
Projection Theorems using Effective Dimension

Don Stull

INRIA

D. M. Stull (INRIA) Projection Theorems 1 / 24



Table of Contents

1 Fractal Geometry

2 Effective Dimension

3 Fractal Dimension of Projected Sets

D. M. Stull (INRIA) Projection Theorems 2 / 24



Fractal Geometry

Fractal geometry studies irregular sets, which cannot be investigated using
the usual tools.

1

von Koch snowflake is small with respect to area (zero area)

Yet it is large with respect to length (infinite length)

1Wikipedia.org
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Fractal Geometry and Fractal Dimensions

Fractal geometry uses various notions of fractal dimension to study
the size of irregular sets.

Hausdorff dimension
packing dimension

Fractal dimensions generalize the classical notions of dimension so
that sets can have non-integral dimension.

The fractal dimension of a line is 1, the dimension of a plane is 2, etc.
The Hausdorff (and packing) dimension of the von Koch snowflake is
ln 4
ln 3 .
Fractal dimensions give a fine grained notion of size of small (in terms
of measure) sets.

Fractal geometry has become important in a number of different
fields.

Fractal geometry uses techniques from many areas of mathematics.
Combinatorics, classical geometry, Fourier analysis,...
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Kolmogorov Complexity

Definition

Fix a universal Turing machine U. Let u be a finite binary string. The
Kolmogorov complexity of u is

K (u) = min{|π| |π ∈ {0, 1}∗, and U(π) = u}.

The choice of universal TM is irrelevant.

Can be extended to N and Q in a natural way.

Can be relativized to an oracle A ⊆ N, written as KA(u).
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Kolmogorov Complexity in Euclidean Space

Definition

Let n, r ∈ N, and x ∈ Rn. The Kolmogorov complexity of x at precision r
is

Kr (x) = min{K (q) | q ∈ B2−r (x) ∩Qn},

where B2−r (x) is the ball of radius 2−r around x .

For our purposes today, we may define

Kr (x) = K (u),

where u = x�r is the first nr bits in the binary representation of x .
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Effective Dimensions of Points

Definition (Mayordomo ’03)

Let n ∈ N, and x ∈ Rn.
The (effective Hausdorff) dimension of x is

dim(x) = lim inf
r→∞

Kr (x)
r .

Definition (Athreya et al. ’07, Lutz and Mayordomo ’08)

Let n ∈ N, and x ∈ Rn. The (effective) strong dimension of x is

Dim(x) = lim sup
r→∞

Kr (x)
r .

The effective dimensions of a point x measure the density of algorithmic
information in x .
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The Point-to-Set Principle

Theorem (J. Lutz and N. Lutz, ’16)

For every set E ⊆ Rn,

dimH(E ) = min
A⊆N

sup
x∈S

dimA(x), and

dimP(E ) = min
A⊆N

sup
x∈S

DimA(x).

The Hausdorff dimension of a set is characterized by the dimension of
the points in the set.

Allows us to use computability to answer questions in fractal
geometry.

D. M. Stull (INRIA) Projection Theorems 9 / 24



Some Successes

The point to set principle has been successfully applied to several
interesting problems in Fractal Geometry

Jack and Neil Lutz reproved Davies’ theorem showing that every
Kakeya set in R2 has Hausdorff dimension 2.

Neil Lutz showed that the intersection bound holds for every subsets
A,B ⊆ Rn holds. For every A,B and almost every point z ,

dimH(A ∩ (B + z)) ≤ max{0, dimH(A× B)− n.

N. Lutz and S. improved theorem of Molter and Rela on the lower
bounds on the Hausdorff dimensions of Furstenberg sets.
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Orthogonal Projections

2

If E is big, is it true that projθE is big?

A projection is Lipschitz continuous, so

dimH(projθ E ) ≤ min{dimH(E ), 1}.
Known that there are sets E such that this inequality is strict.

2Kenneth Falconer, Sixty years of fractal projections
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Marstrands Projection Theorem

Theorem (Marstrand ’54)

Let E ⊆ R2 be an analytic set with dimH(E ) = s. Then for almost every
θ ∈ (0, 2π),

dimH(projθ E ) = min{s, 1} .

Mattila generalized this to arbitrary n.

This theorem is now recognized as a fundamental theorem of fractal
geometry.

Active area of research investigating the projections specific classes of
fractal sets.

Davies has shown that, assuming the Continuum Hypothesis, there
are sets for which this theorem does not hold.
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Our Results

We use algorithmic information theory to reprove Marstrands theorem, and
prove two new results on the fractal dimension of projections.

Theorem (N. Lutz and S. ’17)

Let E ⊆ R2 be any set with dimH(E ) = dimP(E ) = s. Then for almost
every θ ∈ (0, 2π),

dimH(projθ E ) = min{s, 1} .

Theorem (N. Lutz and S. ’17)

Let E ⊆ R2 be any set with dimH(E ) = s. Then for almost every
θ ∈ (0, 2π),

dimP(projθ E ) ≥ min{s, 1} .
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Overview of Proof

Our goal is to give lower bounds on the fractal dimension of the
projection of a set E onto the line at angle θ.

We will first focus on the effective dimension of projected points.

We will use the point-to-set principle to connect this to our goal.

To prove lower bounds of the effective dimension of a point, we will
prove lower bounds of the complexity of the point at every precision.

It will suffice to show that, for sufficiently nice z ∈ Rn and angle θ,

K θ
r (z) ≤ Kr (projθ(z)).
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Lower Bounds on Complexity of Projections

Our goal is to show that we can compute our original point z given the
projected point projθ(z),

K θ
r (z) ≤ Kr (projθ(z)).

How can decide which z is the correct point? There are infinitely
many of them.

D. M. Stull (INRIA) Projection Theorems 16 / 24



Lower Bounds on Complexity of Projections

Suppose that the following conditions are satisfied.

1 The complexity of z , Kr (z), is small.

2 For every point w such that projθ(z) = projθ(w), either

the complexity of w , Kr (w), is large, or
w is close to z .

Then we can compute (an approximation of) z given (an
approximation of) the projected point projθ(z), with some small
number of bits, i.e.

K θ
r (z) / Kr (projθ(z)).
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Bridging Theorem

Theorem

Let z ∈ R2, θ ∈ (0, 2π), A ⊆ N, and r ∈ N. Assume the following are
satisfied.

1 For every t ≤ r , K z
t (θ) ≥ t − O(log(t)).

2 KA,θ
r (z) ' Kr (z).

Then,
KA,θ
r (projθ(z)) ' Kr (z) .

Intuitively, this theorem states that if

the complexity of θ is maximal, and

the oracle A and angle θ do not affect the complexity of z ,

then we can ensure that the sufficient conditions of the previous slide are
satisfied.

D. M. Stull (INRIA) Projection Theorems 18 / 24



New Proof of Marstrands Theorem

Theorem (Marstrand ’54)

Let E ⊆ R2 be an analytic set with dimH(E ) = s. Then for almost every
θ ∈ (0, 2π),

dimH(projθ E ) = min{s, 1} .

By the point to set principle, it suffices to show that, for almost every θ,
for every oracle A ⊆ N, and every ε > 0, there is a point z ∈ E such that

dimA(projθ z) ≥ min{s, 1} − ε.

To use the bridging theorem, we want to pick a θ which has maximal
complexity.

Then, for any A ⊆ N and ε > 0, we need to pick a z so that (A, θ)
does not affect the complexity of z .

This is the tricky part.
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Using Restricted Point-to-Set Principle

Theorem (Hitchcock ’03)

Let E ⊆ Rn and B ⊆ N be such that E is a Σ0
2 set relative to B. Then

dimH(E ) = sup
x∈E

dimB(x) .

This restricted version allows us to eliminate a quantifier (the choice
of oracle).

Standard arguments show that if E is analytic, then there is a subset
F ⊆ E such that

dimH(F ) = dimH(E ), and
For some oracle B, F is Σ0

2 relative to A.

For any such F , and any θ, projθ F is Σ0
2 relative to (B, θ).
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New Proof of Marstrands Theorem

Let F ⊆ E as in the previous slide, and B ⊆ N such that F is Σ2
0 relative

to B. It suffices to show that, for almost every θ and every ε > 0, there is
a point z ∈ E such that

dimB,θ(projθ z) ≥ min{s, 1} − ε.

First pick z1, z2, . . .: Using the point to set principle, choose zn such
that dimB(zn) ≥ s − 1/n.
For almost every θ,

For every n, dimB,zn(θ) = 1 (standard argument), and
For every n and r , KB,θ

r (zn) = KB
r (zn) (by a theorem of Calude and

Zimand).

Then the conditions of our bridging theorem are satisfied for all
sufficiently large r , and therefore

dimB,θ(projθ(zn)) = lim inf
r→∞

KB,θ
r (projθ(zn))

r

≥ lim inf
r→∞

KB
r (zn)

r
≥ s − 1/n.
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Projections of Non-analytic Sets

Theorem (N. Lutz and S. ’17)

Let E ⊆ Rn be any set with dimH(E ) = dimP(E ) = s. Then for almost
every θ ∈ (0, 2π),

dimH(projθ E ) = min{s, 1} .

By the point to set principle, it suffices to show that, for almost every θ,
for every oracle A ⊆ N, and ε > 0, there is a point z ∈ E such that

dimA(projθ z) ≥ min{s, 1} − ε.

To use the bridging theorem, we want to pick a θ such that
dim(θ) = 1.

Almost every θ satisfies this property.

Then, for any A ⊆ N and ε > 0, we need to pick a z such that (A, θ)
does not affect the complexity of z .

The assumption that dimH(E ) = dimP(E ) allows us to do this without
needing the existence of nice subsets of E .

D. M. Stull (INRIA) Projection Theorems 22 / 24
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Then, for any A ⊆ N and ε > 0, we need to pick a z such that (A, θ)
does not affect the complexity of z .

The assumption that dimH(E ) = dimP(E ) allows us to do this without
needing the existence of nice subsets of E .
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DimA(projθ z) ≥ min{s, 1} − ε.

Pick a θ which has maximal complexity.

Then, for any A ⊆ N and ε > 0, we need to pick a z so that (A, θ)
does not affect the complexity of z , Kr (z), for infinitely many r .

This follows by the point to set principle.
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The End

Thank you!
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