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Fractal Geometry

Fractal geometry studies irregular sets, which cannot be investigated using
the usual tools.

'Wikipedia.org
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Fractal Geometry

Fractal geometry studies irregular sets, which cannot be investigated using

the usual tools.
1

@ von Koch snowflake is small with respect to area (zero area)

o Yet it is large with respect to length (infinite length)
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Fractal Geometry and Fractal Dimensions

o Fractal geometry uses various notions of fractal dimension to study
the size of irregular sets.
o Hausdorff dimension
e packing dimension
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@ Fractal dimensions generalize the classical notions of dimension so
that sets can have non-integral dimension.
e The fractal dimension of a line is 1, the dimension of a plane is 2, etc.
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In4
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o Fractal dimensions give a fine grained notion of size of small (in terms

of measure) sets.
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Fractal Geometry and Fractal Dimensions

o Fractal geometry uses various notions of fractal dimension to study
the size of irregular sets.
o Hausdorff dimension
e packing dimension

@ Fractal dimensions generalize the classical notions of dimension so
that sets can have non-integral dimension.
e The fractal dimension of a line is 1, the dimension of a plane is 2, etc.

o The Hausdorff (and packing) dimension of the von Koch snowflake is
In4
m.

o Fractal dimensions give a fine grained notion of size of small (in terms

of measure) sets.

@ Fractal geometry has become important in a number of different
fields.

o Fractal geometry uses techniques from many areas of mathematics.
o Combinatorics, classical geometry, Fourier analysis,...

D. M. Stull (INRIA) Projection Theorems 4/24



Table of Contents

e Effective Dimension

D. M. Stull (INRIA) Projection Theorems 5/24



Kolmogorov Complexity

Definition

Fix a universal Turing machine U. Let u be a finite binary string. The
Kolmogorov complexity of u is

K(u) = min{|n| |7 € {0,1}*, and U(7) = u}.
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Kolmogorov Complexity

Definition

Fix a universal Turing machine U. Let u be a finite binary string. The
Kolmogorov complexity of u is

K(u) = min{|n| |7 € {0,1}*, and U(7) = u}.

@ The choice of universal TM is irrelevant.
@ Can be extended to N and Q in a natural way.

o Can be relativized to an oracle A C N, written as K*(u).
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Kolmogorov Complexity in Euclidean Space

Definition

Let n,r € N, and x € R". The Kolmogorov complexity of x at precision r
is

Ko(x) = min{K(q) | g € B,+(x) N Q"},

where B,-:(x) is the ball of radius 2=" around x.
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Kolmogorov Complexity in Euclidean Space

Definition
Let n,r € N, and x € R". The Kolmogorov complexity of x at precision r
is

Ko(x) = min{K(q) | g € B,+(x) N Q"},

where B,-:(x) is the ball of radius 2=" around x.

For our purposes today, we may define
Ki(x) = K(u),

where u = x[r is the first nr bits in the binary representation of x.
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Effective Dimensions of Points

Definition (Mayordomo '03)
Let n € N, and x € R".
The (effective Hausdorff) dimension of x is

dim(x) = lim inf =2 Kl
r—o0

Definition (Athreya et al. '07, Lutz and Mayordomo '08)

Let n € N, and x € R". The (effective) strong dimension of x is

Dim(x) = lim sup ’( ),

r—oo

The effective dimensions of a point x measure the density of algorithmic
information in x.
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The Point-to-Set Principle

Theorem (J. Lutz and N. Lutz, '16)
For every set E C R”,

dimy(E) = ;\ncig]sggdim"‘(x), and

dimp(E) = ;\ncigl s:g Dim#(x).

@ The Hausdorff dimension of a set is characterized by the dimension of
the points in the set.

@ Allows us to use computability to answer questions in fractal
geometry.
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Some Successes

The point to set principle has been successfully applied to several
interesting problems in Fractal Geometry
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@ Jack and Neil Lutz reproved Davies' theorem showing that every
Kakeya set in R? has Hausdorff dimension 2.

@ Neil Lutz showed that the intersection bound holds for every subsets
A, B C R" holds. For every A, B and almost every point z,

dimy(AN (B + z)) < max{0,dimy(A x B) — n.
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Some Successes

The point to set principle has been successfully applied to several
interesting problems in Fractal Geometry

@ Jack and Neil Lutz reproved Davies' theorem showing that every
Kakeya set in R? has Hausdorff dimension 2.

@ Neil Lutz showed that the intersection bound holds for every subsets
A, B C R" holds. For every A, B and almost every point z,

dimy(AN (B + z)) < max{0,dimy(A x B) — n.

@ N. Lutz and S. improved theorem of Molter and Rela on the lower
bounds on the Hausdorff dimensions of Furstenberg sets.
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Orthogonal Projections
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2Kenneth Falconer, Sixty years of fractal projections
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Orthogonal Projections

If E is big, is it true that projgE is big?
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Orthogonal Projections

2

If E is big, is it true that projgE is big?

@ A projection is Lipschitz continuous

, SO

dimpy(projg E) < min{dimy(E), 1}.
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Orthogonal Projections

2

If E is big, is it true that projgE is big?

@ A projection is Lipschitz continuous

, SO

dimpy(projg E) < min{dimy(E), 1}.
@ Known that there are sets E such that this inequality is strict.

2Kenneth Falconer, Sixty years of fractal projections

D. M. Stull (INRIA)

Projection Theorems

12 /24



Marstrands Projection Theorem

Theorem (Marstrand '54)

Let E C R? be an analytic set with dimy(E) = s. Then for almost every
0 € (0,27),
dimy(projg E) = min{s, 1}.
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Marstrands Projection Theorem

Theorem (Marstrand '54)

Let E C R? be an analytic set with dimy(E) = s. Then for almost every
0 € (0,27),
dimy(projg E) = min{s, 1}.

o Mattila generalized this to arbitrary n.

@ This theorem is now recognized as a fundamental theorem of fractal
geometry.

@ Active area of research investigating the projections specific classes of
fractal sets.

@ Davies has shown that, assuming the Continuum Hypothesis, there
are sets for which this theorem does not hold.
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Our Results

We use algorithmic information theory to reprove Marstrands theorem, and
prove two new results on the fractal dimension of projections.

Theorem (N. Lutz and S. '17)

Let E C R? be any set with dimy(E) = dimp(E) = s. Then for almost
every 0 € (0,2m),
dimy(projg E) = min{s, 1}.
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We use algorithmic information theory to reprove Marstrands theorem, and
prove two new results on the fractal dimension of projections.

Theorem (N. Lutz and S. '17)

Let E C R? be any set with dimy(E) = dimp(E) = s. Then for almost
every 6 € (0,27),
dimy(projg E) = min{s, 1}.

Theorem (N. Lutz and S. '17)

Let E C R? be any set with dimy(E) = s. Then for almost every
6 € (0,2m),
dimp(projg E) > min{s, 1}.
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Overview of Proof

Our goal is to give lower bounds on the fractal dimension of the
projection of a set E onto the line at angle 6.

o We will first focus on the effective dimension of projected points.
e We will use the point-to-set principle to connect this to our goal.
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Overview of Proof

Our goal is to give lower bounds on the fractal dimension of the
projection of a set E onto the line at angle 6.

o We will first focus on the effective dimension of projected points.
e We will use the point-to-set principle to connect this to our goal.

@ To prove lower bounds of the effective dimension of a point, we will
prove lower bounds of the complexity of the point at every precision.

@ It will suffice to show that, for sufficiently nice z € R" and angle 6,
K (2) < Ki(projy(2)).
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Lower Bounds on Complexity of Projections

proj .z

Our goal is to show that we can compute our original point z given the
projected point projy(z),

K7 (2) < K/ (projy(2)).

@ How can decide which z is the correct point? There are infinitely
many of them.

D. M. Stull (INRIA) Projection Theorems 16 /24



Lower Bounds on Complexity of Projections

Suppose that the following conditions are satisfied.

@ The complexity of z, K,(z), is small.

@ For every point w such that projy(z) = projy(w), either
o the complexity of w, K,(w), is large, or
e w is close to z.
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Lower Bounds on Complexity of Projections

Suppose that the following conditions are satisfied.
© The complexity of z, K.(z), is small.

@ For every point w such that projy(z) = projy(w), either
o the complexity of w, K,(w), is large, or
e w is close to z.

Then we can compute (an approximation of) z given (an
approximation of) the projected point projy(z), with some small
number of bits, i.e.

K7 (2) £ Kr(projy(2)).
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Bridging Theorem

Theorem

Let z € R?, 0 € (0,27), ACN, and r € N. Assume the following are
satisfied.

Q Foreveryt <r, KZ(0) >t — O(log(t)).
@ KA(2) 2 Ki(2).
Then,

K7+ (projg(2)) Z Ki(2).

Intuitively, this theorem states that if
@ the complexity of 6 is maximal, and
@ the oracle A and angle 8 do not affect the complexity of z,
then we can ensure that the sufficient conditions of the previous slide are

satisfied.
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New Proof of Marstrands Theorem

Theorem (Marstrand '54)

Let E C R? be an analytic set with dimy(E) = s. Then for almost every
6 € (0,2m),
dimy(projy E) = min{s, 1}.

By the point to set principle, it suffices to show that, for almost every 6,
for every oracle A C N, and every € > 0, there is a point z € E such that

dim”?(projy z) > min{s,1} — €.
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By the point to set principle, it suffices to show that, for almost every 6,
for every oracle A C N, and every € > 0, there is a point z € E such that

dim”?(projy z) > min{s,1} — €.

@ To use the bridging theorem, we want to pick a 8 which has maximal
complexity.
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New Proof of Marstrands Theorem

Theorem (Marstrand '54)

Let E C R? be an analytic set with dimy(E) = s. Then for almost every
6 € (0,2m),
dimy(projy E) = min{s, 1}.

By the point to set principle, it suffices to show that, for almost every 6,
for every oracle A C N, and every € > 0, there is a point z € E such that

dim”?(projy z) > min{s,1} — €.

@ To use the bridging theorem, we want to pick a 8 which has maximal
complexity.
@ Then, for any A C N and € > 0, we need to pick a z so that (A, )
does not affect the complexity of z.
e This is the tricky part.
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Using Restricted Point-to-Set Principle

Theorem (Hitchcock '03)

Let ECR" and B C N be such that E is a Zg set relative to B. Then

dimy(E) = sup dim&(x).
x€EE
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Let ECR" and B C N be such that E is a Zg set relative to B. Then

dimy(E) = sup dim&(x).
x€EE

@ This restricted version allows us to eliminate a quantifier (the choice
of oracle).

@ Standard arguments show that if E is analytic, then there is a subset
F C E such that

e dimy(F) = dimy(E), and
o For some oracle B, F is Zg relative to A.
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Using Restricted Point-to-Set Principle

Theorem (Hitchcock '03)

Let ECR" and B C N be such that E is a Zg set relative to B. Then

dimy(E) = sup dim&(x).
x€EE

@ This restricted version allows us to eliminate a quantifier (the choice
of oracle).

@ Standard arguments show that if E is analytic, then there is a subset
F C E such that

e dimy(F) = dimy(E), and
o For some oracle B, F is Zg relative to A.

o For any such F, and any 6, proj, F is X3 relative to (B, ).
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New Proof of Marstrands Theorem

Let F C E as in the previous slide, and B C N such that F is Z% relative

to B. It suffices to show that, for almost every 6 and every € > 0, there is
a point z € E such that

dim®9(proj, z) > min{s, 1} — €.

D. M. Stull (INRIA) Projection Theorems

21/24



New Proof of Marstrands Theorem

Let F C E as in the previous slide, and B C N such that F is Z% relative

to B. It suffices to show that, for almost every 6 and every € > 0, there is
a point z € E such that

dim®9(proj, z) > min{s, 1} — €.

@ First pick z1, z2,...: Using the point to set principle, choose z, such
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to B. It suffices to show that, for almost every 6 and every € > 0, there is
a point z € E such that

dim®9(proj, z) > min{s, 1} — €.

@ First pick z1, z2,...: Using the point to set principle, choose z, such
that dim8(z,) > s — 1/n.
@ For almost every 0,
o For every n, dim®#(#) = 1 (standard argument), and

o For every nand r, KB:Y(z,) = KB(z,) (by a theorem of Calude and
Zimand).
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New Proof of Marstrands Theorem

Let F C E as in the previous slide, and B C N such that F is Z% relative
to B. It suffices to show that, for almost every 6 and every € > 0, there is
a point z € E such that

dim®9(proj, z) > min{s, 1} — €.

@ First pick z1, z2,...: Using the point to set principle, choose z, such
that dim8(z,) > s — 1/n.
@ For almost every 0,
o For every n, dim®#(#) = 1 (standard argument), and
o For every nand r, KB:Y(z,) = KB(z,) (by a theorem of Calude and
Zimand).
@ Then the conditions of our bridging theorem are satisfied for all
sufficiently large r, and therefore

BO, .
dim®?(projg(zn)) = lim i K (projy(zn))
r—

00 r
. KB(z
> liminf —£ (20)
r—00 r
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Projections of Non-analytic Sets

Theorem (N. Lutz and S. '17)

Let E CR" be any set with dimy(E) = dimp(E) = s. Then for almost
every 6 € (0, 2m),
dimy(projy E) = min{s, 1}.

By the point to set principle, it suffices to show that, for almost every 6,
for every oracle A C N, and € > 0, there is a point z € E such that

dim”(projy z) > min{s,1} — €.
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By the point to set principle, it suffices to show that, for almost every 6,
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Projections of Non-analytic Sets

Theorem (N. Lutz and S. '17)

Let E CR" be any set with dimy(E) = dimp(E) = s. Then for almost
every 6 € (0, 2m),
dimy(projy E) = min{s, 1}.

By the point to set principle, it suffices to show that, for almost every 6,
for every oracle A C N, and € > 0, there is a point z € E such that

dim”(projy z) > min{s,1} — €.

@ To use the bridging theorem, we want to pick a € such that
dim(6) = 1.
o Almost every 6 satisfies this property.

@ Then, for any A C N and € > 0, we need to pick a z such that (A, 6)
does not affect the complexity of z.

e The assumption that dimy(E) = dimp(E) allows us to do this without
needing the existence of nice subsets of E.
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Projections of Non-analytic Sets

Theorem (N. Lutz and S. '17)

Let E CR" be any set with dimy(E) = s. Then for almost every
6 € (0,2m),
dimp(projy E) > min{s, 1}.

By the point to set principle, it suffices to show that, for almost every 6,
for every oracle A C N, and € > 0, there is a point z € E such that

DimA(proj, z) > min{s, 1} —e.
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Projections of Non-analytic Sets

Theorem (N. Lutz and S. '17)

Let E CR" be any set with dimy(E) = s. Then for almost every
6 € (0,2m),
dimp(projy E) > min{s, 1}.

By the point to set principle, it suffices to show that, for almost every 6,
for every oracle A C N, and € > 0, there is a point z € E such that

DimA(proj, z) > min{s, 1} —e.

@ Pick a 6 which has maximal complexity.

@ Then, for any A C N and € > 0, we need to pick a z so that (A, 0)
does not affect the complexity of z, K,(z), for infinitely many r.

e This follows by the point to set principle.

D. M. Stull (INRIA) Projection Theorems 23 /24



Thank youl!

D. M. Stull (INRIA) Projection Theorems




	Fractal Geometry
	Effective Dimension
	Fractal Dimension of Projected Sets

