ϕ̃f = ϕW . If f(m) = 1

nd′+d′′ (we recall

that M = Zd′ × Zd′′), ϕ̂f is a sub-measure associated to the logarithmic density.
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Example 2.6. Let V be a finite subset of M. Let ϕ be a sub-measure on M. One defines the sub-measure ϕV

by ϕV(U) = ϕ(U + V). For example, for ϕB , one obtaines

dϕV
B

(x, y) = lim sup
n→∞

Card({i ∈ Un : xi+V = yi+V})
Card(Un)

.

2.2. Properties of the space (Xϕ, d̃ϕ). Now we are going to explore the properties of (Xϕ, d̃ϕ) according
to the properties of ϕ.

Proposition 2.2. Let ϕ and ψ be two sub-measures on P(M).

(1) If ϕ ≤ ψ, then dϕ(x, y) ≤ dψ(x, y) for all x, y ∈ AM.
(2) If ϕ(U) = ϕ(U+m) for all U ⊂M and m ∈M (one says that ϕ is invariant under the action of M)

then dϕ is σ-invariant.
(3) Null(ϕ) = {∅} if and only if dϕ is a distance on AM.

Example 2.7. One has ϕB ≤ ϕW , thus dB(x, y) ≤ dW (x, y) for all x, y ∈ AM.
It is easy to verify that Null(ϕC) = ∅.

Proposition 2.3. Let ϕ be a bounded sub-measure. The function dϕ is a distance which defines the Cantor
topology if and only if ϕ charges every atom and verifies limn→∞ ϕ(M \ Un) = 0.

Proof. If ϕ allows to define a distance compatible with the Cantor topology then necessary every atom is
charged since one has Null(ϕ) = ∅. Moreover, since the Cantor topology is compact, there exists a constant
K such that dϕ(x, y) ≤ K dϕC

(x, y) for all x, y ∈ AM. One deduces that limn→∞ ϕ(M \ Un) = 0.
Reciprocally, let ϕ be a bounded sub-measure which charges every atoms such that limn→∞ ϕ(M\Un) = 0.

Since ϕ charges every atoms, dϕ defines a distance on AM. Consider (xn)n∈N a sequence of AM which
converges to x ∈ AM for the Cantor topology. Since ϕ is bounded, for all ε > 0, there exists M ∈ N such
that ϕ(M \ Um) < ε for all m ≥ M . By definition of the Cantor topology, there exists N ∈ N such that
xnUm

= xUm for all n ≥ N . Thus dϕ(xn, x) < ε for all n ≥ N , that is to say (xn)n∈N converges to x for
the topology defined by dϕ. In the same way, it is possible to prove that a sequence which converges for
the topology defined by dϕ, converges also for the Cantor topology. One deduces the equivalence of the
topologies. �

Example 2.8. Let f : N → R+ such that ϕf (M) < +∞ and f(m) 6= 0 for all m ∈ M. The distance dϕf

defines the Cantor topology.

Remark 2.9. Since it is impossible to define an equidistributed sub-measure on a countable set, one deduces
that does not exist σ-invariant distance compatible with the Cantor topology.

Proposition 2.4. Let ϕ be a sub-measure such that for all ε > 0, there exists U ⊂ M which verifies

0 < ϕ(U) < ε; then (Xϕ, d̃ϕ) is perfect.

Proof. By hypothesis, for all n ∈ N, there exists Vn ⊂ M such that 0 < ϕ(Vn) < 1
n . Let x ∈ AM. For all

n ∈ N, define xn ∈ AM by xnm 6= xm if m ∈ Vn and xnm = xm in other cases. Thus, one has dϕ(x, xn) < 1
n

and ∆(x, xn) /∈ Null(ϕ). One deduces that the image of x in Xϕ is a point of accumulation. �

Example 2.10. Let f : N → R+. If f verifies limn→∞ ϕf (Un) = +∞ and limn→∞
ϕf (∂Un)
ϕf (Un) = 0 then ϕ̂f and

ϕ̃f verify the hypothesis of the proposition. In particular (XB , d̃B) and (XW , d̃W ) are perfects.

Proposition 2.5. Let ϕ be a finitely approximated sub-measure such that ϕ = ϕ∞. Then (Xϕ∞ , d̃ϕ) is
complete.

Proof. Let (ϕn)n∈N be a sequence of sub-measures of M which approximates ϕ, one recalls that for every
n ∈ N, ϕn is defined on Un. Let (xn)n∈N be a Cauchy’s sequence of elements of AM for the pseudo-distance
dϕ. One considers the sub-sequence (ni)i∈N such that dϕ(xni , xnj ) ≤ 2−i−2 for all j ≥ i. Since ϕ is finitely
approximated, there exists an increasing sequence (li)i∈N such that for all i ∈ N and for all l ≥ li, one has
|dϕl

(xni , xni+1)− dϕ(xni , xni+1)| ≤ 2−i−2 for all j ≥ i. Thus, for all i ∈ N and l ≥ li, one has:

dϕl
(xni , xni+1) ≤ 2−i−1.
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One considers x ∈ AM such that xm = xni
m if m ∈ Uli \ Uli−1 . We want to show that the sub-sequence

(xni)i∈N converges toward x for the pseudo-distance dϕ. Let ε > 0. Since ϕ = ϕ∞, there exist j′, j0 ∈ N
such that dϕ(x, xj) ≤ ϕ(∆(x, xj) \Uj′) + ε

2 for all j ≥ j0. Moreover, since ϕ is finitely approximated, for all
j ≥ j0, there exists k such that

ϕ(∆(x, xj) \ Uj′) ≤ ϕlk(∆(x, xj) \ Ulj−1
) +

ε

2
≤
k−1∑
i=j

ϕlk(∆(xi, xi+1)) +
ε

2
≤
k−1∑
i=j

1

2i+1
+
ε

2
≤ 1

2j
+
ε

2
.

One deduces that dϕ(x, xj) ≤ 1
2j + ε, thus (xi)i∈N converges toward x. �

Example 2.11. Let f : N → R+. If f verifies limn→∞ ϕf (Un) = +∞ and limn→∞
ϕf (∂Un)
ϕf (Un) = 0 then ϕ̂f

verifies the hypothesis of the proposition. In particular (XB , d̃B) is complete. However ϕW is not finitely

approximated, in fact (XW , d̃W ) is not complete (see [BFK97]).

2.3. Action of a cellular automaton on (Xϕ, d̃ϕ).

Proposition 2.6. Let ϕ be a sub-measure on M which is invariant under the action of M. Let (AM, F ) be
a CA of neighborhood U. Then for all x, y ∈ AM, one has dϕ(F (x), F (y)) ≤ Card(U) dϕ(x, y). In particular
F defines a continuous function on Xϕ denoted Fϕ.

Proof. Let x, y ∈ AM. One has:

∆(F (x), F (y)) = {m ∈M : F (x)m 6= F (y)m}
⊂

⋃
u∈U
{m ∈M : xm+u 6= ym+u}

⊂ ∆(x, y)− U.

By invariance of ϕ under the action of M, one deduces that dϕ(F (x), F (y)) ≤ Card(U) dϕ(x, y). �

Proposition 2.7. Assume that M = N or Z. Let ϕ be a sub-measure on M invariant under the action of

M. Let (AM, F ) be a CA with dC-equicontinuous points of slope α. Then (Xϕ, Fϕ) has d̃ϕ-equicontinuous
points.

Proof. Let u ∈ An be a blocking word of slope α and width e. Let K ∈ N and x ∈ AM such that the initial
letter of any occurrence of u is spaced at the maximum of K ∈ N.

One considers a configuration x′ different of x only for one coordinate. This difference is localized between
two occurrences of u spaced at maximum of 2K. Thus, Fn(x) and Fn(x′) has at maximum 2K differences
for all n ∈ N. More generally, for all y ∈ AM and n ∈ N, one has:

∆(Fn(x), Fn(y)) ⊂ ∆(x, y) + [−K,K].

Since ϕ is invariant under the action of M, one deduce that for all n ∈ N one has:

dϕ(Fn(x), Fn(y)) ≤ 2Kdϕ(x, y).

Thus the point x is a dϕ-equicontinuous point. �

3. Action of a cellular automaton on Mσ(AM)

A natural σ-invariant object on which cellular automata can act, is the set of σ-invariant probability
measureMσ(AM). The natural topology onMσ(AM) is the weak∗ topology. However the different pseudo-
distances on AM introduced in the previous section allow to construct pseudo-distances on Mσ(AM). In
this section, first we exhibit a general process to define these pseudo-distances. Then we gives some general
properties of the action of CA in these spaces.
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3.1. Different pseudo-distances on Mσ(AM). Let d be a pseudo-distance on AM, we want to introduce
a pseudo-distance on Mσ(AM) induced by the pseudo-distance d. Let µ, ν ∈ Mσ(AM), the intuitive idea
is to calculate the mean of d(x, y) when x is chosen with the probability µ and y with the probability ν.
However it is necessary to precise the correlation to choose the pair (x, y). That’s why we introduce the
notion of joint measure. Of course it is necessary to minimize the influence of the correlation to obtain a
pseudo-distance.

Let µ and ν be two σ-invariant probability measures on AM. A probability measure λ on AM × AM is
a joint measure according µ and ν if λ is σ × σ-invariant and π1

∗λ = µ and π2
∗λ = ν, where π1 and π2

are respectively the projections according the first and second coordinate. Denote J (µ, ν) the set of joint
measures according µ and ν.

Of course, one has J (µ, ν) ⊂ Mσ×σ(AM × AM). Moreover J (µ, ν) is convex and compact for the weak
topology. If µ and ν are σ-ergodic, then the extremal points of J (µ, ν) are ergodic. We refer to [Gla03] for
more details.

Definition. Let d be a pseudo-distance on AM such that (x, y) 7→ d(x, y) is Borel-measurable (In this article
we assume implicitly this property). For example dϕ is Borel-measurable when ϕ is finitely approximated
(like ϕC or ϕB). One defines a function d from Mσ(AM)×Mσ(AM) on R+ by:

dM(µ, ν) = inf
λ∈J (µ,ν)

∫
d(x, y)dλ(x, y) for all µ, ν ∈Mσ(AM).

Proposition 3.1. Let d be a pseudo-distance on AM. The function dM :Mσ(AM) ×Mσ(AM) → R+ is a
pseudo-distance on Mσ(AM).

Proof. Let µ ∈Mσ(AM). One defines λ ∈Mσ×σ(AM×AM) such that λ(A×B) = µ(A∩B) for all A,B ∈ B.
One obtains

∫
d(x, y)dλ = 0 and λ ∈ J (µ, µ), thus dM(µ, µ) = 0.

Now we are going to verify the triangular inequality for dM. Let µ, ν and η in Mσ(AZ) and consider
λµ,ν ∈ J (µ, ν) and λν,η ∈ J (ν, η). The disintegration of these measures according ν can be written as:

λµ,ν =

∫
λµ(y)dν(y) et λν,η =

∫
λη(y)dν(y).

Then put λ =
∫
λµ(y)× λη(y)dν(y) ∈ J (µ, η), one obtains:∫
d(x, z)ddλ(x, z) =

∫∫
d(x, z)(λµ(y)× λη(y))(x, z)dν(y)

≤
∫∫

(d(x, y) + d(y, z))d(λµ(y)× λη(y))(x, z)dν(y)

=

∫∫
d(x, y)dλµ(y)(x)dν(y) +

∫∫
d(y, z)dλη(y)(z)dν(y)

= dM(µ, ν) + dM(ν, η).

By taking the inferior bound, one deduces that dM(µ, η) ≤ dM(µ, ν) + dM(ν, η). �

Open problem 3.1. It is difficult to obtain more general properties of dM. For example under which conditions
the pseudo-distance dM is a distance, or is complete?

Remark 3.1. In this article, we just consider pseudo-distance generated by sub-measure since this is a general
process to construct pseudo-distance on AM.

For some σ-invariant probability measure, there exist special points of AM which represent the measure.
That is to say the frequency of apparition of a pattern correspond to the measure of the cylinder centered
on this pattern. This allows to give a symbolic interpretation of the pseudo-distance dMϕ .

Definition. A point x ∈ AM is generic if for all U ⊂ M finite and for every pattern u ∈ AU the sequence
(f(u, x, n))n∈N converges where

f(u, x, n) =
1

Card(Un)

∑
m∈Un

1[u]U(σm(x)),
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is the frequency of apparition of the pattern u in x at the order n. The limit of this sequence is denoted
f(u, x), this is the frequency of apparition of the pattern u in x. Denote G the set of genreric points.

Let µ ∈ Mσ(AM). Denote G(µ) the set of generic points of µ, this is the set of points x ∈ G such that
for every pattern, the frequency of this pattern in x is equal to the measure of the cylinder centered on this
pattern. When µ is σ-ergodic, the Birkhoff’s Theorem says that µ(G(µ)) = 1.

Let ϕ be a sub-measure of M and let µ, ν ∈Merg
σ (AM). Since G(µ) is σ-invariant, the function y ∈ G(ν) 7→

dϕ(G(µ), y) = inf{dϕ(x, y) : x ∈ G(µ)} is σ-invariant. By σ-ergodicity, this function is constant ν-almost
everywhere. We denote dϕ(G(µ),G(ν)) this value.

Proposition 3.2. Let ϕ be a sub-measure on M. Let µ and ν in Merg
σ (AM). One has dMϕ (µ, ν) ≥

dϕ(G(µ),G(ν)).
Moreover if ϕ is invariant under the action of M, then dMϕ (µ, ν) = dϕ(G(µ),G(ν)).

Proof. Let λ ∈ J (µ, ν), one has λ(G(µ) × G(ν)) = 1. Moreover, for all (x, y) ∈ G(µ) × G(ν), one has
dϕ(x, y) ≥ dϕ(G(µ), y). We integrate according λ to obtain

∫
dϕ(x, y)dλ ≥ dϕ(G(µ),G(ν)); thus dMϕ (µ, ν) ≥

dϕ(G(µ),G(ν)).
Assume that ϕ is invariant under the action of M; we want to prove the inequality in the other sense.

Since µ and ν are σ-ergodic, the extremal points of J (µ, ν) are ergodics. Thus, the inferior bounds of the
Definition 3.1 can be take in J (µ, ν)∩Merg

σ×σ(AM×AM) = J erg(µ, ν). Let λ ∈ J erg(µ, ν), Since ϕ is invariant
under the action of M, the function (x, y) 7→ dϕ(x, y) is σ × σ-invariant, so constant λ-almost everywhere.
We integrate and take the inferior bound to obtain the equality expected. �

Remark 3.2. The second part of the Proposition is generally false when ϕ is not invariant under the action
of M. By example for ϕC , the set of generic points for a Bernoulli measure is dense for the distance dC , but
two different Bernoulli measure have a positive distance for dMC .

This Proposition give a geometric interpretation for the distance dMϕ . Two ergodic measures are near if
we can go from a generic point to another with modifications on “few” cells. The notion of “few” is given
by the sub-measure ϕ. By example, in the case of ϕC , this signify to do modifications far from the origin;
in the case of ϕB , this signify to do modifications on sub-sets of M which have a weak density.

3.2. Action of a CA on (Mσ(AM), dMϕ ). Now we consider the action F∗ on Mσ(AM). In the first time

we characterize the first propeties of this dynamical system for a general pseudo-measure on AM.

3.2.1. Continuity of the action. To study the N-action of F∗ on (Mσ(AM), dMϕ ) as a dynamical system, we

are going to prove the continuity of the function F∗ in (Mσ(AM), dMϕ ).

Proposition 3.3. Let ϕ be a sub-measure and let F : AM → AM be a function dϕ-lipschitz of constant K
on AM. For all µ, ν ∈Mσ(AM), one has:

dMϕ (F∗µ, F∗ν) ≤ KdMϕ (µ, ν).

In particular F∗ is continuous on (Mσ(AM), dMϕ ).

Proof. Let λ ∈ J (µ, ν), one has (F∗ × F∗)λ ∈ J (F∗µ, F∗ν), thus:∫
dMϕ (x, y)d(F∗ × F∗)λ =

∫
dMϕ (F (x), F (y))dλ ≤

∫
KdMϕ (x, y)dλ.

One deduces that dMϕ (F∗µ, F∗ν) ≤ KdMϕ (µ, ν). �

This proposition holds for all CA when we consider the pseudo-distance induced by the Cantor’s distance
dC . Indeed, according the Remark ??, one has dC(F (x), F (y)) ≤ 2−r(F )dC(x, y) for all x, y ∈ AM. By Propo-
sition 2.6, the previous Proposition holds also when we consider pseudo-distance on Mσ(AM) induced by
pseudo-distance σ-invariant on AM; in particular for the pseudo-distance induced by sub-measures invariant
under the action of M, like the pseudo-distances of Besicovitch or Weyl.
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3.2.2. Expansivity of F∗. The function F∗ is affine in Mσ(AM), we are going to use this property to show
that there not exist CA which acts expansively on Mσ(AM) for all pseudo-distances iduced.

Theorem 3.4. Let ϕ be a bounded sub-measure. There not exist CA (AM, F ) such that F∗ is expansive in
(Mσ(AM), dMϕ ).

Proof. Let µ, ν ∈ Mσ(AM) and ε > 0. Consider µ′ = (1− ε)µ+ εν. Let λ′ ∈ J (µ, µ) and λ′′ ∈ J (µ, ν), so
one has λ = (1− ε)λ′ + ελ′′ ∈ J (µ, µ′). Thus,

(1− ε)
∫
dϕ(x, y)dλ′ + ε

∫
dϕ(x, y)dλ′′ =

∫
dϕ(x, y)dλ ≥ dMϕ (µ, µ′).

One deduces that:

ε dMϕ (µ, ν) = (1− ε)dMϕ (µ, µ) + ε dMϕ (µ, ν) ≥ dMϕ (µ, (1− ε)µ+ εν).

Since F∗ preserves convex combinations, one has Fn∗ µ
′ = (1−ε)Fn∗ µ+εFn∗ ν for all n ∈ N, so dMϕ (Fn∗ µ, F

n
∗ µ
′) ≤

ε dMϕ (Fn∗ µ, F
n
∗ ν). If ϕ is bounded, one deduces that F∗ can not be expansive in (Mσ(AZ), dMϕ ). �

3.2.3. Equicontinuity. Now we consider that the semi-group is M = N or Z in view to use properties of
blocking words introduces in [Sab06].

Proposition 3.5. Assume that M = N or Z. Let (AM, F ) be an equicontinuous CA of slope α. Then F∗ is
equicontinous in (Mσ(AM), dMϕ ).

Proof. According to [Sab06], the equicontinuity of slope α implies that the sequence of functions (Fn ◦
σbnαc)n∈N is ultimately periodic. By σ-invariance the sequence (Fn∗ )n∈N is ultimately periodic. One deduces
that F∗ is equicontinuous in (Mσ(AM), dMϕ ). �

3.2.4. Equicontinuous points.

Proposition 3.6. Assume that M = N or Z. Let ϕ be a sub-measure invariant under the action of M and
let (AM, F ) be a CA with equicontinuous points of slope α. Then EqdMϕ (F∗) 6= ∅.

Proof. Let u be a blocking word of slope α. Consider a σ-periodic configuration z ∈ AM of period K ≥ |u|
with an occurrence of u. Let µz = 1

K

∑K−1
i=0 δσi(z) the σ-invariant measure supported by the σ-orbit of z.

Let ν ∈ Mσ(AM) and λ ∈ J (µz, ν). Consider the desintegration of ν according to µz, for all i ∈ [0,K − 1],
there exists νσi(z) ∈M(AM) such that

λ =
1

K

K−1∑
i=0

δσi(z) × νσi(z).

For all n ∈ N one has:

(F∗ × F∗)nλ =
1

K

K−1∑
i=0

δσi(Fn(z)) × Fn∗ νσi(z) ∈ J (Fn∗ µz, F
n
∗ ν).

One deduces that:∫
dϕ(x, y)d(Fn∗ × Fn∗ )λ(x, y) =

1

K

K−1∑
i=0

∫
dϕ(σi(Fn(z)), y)dFn∗ νσi(z)(y)

=
1

K

K−1∑
i=0

∫
dϕ(Fn(σi(z)), Fn(y))dνσi(z)(y).

By equicontinuity of slope α, by proposition 2.7, one has dϕ(Fn(σi(z)), Fn(y)) ≤ 2Kdϕ(σi(z), y). Thus,
after to integrate and to take the inferior bound, one obtains:

dMϕ (Fn∗ (µz), F
n
∗ (ν)) ≤ 2KdMϕ (µz, ν).

Result that µz ∈ EqdMϕ (F∗). �
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Open problem 3.2. This proposition just give elements of EqdMϕ (F∗) supported by σ-periodic orbit when ϕ

is M-invariant. In the next section we give more points for the distance dMC and dMB .

The next example shows that there exists cellular automaton with sensitive points in (Mσ(AM), dMϕ )

Example 3.3. Consider the CA defined on A = Z/2Z by F (x)i = xi−1 · xi · xi+1 for all x ∈ AZ and i ∈ Z. It
is easy to see that for all σ-ergodic probability measure µ which verifies µ([0]) > 0, the sequence (Fn∗ µ)n∈N
converges toward δ∞0∞ in (Mσ(AZ), dMϕ ). So, one has:

EqdMϕ (F∗) ∩Merg
σ (AZ) =Merg

σ (AZ) \ {δ∞1∞}.

4. Two useful distances on Mσ(AM): d∗ and dMB

Usually we use two specific distances, d∗ and dMB in order to differentiate σ-invariant probability measures.
The first one, d∗, correspond to the weak∗ topology. The distance d∗ says that two measures are “near” if the
measures of sufficiently large cylinder are not too distant. The second distance dMB says that two measures
are “near” if it is possible to pass from a generic point to another with change only for a little density of
cells. This distance takes consideration in the frequency of apparition of a pattern.

The weak∗ topology is easy to define, is separable and compact. It gives a good context to study dynamical
systems. However, the set Merg

σ (AM) is not closed and the function µ 7→ hµ(σ) is upper semi-continuous.
Even if the distance dMB is more complicated because it is defined by joinings, this distance has some
properties like the continuity of shift-entropy and the closer of ergodic measure. This allows to show quickly
some remarkable properties as there is not transitive cellular automaton in (Mσ(AM), dMB ) (there is a similar

theorem in the space (XB , d̃B) proved thanks to the Kolmogorov complexity [BCF03]). In this section, first
we recall some basic properties of these spaces. The properties of continuity of µ→ hµ(σ) in (Mσ(AM), dMB )
andMerg

σ is closed in (Mσ(AM), dMB ) (subsection 4.1.3 and 4.1.4) are well known by the ergodic community,
but we put here to do a self contain paper. Secondly we study some dynamical properties of the action of a
cellular automata on (Mσ(AM), d∗) and (Mσ(AM), dMB ).

4.1. Some special properties.

4.1.1. The distances dMC and d∗. In fact, the distance dMC correspond to the weak∗ topology usually used
on Mσ(AM).

Proposition 4.1. The distance dMC define the weak∗ topology on Mσ(AM).

Proof. One defines a metric on AM by:

d′C(x, y) =
∑
n∈N

1

2nCard(AUn)

∑
u∈AUn

|1[u]Un
(x)− 1[u]Un

(y)| for all x, y ∈ AM.

We recall that Un = {m ∈M : |m| ≤ n}. It is easy to see that dC and d′C are equivalent.
Let µ, ν ∈Mσ(AM). For all λ ∈ J (µ, ν), one has:∫

d′C(x, y)dλ =
∑
n∈N

1

2nCard(Un)

∑
u∈AUn

|µ([u]Un
)− ν([u]Un

)|,

So the distance dMC defines the weak∗ topology. �

Remark 4.1. Let x, y ∈ AM be σ-periodic configurations. One has d∗(δ̃x, δ̃y) = minm∈M d
′
C(x, σm(y)).

4.1.2. The distance dMB . First we establish a inferior bound of the pseudo-distance dMB . This allows to
associate dMB to the Kantorovich metrics, we refer to [Gla03] for more details or [Ver04] for an historical
approach.

Lemma 4.2. Let µ, ν ∈Mσ(AM) and let U ⊂M be a finite subset. One has:

dMB (µ, ν) = inf
λ∈J (µ,ν)

λ([a]U × [b]U : a, b ∈ A, a 6= b)

≥ 1

Card(U)
inf

λ∈J (µ,ν)
λ([u]U × [v]U : u, v ∈ AU, u 6= v).
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Proof. Let µ, ν ∈Mσ(AM) and let λ ∈ J (µ, ν).
Assume that λ is σ × σ-ergodic, by Birkhoff’s Theorem, for λ-almost all (x, y) ∈ AM ×AM, one has:

lim
n→∞

1

Card(Un)

∑
m∈Un

10(σm(x), σm(y)) −→
n→∞

λ([a]0 × [b]0 : a, b ∈ A, a 6= b).

One deduces that for λ-almost every x, y ∈ AM, one has dB(x, y) = λ([a]0 × [b]0 : a, b ∈ A, a 6= b), so∫
dB(x, y)dλ = λ([a]0 × [b]0 : a, b ∈ A, a 6= b).

If λ is not σ × σ-ergodic, the Theorem of ergodic decomposition (see [DGS76] or [Gla03]) allows to write

λ =
∫ 1

0
λtdt where almost every λt are σ × σ-ergodic. One deduces that:∫ 1

0

∫
dB(x, y)dλtdt =

∫ 1

0

λt([a]0 × [b]0 : a, b ∈ A, a 6= b)dt = λ([a]0 × [b]0 : a, b ∈ A, a 6= b).

Thus dMB (µ, ν) = infλ∈J (µ,ν) λ([a]0 × [b]0 : a, b ∈ A, a 6= b).

We are going to prove the last inequality of the Lemma. Let u, v ∈ AU, one has:

⋃
u,v∈AU,u6=v

[u]U × [v]U ⊂
⋃
m∈U

 ⋃
a,b∈A,a 6=b

[a]m × [b]m

 .

One deduces the following inequality:

λ([u]U × [v]U : u, v ∈ AU, u 6= v) ≤
∑
m∈U

λ([a]m × [b]m : a, b ∈ A, a 6= b)

=
(?)

Card(U)λ([a]0 × [b]0 : a, b ∈ A, a 6= b),

where (?) follows from the σ × σ-invariance of λ. �

Now it is possible to show that dMB is a distance.

Proposition 4.3. The pseudo-distance dMB is a distance. That is to say that for all µ, ν ∈ Mσ(AM), one
has dMB (µ, ν) = 0 if and only if µ = ν.

Proof. Let µ, ν ∈Mσ(AM) such that dMB (µ, ν) = 0, it is sufficient to show that µ = ν. Let U ⊂M be a finite
set and let w ∈ AU. Since J (µ, ν) is compact and λ→ λ([u]U× [v]U : u, v ∈ AU, u 6= v) is continue, according
to lemma 4.2, one deduce that there exists λ ∈ J (µ, ν) such that λ([u]U× [v]U : u, v ∈ AU, u 6= v) = 0. Thus,
one has:

|µ([w]U)− ν([w]U)| = |λ([w]U ×AM)− λ(AM × [w]U)| ≤ λ([u]U × [v]U : u, v ∈ AU, u 6= v) = 0.

So, µ and ν coincide on every cylinder. That is to say µ = ν. �

Example 4.2. We want to calculate the distance between two Bernoulli measure. Let A = {0, 1}, let
p, q ∈ [0, 1] such that p < 1

2 and p − 1 > q > p. Consider λp and λq two Bernoulli on AM such that
λp([1]) = p and λq([1]) = q. An element x ∈ G(λp) contains a density p of cells 1 whereas an element
y ∈ G(λq) contains a density q of cells 1. So dB(x, y) ≥ q − p, it follows that dMB (λp, λq) ≥ q − p.

Let r ∈ [0, 1] such that q = p(1− r) + (1− p)r, considers the Bernoulli measure λr defined by λr([1]) = r.
Consider the function

T : AM ×AM −→ AM

(x, y) 7−→ x+ y mod 2.

Let (x, y) ∈ AM ×AM and m ∈ M. We have T (x, y)m = 1 if and only if xm = 1 and ym = 0 or xm = 0 and
ym = 1. Since every cells are independent for a Bernoulli measure, we deduce that T∗(λp × λr) = λq. Let
x ∈ G(λp) and z ∈ G(λr), then put y = x+z which is λq-almost certainly in G(λq), moreover dB(x, y) = q−p.
One deduces that

dMB (λp, λq) = q − p.
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4.1.3. Continuity of the entropy of σ. The information contained in a a generic configuration can be ex-
pressed by the entropy of the shift. A. A. Brudno compare the entropy of the shift with the Kolmogorov’s
complexity [Bru82]. Naturally, this tools can be used to study the dynamic of F∗. We are going interested
here to the continuous property of the function µ 7→ hµ(σ).

Definition. Let µ ∈Mσ(AM), the entropy of the shift M-action can be defined as:

hµ(σ) = lim
n→∞

Hµ(PUn)

Card(Un)
,

where PUn
is the partition of cylinders centered on Un and Hµ(PUn

) is the entropy of the partition PUn

according to the measure µ, defined by:

H(PUn
) = −

∑
u∈AUn

µ([u]Un
) log(µ([u]Un

)).

One recalls that Un = {m ∈M : |m| ≤ n}.
Let P1 and P2 be two partitions of AM. We define the refinement of P1 and P2 by

P1 ∨ P2 = {A ∩B : A ∈ P1 and B ∈ P2}.

Moreover it is possible to define the conditional entropy of P1 given P2:

Hµ(P1|P2) = −
∑
B∈P2

µ(B)
∑
A∈P1

µ(A ∩B)

µ(B)
log(µ(A)).

It is well known that the function µ 7→ hµ(σ) is upper semi-continuous in (Mσ(AM), d∗) [DGS76]. We
are going to see that this function is continuous in (Mσ(AM), dMB ).

Theorem 4.4. The function µ 7→ hµ(σ) is uniformly continuous in (Mσ(AM), dMB ).

Proof. Let µ and ν in Mσ(AM). By definition of the entropy of σ, one has

hµ(σ) = lim
n→∞

Hµ(PUn)

Card(Un)
and hν(σ) = lim

n→∞

Hν(PUn)

Card(Un)
.

However, for all λ ∈ J (µ, ν) one has:

|Hµ(PUn
)−Hν(PUn

)| = |Hλ(PUn
×AM)−Hλ(AM × PUn

)|
= |

(
Hλ(PUn

×AM)−Hλ(PUn
×AM ∨ AM × PUn

)
)

−
(
Hλ(AM × PUn

)−Hλ(PUn
×AM ∨ AM × PUn

)
)
|

≤ Hλ(PUn ×AM|AM × PUn) +Hλ(AM × PUn |PUn ×AM).

Moreover, one has:

Hλ(PUn
×AM|AM × PUn

) ≤
∑
i∈Un

Hλ(Pi ×AM|AM × PUn
)

≤ Card(Un)Hλ(P0 ×AM|AM × PUn)

≤ Card(Un)Hλ(P0 ×AM|AM × P0),

where P0 = PU0 . Symmetrically one obtains

Hλ(AM × PUn
|PUn

×AM) ≤ Card(Un)Hλ(AM × P0|P0 ×AM).

Thus, by summation one has:

|hµ(σ)− hν(σ)| ≤ Hλ(P0 ×AM|AM × P0) +Hλ(AM × P0|P0 ×AM).

Consider α = (∪a,b∈A,a 6=b[a]0 × [b]0;∪a∈A[a]0 × [a]0), the partition of AM × AM formed of two elements.
Set δ = λ(∪a,b∈A,a 6=b[a]0 × [b]0). One has:

Hλ(P0 ×AM|AM × P0) ≤ Hλ(α) ≤ −(δ log(δ) + (1− δ) log(1− δ)).
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Let ε > 0. The function δ → δ log(δ) + (1− δ) log(1− δ) tends towards 0 when δ tends towards 0. Thus,
there exists δ0 > 0 such that δ log(δ) + (1 − δ) log(1 − δ) ≤ ε

2 for all δ < δ0. Let µ, ν ∈ Mσ(AM) such that

dMB (µ, ν) < δ0. According to Lemma 4.2, there exists λ ∈ J (µ, ν) such that

λ([a]0 × [b]0 : a, b ∈ A, a 6= b) ≤ dMB (µ, ν) < δ0.

In this case, one has Hλ(P0×AM|AM×P0) ≤ ε
2 , and symetically Hλ(AM×P0,P0×AM) ≤ ε

2 . We deduce

that for all ε > 0, there exists δ0 such that if dMB (µ, ν) ≤ δ0 then

|hµ(σ)− hν(σ)| ≤ Hλ(P0 ×AM|AM × P0) +Hλ(AM × P0|P0 ×AM) ≤ ε.

This proves the uniform continuity of µ→ hµ(σ) in (Mσ(AM), dMB ). �

Remark 4.3. In fact, the continuity of µ→ hµ(σ) it is already known for the distance d, see [Gla03].

4.1.4. Limit of ergodic measure in (Mσ(AM), dMB ). The image of an ergodic measure by the action of a CA
is also ergodic. It could be natural to consider the restriction to the set Merg

σ (AM). However Merg
σ (AM)

is dense in (Mσ(AM), d∗), so it is not pertinent to study asymptotic proprieties for the dynamical system
(Merg

σ (AM), d∗, F∗). However, we are going to see that the set Merg
σ (AM) is closed in (Mσ(AM), dMB ).

Proposition 4.5. The set Merg
σ (AM) is closed in (Mσ(AM), dMB ).

Proof. Let (µn)n∈N be a sequence of σ-ergodic measures which converges for the distance dMB toward the
measure µ ∈ Mσ(AM). Let ε > 0. According to Lemma 4.2, since (µn)n∈N converges for dMB , there exists
N ∈ N such that for all n ≥ N , there exists λn ∈ J (µ, µn) which verifies

λn([a]0 × [b]0 : a, b ∈ A, a 6= b) ≤ ε2.

One chooses n ≥ N . The Theorem of ergodic decomposition allows to write λn =
∫ 1

0
λtndt where λtn ∈

Merg
σ×σ(AM × AM). Let U ⊂ M be a finite subset and let u ∈ AU be a pattern. Since µn is σ-ergodic, for

µn-almost all x ∈ AM, one has:

1

Card(Uk)

∑
m∈Uk

1[u]U(σm(x)) −→
k→∞

µn([u]U).

Moreover, since λtn is σ × σ-ergodic, for λtn-almost all (x, y) one has:

1

Card(Uk × Uk)

∑
(m′,m′′)∈Uk×Uk

1AM×[u]U(σm
′
(x), σm

′′
(y)) −→

k→∞
π2
∗λ

t
n(AM × [u]U).

However, for all k ∈ N one has

1

Card(Uk)

∑
m∈Uk

1[u]U(σm(x)) =
1

Card(Uk × Uk)

∑
(m′,m′′)∈Uk×Uk

1AM×[u]U(σm
′
(x), σm

′′
(x)),

thus, by taking the limit, π2
∗λ

t
n(AM× [u]U) = µ([u]U). Since the choice of the pattern is arbitrary, one deduce

that π2
∗λ

t
n = µn. Put µt = π1

∗λ
t
n, this give the ergodic decomposition of µ, that is to say µ =

∫ 1

0
µtdt; this

decomposition is independent of the choose of n by unicity of the ergodic decomposition.
Let U ⊂M be a finite subset and let u ∈ AU be a pattern. One has:

|µ([u]U)− µt([u]U)| = |µ([u]U)− µn([u]U) + µn([u]U)− µt([u]U)|
≤ |λn([u]U ×AM)− λn(AM × [u]U)|+ |λtn([u]U ×AM)− λtn(AM × [u]U)|
≤
(∗)

Card(U)
(
λn([a]0 × [b]0 : a, b ∈ A, a 6= b) + λtn([a]0 × [b]0 : a, b ∈ A, a 6= b)

)
where (∗) follows from Lemma 4.2. Since λn([a]0 × [b]0 : a, b ∈ A, a 6= b) ≤ ε2, there exists a set Aε ⊂ [0, 1]
of measure superior at 1− ε such that λtn([a]0 × [b]0 : a, b ∈ A, a 6= b) ≤ ε for all t ∈ Aε. Thus, for all t ∈ Aε
one has:

|µ([u]U)− µt([u]U)| ≤ Card(U)(ε2 + ε).

The choice of ε is arbitrary, one deduce that µ([u]U) = µt([u]U) for almost all t ∈ [0, 1]. Since the pattern u
is chosen arbitrary, one has µ = µt for almost all t ∈ [0, 1]. Thus µ is σ-ergodic. �
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4.1.5. Links between the spaces (Mσ(AM), d∗), (Mσ(AM), dMB ) and (G, dB). As we have defined two dis-
tances (d∗ and dMB ) on Mσ(AM) it is interesting to study how they relate to each other. The following
proposition shows that (Mσ(AM), dMB ) can be embedded into (Mσ(AM), d∗).

Proposition 4.6. The function Id : (Mσ(AM), dMB )→ (Mσ(AM), d∗) is uniformly continuous.

Proof. Let µ, ν ∈Mσ(AM). Let n ∈ N and u ∈ AUn , according to Lemma 4.2, there exists λ ∈ J (µ, ν) such
that

dMB (µ, ν) ≥ 1

Card(Un)
λ([u]Un

× [v]Un
: u, v ∈ AUn , u 6= v).

Thus, one has:

|µ([u]Un
)− ν([u]Un

)| = |λ([u]Un
×AM)− λ(AM × [u]Un

)|

≤

∣∣∣∣∣∣
∑

v∈AUn\{u}

λ([u]Un
× [v]Un

)−
∑

v∈AUn\{u}

λ([v]Un
× [u]Un

)

∣∣∣∣∣∣
≤ Card(Un)dMB (µ, ν).

Let ε > 0, there exists n0 ∈ N such that
∑∞
n=n0+1

1
2n < ε

2 . If the measures µ, ν ∈ Mσ(AM) verifies

dMB (µ, ν) < ε
2Card(Un0 ) then:

d∗(µ, ν) ≤
n0∑
n=0

1

2nCard(Un)

∑
u∈AUn

∣∣µ([u]Un)− ν([u]Un)
∣∣+

∞∑
n=n0+1

1

2n
≤ ε.

One deduces that Id : (Mσ(AM), dMB )→ (Mσ(AM), d∗) is uniformly continuous. �

The reverse function Id : (Mσ(AM), d∗) → (Mσ(AM), dMB ) is not continuous, since otherwise the two
distances d∗ and dMB would be equivalent (and we have said earlier that it is not the case).

For all σ-invariant probability measure, there exist special points of AM which represent the measure.
That is to say the frequency of occurence of a pattern corresponds to the measure of the cylinder centered
on this pattern:

Definition. A point x ∈ AM is generic if for all U ⊂ M finite and for every pattern u ∈ AU the sequence
(f(u, x, n))n∈N converges where

f(u, x, n) =
1

Card(Un)

∑
m∈Un

1[u]U(σm(x)),

is the frequency of the pattern u in x at the order n. The limit of this sequence is denoted f(u, x), this is
the frequency of the pattern u in x. Denote G the set of genreric points.

Let µ ∈ Mσ(AM). Denote G(µ) the set of generic points of µ, this is the set of points x ∈ G such that
for every pattern, the frequency of this pattern in x is equal to the measure of the cylinder centered on this
pattern.

It is possible to establish a correspondence between the space of generic points and the set of σ-invariant
probability measures.

Proposition 4.7. The projection of G in (XB , d̃B) is closed.

Proof. Let (xn)n∈N a sequence of elements of AM which converges toward x ∈ AM for the pseudo-distance
dB . Let U ⊂M be a finite subset, let u ∈ AU be a pattern and let k ∈ N. One has:

|f(u, xn, k)− f(u, x, k)| ≤ Card(i ∈ Uk : xni 6= xi)

Card(Uk)
.

Taking the limit, one deduces that (f(u, x, k))k∈N converges so x ∈ G. �

Proposition 4.8. Let µ, ν ∈Mσ(AM), x ∈ G(µ) and y ∈ G(ν). One has dB(x, y) ≥ dMB (µ, ν).
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Proof. Let x ∈ G(µ) and y ∈ G(ν). Let U ⊂M and V ⊂M be two finite subsets and let u ∈ AU and v ∈ AV

be two patterns. Since x and y are generic points, one can define:

λ([u]Un × [v]Un) = lim
n→∞

1

Card(Un)

∑
m∈Un

1[u]Un×[v]Un
(σm(x), σm(y)).

One has λ ∈ J (µ, ν). Moreover, by construction
∫
dB(x′, y′)dλ(x′, y′) = dB(x, y); the result follows. �

Consider the function φ : G → Mσ(AM) which associates a generic point x ∈ G to the measure
µ ∈ Mσ(AM) defined by µ([u]U) = f(u, x) for all patterns u ∈ AU. According to Proposition 4.8, the
function φ is continuous. Moreover, it is easy to see that the image of a generic point by F is also a generic
point. The following commutative diagram sums up these properties and establishes a correspondence be-
tween the different spaces.

(G, dB)
F−−−−→ (G, dB)yφ yφ

(Mσ(AM), dMB )
F∗−−−−→ (Mσ(AM), dMB )yId

yId

(Mσ(AM), d∗)
F∗−−−−→ (Mσ(AM), d∗)

4.2. Results about the dynamic of F∗. The specifics of the metrics d∗ and dMB allow to obtain more
results on the dynamic of F∗. According to the results more general established in the previous section, it is
already known that :

• There not exist CA such that the action is expansive in (Mσ(AM), d∗) and (Mσ(AM), dMB ) (Theo-
rem 3.4).

• If a CA (AZ, F ) is equicontinuous of slope α ∈ Q then F∗ is equicontinuous in (Mσ(AZ), d∗) and
(Mσ(AZ), dMB ) (Proposition 3.5).

• If a CA (AZ, F ) has equicontinuous points of slope α then F∗ has equicontinuous points in (Mσ(AZ), dMB )
(Proposition 3.6).

• There exists CA (AM, F ) such that some measures are not in Eqd∗(F∗) or in EqdMB (F∗) (Example 3.3).

Open problem 4.1. The set Merg
σ (AM) is closed in (Mσ(AM), dMB ), so we can study the restriction of F∗ to

this space. We know very few properties of this space, in particular we do not know if there is not expansive
cellular automaton. Indeed the prove of Proposition 3.4 use the linearity in the space which is not valid in
Merg

σ (AM).

4.2.1. Transitivity. Theorem 4.4 allows to use the notion of entropy to show that the action of a CA can
not be transitive in (Mσ(AM), dMB ). The utilization of entropy recalls the utilization of the complexity of
Kolmogorov in [BCF03] to show that there not exist transitive CA for Besicovitch topology. It is interesting
to notice the common point between the two proofs: for both of them, the non-transitivity, which as we said
is intuitively an unability to create information, is proven using a measure of the quantity of information,
respectively hµ(σ) and complexity of Kolmogorov. The link between metric entropy and Kolmogorov’s
complexity is explored in [Bru82].

Corollary 4.9. There not exist CA (AM, F ) such that F∗ is transitive in (Mσ(AM), dMB ).

Proof. Let

U = {µ ∈Mσ(AM) : hµ(σ) <
1

3
} and V = {µ ∈Mσ(AM) : hµ(σ) >

2

3
}.

By Theorem 4.4, U and V are open sets of (Mσ(AM), dMB ). Since F commutes with σ, it can be view as a
factor map from (AM, µ, σ) to (F (AM), F∗, σ), so one has hµ(σ) ≥ hF∗µ(σ), thus F∗(U) ⊂ U . One deduces
that V ∩ Fn∗ (U) = ∅ for all n ∈ N, thus F∗ can not be transitive in (Mσ(AM), dMB ). �
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Remark 4.4. It is interesting to notice the common point between the proofs of Theorem [BCF03] and
Corollary 4.9: for both of them, the non-transitivity, which as we said is intuitively an unability to create
information, is proven using a measure of the quantity of information, respectively dim1 and hµ(σ).

In (Mσ(AM), d∗), the function µ→ hµ(σ) is just upper semi-continuous, so V is not open and the previous
proof does not hold. In the space (Mσ(AM), d∗), the existence of transitive CA is open.

4.2.2. Equicontinuity. Proposition 3.6 exhibits just measures supported by σ-periodic points as dMϕ -equicontinuous
points when ϕ is M-invariant. In fact, it is possible to give a more larger class of measures which are
equicontinuous points in the space (Mσ(AM), d∗) and (Mσ(AM), dMB ). These measures are stable to every
perturbations.

Theorem 4.10. Let (AZ, F ) be a CA and let B ∈ A∗ be a blocking word of slope α ∈ R. Then every
σ-ergodic probability measure µ ∈ Merg

σ (AZ) which verifies µ([B]) > 0 is an equicontinuous point of F∗ :
(Mσ(AZ), d∗)→ (Mσ(AZ), d∗).

Proof. Let ε > 0, let µ be a σ-ergodic probability measure which charges B and let ν be a σ-invariant
measure. For n ∈ N, one defines Xk

i,n, the set of points x ∈ AZ such that there is an occurrence of B in
[−k − bnαc,−bnαc] and another in [i− 1− bnαc, k + i− 1− bnαc].

Let i0 such that
∑∞
i=i0+1

1
|A|i ≤ ε and let n ∈ N. Since B is charged by µ, by σ-ergodicity, there

exists k ∈ N such that µ(Xk
i,n) ≥ 1 − ε for all i ≤ i0. Moreover Xk

i,n can be written as an union of

cylinders centered on [−k − bnαc, k + i − 1 − bnαc] of words of Ai+2k. By σ-invariance, one deduces that
|µ(Xk

i,n)− ν(Xk
i,n)| ≤ |A|i+2kd(µ, ν), so:

ν(Xk
i,n) ≥ 1− ε− |A|i+2kd(µ, ν).

Let i ≤ i0 and let u ∈ Ai. Put Xk
u,n = F−n ◦σ−bαnc([u][0,i−1])∩Xk

i,n. Taking the lower bounds of µ(Xk
i,n)

and ν(Xk
i,n), for i ≤ i0 one deduces:

|Fn∗ µ([u][0,i−1])− Fn∗ ν([u][0,i−1])| ≤ |Fn∗ µ([u][0,i−1])− µ(Xk
u,n)|+ |µ(Xk

u,n)− ν(Xk
u,n)|

+|Fn∗ ν([u][0,i−1])− ν(Xk
u,n)|

≤ ε+ |µ(Xk
u,n)− ν(Xk

u,n)|+ ε+ |A||u|+2kd(µ, ν).

A summation gives for all i ≤ i0 the following inequality:∑
u∈Ai

|Fn∗ µ([u][0,i−1])− Fn∗ ν([u][0,i−1])| ≤ 2ε|A|i + |A|2i+2kd(µ, ν) +
∑
u∈Ai

|µ(Xk
u,n)− ν(Xk

u,n)|.

Let Y ku,n the set of words v ∈ A|u|+2k such that there exists y ∈ F−n◦σ−bαnc[u][0,i−1]∩[v][−k−bnαc,k+|u|−bnαc]∩
Xk
|u|,n. Since B is a blocking word of slope α, for all v ∈ Y ku,n, for all x ∈ [v][−k−bnαc,k+|u|−bnαc], one has

Fn(x) ◦ σbαnc(x)[0,|u|−1] = u. One deduces that:

Xk
u,n = F−n ◦ σ−bαnc([u][0,i−1]) ∩Xk

|u|,n =
⋃
Y k
u,n

[v][−k−bnαc,k+|u|−bnαc].

Thus, it is possible to decompose the sets Xk
u,n to obtain a sum of measure of cylinder centered on

[−k − bnαc, k + |u| − bnαc] with words in Ai+2k:∑
u∈Ai

|µ(Xk
u,n)− ν(Xk

u,n)| =
∑
u∈Ai

∣∣∣ ∑
v∈Y k

u,n

µ([v][−k−bnαc,k+|u|−bnαc])− ν([v][−k−bnαc,k+|u|−bnαc])
∣∣∣

≤
∑

v∈Ai+2k

|µ([v][0,i−1])− ν([v][0,i−1])|.
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Blocking wall of slope α Blocking wall of slope α

u
kk

n

0 i− 1 i− 1 + ki− 1− ki− 1− k − bnαc i− 1 + k − bnαc

v ∈ Y ku,n

Figure 2. Blocking word of slope α and d∗-equicontinuity.

By summation of previous inequalities, it follows that:

d∗(F
n
∗ µ, F

n
∗ ν) =

∑
i≤i0

1

|A|2i
∑
u∈Ai

|Fn∗ µ([u][0,i−1])− Fn∗ ν([u][0,i−1])|

+
∑
i>i0

1

|A|2i
∑
u∈Ai

|Fn∗ µ([u][0,i−1])− Fn∗ ν([u][0,i−1])|

≤ 2ε

|A| − 1
+ |A|2k(1 + |A|i0)d(µ, ν) + ε.

This shows that the orbits (Fn∗ µ)n∈N and (Fn∗ ν)n∈N stay close to each other when µ and ν are close
enough. �

Theorem 4.11. Let (AZ, F ) be a CA and let B ∈ A∗ be a blocking word of slope α ∈ R. Then every
σ-ergodic probability measure µ ∈ Merg

σ (AZ) which verifies µ([B]) > 0 is an equicontinuous point of F∗ :
(Mσ(AZ), dMB )→ (Mσ(AZ), dMB ).

Proof. Let B be a blocking word of slope α and let µ ∈ Merg
σ (AZ) such that µ([B]) > 0. Let ε > 0. For all

n ∈ N, put Xn
k ⊂ AZ such that for all x ∈ Xn

k there is an occurrence of B in [−k−bαnc,−bαnc] and another
in [−bαnc, k − bαnc]. By σ-ergodicity of µ, there exists k ∈ N which verifies µ(Xn

k ) = 1− ε for all n ∈ N.
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Let ν ∈Mσ(AZ) and let ε > 0. Let λ ∈ J (µ, ν) and consider the disintegration of λ according to µ; that
is to say, for all x ∈ AZ, there exists νx ∈M(AM) such that

λ =

∫
δx × νxdµ(x).

Thus one has:

dMB (Fn∗ µ, F
n
∗ ν) ≤ λ((x, y) : Fn(x)0 6= Fn(y)0)

≤ ε ∗+

∫∫
Xn

k×AZ
1Fn(x)0 6=Fn(y)0dνx(y)dµ(x)

≤ ε+

∫∫
Xn

k×AZ
1x[−k,k] 6=y[−k,k]0dνx(y)dµ(x)

≤ ε+ (2k + 1)λ((x, y) : x0 6= y0).

One deduces that dMB (Fn∗ µ, F
n
∗ ν) ≤ ε+ (2k + 1)dMB (µ, ν), so µ ∈ EqdMB (F∗). �

4.2.3. The case of linear CA. The uniform Bernoulli measure has an important role in the study of σ-
invariant measures. G.A. Hedlund has shown in [Hed69] that a CA is surjective if and only if the uniform
Bernoulli measure on AM is (F, σ)-invariant. Later, D. Lind [Lin84] shows for the radius 1 mod 2 automaton
that starting from any Bernoulli measure the Cesàro mean of the iterates by the CA converges to the uniform
measure. This result is generalized for a large class of algebraic CA and a large class of measures with tools
from stochastic processes in [MM98] and [FMMN00], and with harmonic analysis tools in [PY02] and [PY04].
We use this result to show the d∗-sensitivity of linear CA.

Definition. Let A be an Abelian finite group, (AZ, F ) is a linear CA if it F is a group endomorphism on
the product group AM. A linear CA is not trivial if it is not a product of shift.

In [BK99] they prove in particular that for algebraic cellular automaton (AZ, F ) the set P of (σ, F )-periodic
points is dense in (AZ, dC). The next lemma shows a similar reasult for the measure.

Lemma 4.12. Let A = Z/pZ with p is prime. Let (AZ, F ) be a non-trivial algebraic cellular automaton of

neighborhood U = [r, s]. Let P be the set of (σ, F )-periodic points. Then the set {δ̃x : x ∈ P} is dense in
(Mσ(AZ), dMC ). According to example 1.1, we recall that:

δ̃x =
1

T

T−1∑
i=0

δσi(x) where T is the σ-period of x.

Proof. Let M = Card(ker(F )). A ponit x has M preimages under F . Fix any prime q > M , then F cannot
map a point of least σ-period q to a point of lower period.

Let Perq be the set of σ-periodic points with σ-period equal to q. This set consists of pq − p points of
least σ-period q and p σ-fixed points. The restriction of F to the subgroup Perq is an homomorphism which
maps the fixed points to the fixed points and the points of least period q to the points of least period q.
Moreover F 2(Perq) = F (Perq), so one deduces that the points of F (Perq) are also F -periodic.

Let µ ∈ Mσ(AZ) and let ε > 0. Let N ∈ N such that
∑
n>N 1/2n < ε/2. There exist q prime and x a

σ-periodic point of σ-period q − s + r such that |f(u, x) − µ([u][0,|u|−1])| < ε/2 for all u ∈ An with n ≤ N .
We recall that f(u, x) is the frequency of the pattern u in x and this limit is well defined since x is periodic.
So one has d∗(µ, δx) < ε.

Since F is bipermutative, there exist y ∈ Perq such that F (y)[0,q−s+r−1] = x[0,q−s+r−1]. Let x′ = F (y), x′

is a (σ, F ) periodic point thus δ̃x′ is F∗-periodic. Moreover, if q is chose sufficiently large, then d∗(δ̃x, δ̃x′) < ε.

One deduces that {δ̃x : x ∈ P} is dense in (Mσ(AZ), dMC ). �

Theorem 4.13. Let (AM, F ) be a non trivial linear CA. Then Eqd∗(F∗) = ∅.

Proof. Since (AM, F ) is a non trivial linear CA, there exists p prime and a surjective endomorphism π : A →
Z/pZ such that the factor CA π ◦ F (where π is extended coordinate to coordinate) is a linear CA on Z/pZ
which is non trivial. Since π∗ is open, it is sufficient to prove the sensitivity for this factor of F∗. Thus we
assume that we are in this case.
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Let ((Z/pZ)M, F ) be a nontrivial linear CA with p prime. In [PY02], they show that there is a weak∗

dense set in M(AM), the harmonic measures set denoted H, such that every measure µ ∈ H verifies

lim
n∈J→∞

d∗(F
n
∗ µ, λAM) = 0,

where λAM is the uniform Bernoulli measure and J is a set a subset of N of upper density 1.

Let P be the set of (σ, F )-periodic points. According to Lemma 4.12, the set {δ̃x : x ∈ P} is weak∗ dense
in Mσ(AM).

Let µ ∈ Mσ(AM) such that µ 6= λAM and let ε < 1
2d∗(λAM , µ). For all δ < ε. There exists µ′ ∈ H and

x ∈ P such that d∗(µ, µ
′) < δ and d∗(µ, δ̃x) < δ. Thus one has

lim
n∈J→∞

d∗(F
n
∗ µ
′, λAM) = 0,

where J is a subset of N of density 1. Moreover, if T is the F -period of x, one has FTn∗ δ̃x = δ̃x for all n ∈ N.
Since J is upper density 1, there exists n ∈ N such that Tn ∈ J and d∗(F

Tn
∗ µ′, λAM) < ε. Thus one has

d∗(F
Tn
∗ δ̃x, F

Tn
∗ µ′) > ε. One deduces that µ /∈ Eqd∗(F∗).

If µ = λAM there exists µ′ such that the sequence (Fn∗ µ
′)n∈AM has two adherence points and one of them

is µ = λAM [PY02]. Thus (µ, µ′) is a Li-York pair (µ = λAM is F∗-invariant), so µ /∈ Eqd∗(F∗).
Thus Eqd∗(F∗) = ∅, but this method do not allow to obtain an uniform sensitive constant. There is a

problem around of λAM . �
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