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Puzzle

What could this be ?

Given an infinite number of puzzle pieces can we tile infinitely

in all directions with them ? 130



Answer

This was a very hard puzzle...
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Subshifts and subshifts of finite type
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Subshifts and subshifts of finite type

A finite alphabet:

r = (Em
A finite number of forbidden
patterns: The family may also be
infinite we then talk about
f = {- - I} subshifts.

Subshift of finite type (SFT):
set of configurations avoiding
F.We note X'z :

it 111 .
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Another example

Let F ={ab,ba} and X = {a, b}:

Xr =
c--ddddaaaaaaaaaaaaaaaaaaaaaaaaadd- - -

---bbbbbbbbbbbbbbbbbbbbbbbbbbbb - - -
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Finitely generated groups

Finitely generated group: S finite set of generators and R a
set of relations, (S | R) is the largest group generated by S in
which all of R holds.
Example: G = <a, b | aba™! b‘1>
e G is the largest group in which ab = ba, i.e. aba~'b~! =1
o G=7?
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Examples of groups and subshifts

Example 1: groups Example 2: subshifts
e G=(ab|): the free group e Y ={ab}and F =0: the
with two generators. full shift over two symbols.
e G=(a,b|ab,ba) e ¥ ={a,b} and F = {ab, ba}
Reduced words of the Configurations: “b%,“a®

form: a”, b"
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Notations

Alphabet and
e Set of relations defines a group.

e Set of forbidden patterns defines a subshift.

Group: Subshift of dimension d:

(S|R) (X | F)

7130



Language/Word problem

More generally:

Word Problem:
WP(G)={w|w=1g}

WP (G) is recursively
enumerable from the set of

relations.

G =(Sc|WP(G))

Complement of the language:
LX) ={m|YVxeX,mZx)

L (X) is recursively enumerable
from the set of forbidden patterns.

X =(Ex | LX)

8/30



Similar definitions

Finitely many relations/forbidden patterns

e Subshifts of finite type

e Finitely presented groups

Recursively enumerable set of relations/forbidden patterns

e Effective subshifts

e Recursively presented groups

WP(G) and £(X) are recursively enumerable in both
cases.

9/30



1. Analogies

2. Higman embedding theorem

3. Relative Higman embedding theorem
4. Boone-Higman-Thompson theorem

5. Conclusion



Adding relations

Let X =(A|R)and Y =(A|RUQ):

Groups: Subshifts:

Y is a quotient subgroup of X by Y is a subshift of X.

some normal subgroup.

1. Analogies

10/30



Adding relations

T = (A | R) becomes trivial if we add any relation/pattern to R.

Groups: Subshifts:
T is simple. T is minimal.

1. Analogies 11/30



Restricting

LetT=(A|R)and S =(B|R) with BC A.

Groups: Subshifts:
S is a subgroup of T L£(S)=L(T)nB*

Not all subgroups are of this
form.

1. Analogies 12/30



Restricting: example

2
X:<a,b (a )b b),(Z),(z»
a b a b a b
a b a b a b
a b a b a b
a b a b a b
a b a b a b

Ss.t. L(S)=L(X)N{a, b}
--~abababababababababababab - - -

S’st. £(S') = L(X)N {a):

1. Analogies 13/30



Free product

Definition The free product of F =(A|R) and G =(B| Q) is:

F+G=(AUB|RUQ)

Remark Adding symbols corresponds to the free product by
a free group/full shift.

1. Analogies 14/30



Free product: example

o il
el

X:<a,b

Y:<c,d

eX=Y

1. Analogies 15/30



The rosetta stone

Group G Subshift X

Group with n generators Subshift on n symbols
Free group with n generators Full shift on n symbols
Word problem WP (G) co-language L (X)°
Finitely presented group SFT

Recursively presented group Effectively closed subshift
Simple group Minimal subshift

G, is a quotient of G, X1 C€X,

G; C G, by restricting the generators | £(X;) = £(X;) N X*

1. Analogies 16/30




Some decidability theorems

Theorem It is undecidable Theorem It is undecidable
whether a f.p. group is trivial. whether an SFT is empty.

Theorem f.p. simple groups Theorem A minimal SFT has
have computable word computable language
problem.

1. Analogies 17/30



Restrictions: powerfullness

Take X an effective subshift on some alphabet 3.

There exists a computable family of forbidden patterns F
generating it.

X’ =(X U {#}| F) has a computable language:

Any pattern on X containing no pattern of F may appear
between #.

The restriction of X’ to X is X which may not have a
computable language.

1. Analogies 18/30
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Higman embedding theorem for groups

Theorem [Higman 1961] G is recursively presented iff it is a
subgroup of some finitely presented group H.

The proof is stronger actually: G is obtained by restriction of H.

Statement reminiscent of :

Theorem [Hochman 2009,Aubrun Sablik 2013,Durand
Romashchenko Shen 2011]

A subshift of dimension d is effective iff it is a projective
subaction of some SFT of dimension d + 1.

2. Higman embedding theorem 19/30



Higman embedding theorem for subshifts

ined by

Theorem X is an effective subshift iff it can be obta

restriction of some SFT Y.

Proof
AS 2013

Small modification

DRS 2011 proof
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Relative embedding theorem for groups

Definition G is finitely presented over H if it can be obtained
by adding finitely many generators and relations to H.

Definition A <, Biff there exists f : INXIN — Pg;,;;(IN)
computable s.t.:

xeAesdneN, f(n,x)CB

A is uniformly enumerable from any enumeration of B.

Theorem [Higman Scott 1988] K is a subgroup of a finitely
presented group over G iff WP (K) <, WP(G).

3. Relative Higman embedding theorem 21/30



Relative embedding theorem for subshifts

Definition X is an SFT over Y if it can be obtained by adding
finitely many symbols and forbdidden patterns to Y.

Theorem X is a restriction of an SFT over Y iff £L(X)" <, L(Y)".

3. Relative Higman embedding theorem 22/30



Proof idea

Make a subshift containing £(Y) in at least one configuration:

[]

Insert lines of X inbetween the lines: if a pattern m is not
allowed, then dn, f(n,m) ¢ L(Y), forbid that.

3. Relative Higman embedding theorem 23/30
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Boone-Higman-Thompson theorem

For groups:

Theorem [Boone-Higman 1974, Thompson 1980]
WP (G) is computable iff G is a subgroup of a simple finitely
presented group.

For subshifts:

Theorem L (X) is computable iff X is a restriction of a
minimal effective subshift.

4. Boone-Higman-Thompson theorem 24/30



Proof

Clear:

X minimal effectively closed = £L(X)NX* computable.
Not so clear:

L (X) computable = there exists X’ minimal effectively closed
such that £L(X)=L(X')NnX*.

4. Boone-Higman-Thompson theorem 25/30



Proof: Two steps

Theorem A subshift X has a computable language iff it is the
restriction of some minimal effective subshift Y.

Theorem [Durand Romashchenko 2018] An minimal effective
subshift can be realized as a subaction of some minimal SFT.

4. Boone-Higman-Thompson theorem 26/30



Minimality

Definition A subshift X is minimal iff there is no subshift Y
s.t. Y C X.

f'

For each pattern there is a
window in which it always
appears.

M=
¥

Example :

L=~ d~d A

L L e I vy I B D v N O

4. Boone-Higman-Thompson theorem 27/30
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Proof: minimal effective construction

Let’s make a computable configuration:

e Every row has a level [ and contains all pairs of words of
L (X) of length p; separated by # periodically.

e Arow of level | appears every 2! lines and contains words
of length p; the period of the previous level.

e Therow of level 0 appears at most once and contains no #.

The subshift thus generated is minimal and effective.

4. Boone-Higman-Thompson theorem 29/30
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Conclusion

e Dictionnary between subshifts/groups: not perfect, room
for improvement.

e Intuition for proving theorems on subshifts

e What about theorems on groups ?

5. Conclusion 30/30



|

2R O O Of| o O O °ff




	Analogies
	Higman embedding theorem
	Relative Higman embedding theorem
	Boone-Higman-Thompson theorem
	Conclusion

