Computing to the infinite with ordinary
differential equations.

1 2

Olivier Bournez Sabrina Quazzani

LEcole Polytechnique
Laboratoire d'Informatique de I'X

2Paris-Est Créteil University
LACL

March 2018
Algorithmic Questions In Dynamical Systems

Menu

Introduction

Most classical frameworks:
» f is at least Lipschitz or C* and computable;
» Cauchy-Lipschitz Theorem: existence and unicity of solutions;

» ~» Turing machine simulation and vice-versa.

Most classical frameworks:
» f is at least Lipschitz or C! and computable;
» Cauchy-Lipschitz Theorem: existence and unicity of solutions;

» ~» Turing machine simulation and vice-versa.

Extended framework:
» what happens if f is (only) continuous?

» Cauchy-Peano-Ascoli Theorem: existence but non unicity of
solutions;

Most classical frameworks:
» f is at least Lipschitz or C! and computable;
» Cauchy-Lipschitz Theorem: existence and unicity of solutions;

» ~» Turing machine simulation and vice-versa.

Extended framework:
» what happens if f is (only) continuous?

» Cauchy-Peano-Ascoli Theorem: existence but non unicity of
solutions;

>~ 7

Non unicity: a classical counter-example
Solutions over R of f continuous such that:

K= fx) [F(x)=3x2/3
{ x(©) =0 ith { £(0) = 0

Some solutions of x'=f{x)
1000

500

- 1000

all functions y_, p with a, b € RT U {+o0}, where

0 if —a<t<b
vap(t) =14 (t+a) ift<-a

(t—b2 ft>b

Most classical frameworks:
» f is at least Lipschitz or C! and computable;
» Cauchy-Lipschitz Theorem: existence and unicity of solutions;

» ~» Turing machine simulation and vice-versa.

Extended framework:
» what happens if f is (only) continuous?

» Cauchy-Peano-Ascoli Theorem: existence but non unicity of
solutions;

>~ 7

» Main idea: describing transfinite time computations by
(continuous time) dynamical systems and conversely.

» Concrete work: show that

Continuous ordinary differential equations = Infinite time
Turing machines.

Motivations:
> Applying gaps properties to Analysis.
» Applying the differential equation description to transfinite
computation model.

Main result

Theorem (ITTM are equivalent to Co-ODE's)

Any Infinite Time Turing Machine can be simulated by some
continuous ordinary differential equation forward unique and
vice-versa.

The idea

We consider Co-ODE, equations x’ = f(x), where
» f:R" - R"

» f is continuous.

Pedagogical illustration:

» f piecewise constant.

A trajectory of a Piecewise Constant Derivative System

-1,-1 -1,1/2
T ey

’ ~

N ~
~ . N

(X20) 7 WZ0) (x0)

(1>1>\ | /(1,1)

(0,0) reached in:
> w steps;
> in finite time 5/2(x + x/2 + x/4 +...) = bx.

Recognizing the halting problem of a Turing machine in
dimension 4

Consequence: an ordinal time computation can be simulated in
finite time.

PCD in continuous time? [Bournez99]

Extending [Asarin-Maler95].

’ Dimension ‘ Languages semi-recognized

2 <X

3 >

4 P

5 >,

6 Zu.z—i—l

7 T

8 Yoo
2p+1 > -1
2p+2 Y p-141

ITTM computational power

What about recognizing ITTMs in dimension at least 57

kn%

7777777 decidable

/ arithmetic \

Figure: Projective hierarchy

7777777 decidable

Here we have talked about PCD - -- what about x’ = f(x) with f
continuous?

We want:
» to use continuous functions

> to compute using ordinals

Accelerate an everywhere continuous dynamic.

» But still with f non-smooth on the whole space.

» Main construction: “Petard”

But for x’ = f(x) with f continuous, solutions exist necessarily but
may be non unique.

Non unicity and procrastination

PROCRASTINATION

I'l find a picture for it later.

Non unicity and procrastination: an illustration
Solutions over R of f continuous such that:

K= fx) [F(x)=3x2/3
{ x(©) =0 ith { £(0) = 0

Some solutions of x'=f{x)
1000

500

- 1000

all functions y_, p with a, b € RT U {+o0}, where

0 if —a<t<b
vap(t) =14 (t+a) ift<-a

(t—b2 ft>b

Computing with ordinals

We restrict to:
> non-procrastinating trajectories:
» Basic observation: There is a trajectory from x(0) = xp to
some point x* iff there is some non-procrastinating trajectory
from x(0) = xo to x*.
» forward-unique:

» locally unicity holds in terms of future for non-procrastinating
trajectories

We want:
» to use continuous functions

» to compute using ordinals

Ordinals

Definition (Ordinal)
Transitive well-ordered set for the membership relation.

1 —O{OT? (0} » If « is an ordinal, then a U {a},
T N denoted o + 1 is called
wi=1{0,1,2,3,---} successor of & and is an ordinal;

w+1:={0,1,2,3,-- ,w} > let A be a set of ordinal
numbers, then a = (Jgca B is 2
W — limit ordinal.

{0,1,2,-+ ,w,w+1l,w+2...}

Transfinite time computation models

» Ordinals as time for computation.
» Peculiar ordinal properties.

» Different computation models: register machines, Turing
machines, ordinal-tape Turing machines ...

» Proof of mathematical properties from an algorithmic point of
view.

Structure of infinite time Turing machines (ITTM)

» additional special limit state

> 3 right-infinite tapes ’
im

> a single head

» computation steps are
» binary alphabet {0,1} P P

indexed by ordinals

Configuration

inputlo. ()I(). ()Io.

work [0J0]0]0]0]0]0

output [oJoJofofofofof J---

Operating an ITTM

Configuration at a + 1. t=420|0]1]ofof1]ofo[]---
>
Configuration at a. m

t =007 [ofo]1f1]1fo]o[] -

Operating an ITTM

Configuration limit:
» head: initial
position;

» state: lim;

» each cell: /im sup
of cell values
before.

lim
t=wl0]1]1]o]1]o]o[] -
t 44ttt 1 limsup

t=420(0f1]ofo]1fo]o[] -

@

t =007 [ofo]1f1]1fo]o[] -

Some litterature

v

Machines halt when they reach the halting state.

v

Either an ITTM halts in a countable numer of steps, either it
begins looping in a countable number of steps ([HLO0O]).

v

WO is decidable by an ITTM.

v

Every M} and X1 set is decidable by an ITTM.

Peculiar ITTM ordinals

Halting on input 000... ~ two natural notions of ordinals.

Definition (Clockable ordinal)

« clockable: there exists an ITTM that halts on input 000... in
exactly « steps of computation.

Definition (Writable ordinal)

« writable: there exists an ITTM that writes a code for o on
input 000... and halts.

Theorem (Welch [Wel09])

The supremum of the clockable ordinals is equal to the supremum
of the writable ordinals. It is called \.

A is a rather large countable recursively inacessible ordinal. ..

Gap

There exist writable ordinals that are
not clockable such that:

> they form intervals;

» these intervals have limit sizes.

Definition (Gap)

Intervals of not clockable ordinals.

beg

{MJ

size

Proof of gap existence

gap checking
'

0 a 3 B+w

—

Simulation of all programs on input 0.
In blue: halting programs. In red: limit step, begins a gap?

Bo

Bo

gaps containing admissible ordinals

} admissible = beginning of gaps

We want:
» to use continuous functions

» to compute using ordinals

Menu

How to simulate an ITTM by a Co-ODE

Simulation of an ITTM by a Cp-ODE

> successor case: classical Turing machine

> limit case: accelerating the computation to compute the limit
tape.

Simulation of an ITTM by a Cp-ODE

» successor case: classical Turing machine

> limit case: accelerating the computation to compute the limit
tape.

Successor case

» discrete time dynamical system;

» differential equations.

Successor case: Turing Machines

> Let M be some one tape Turing machine, with m states and
10 symbols.

> If
..BBBa_ja_g41...a-1a0a1...a,BBB...

is the tape content of M, it can be seen as

Y1 = aopadi...an (1)
Yo = a-1d-2...d—

» The configuration of M is then given by three values: its
internal state s, y1 and y».

Successor case: Alternative view of a Turing machine

20107t + 2;1072 + ... + 2,107 "1
a_1107 +a2.,1072 + ... + a_,107X.

i
y2

| Turing Machine

l

PAM

State Space State Space
{q1,q27“‘,Qm}Xz* [17m+1]><[071]
State (g;,a—m---a—1,30.--an) State x = s+ y»
_if 2 is read, X = x+1 if 1<x<2
9 then write 4; goto g2 i o= yi+ % % <y < 1%
gs: Itiznlsrr:za\‘/i, right; goto { x= % * % +1 if { S=x<b
5. ; o 3 4
@ y = 10xy—3 o <y< 0
_if 5 is read, x = 10(x—3)—j+7
g3 then move left; goto g7 y = % + 15
j j+1
if{ 35+{—0§x6<3+fﬁ
w5 <n<g
for j€{0,1,...,9}.

f(t) = (x(t + 1), y1(t + 1)) piecewise affine ~» can be made smooth.

lterating a function with an ODE

z1(t) = (x(t),y())

We want to alternate z := f(z1), z1 1= z.

lterating a function with an ODE
z1(t) = (x(t), y(t))

We want to alternate zp := f(z1), z1 1= zo.
~> Branicky's clock (1995).

The solution of y' = c(g — y)3¢(t):
» converges at t = 1/2 the goal g;
» with some arbitrary precision;
» independantly from initial condition at t = 0;
» this roughly does y(1/2) := g.
The following system is a solution:

{Z:{ = c(z — z1)30(—sin(2rt)) {zlggg =
22 =

Zy = o(f(z1) — 2)30(sin(27t))
considering functions:
» 0 such that §(x) =0 if x <0;
> 0(x) = x2if x > 0.

X0
X0

lllustrative example: z1(t + 1) := 2 % z(t)

We want to alternate z, := f(z1), z; := z». Here f =" x 2".

0.5 1 1.5 2 2.5 3

Simulation of iterations of h(n) = 2" by ODEs.

lllustrative example: z1(t + 1) := 2 % z(t)
We want to alternate z, := f(z1), z1 1= zp. Here f =" x 2",

o5 1 1.5 2 2.5 3
Simulation of iterations of h(n) = 2" by ODEs.

Any Turing machine can be simulated by iterating as above.

Simulation of an ITTM by a Cp-ODE

> successor case: classical Turing machine

» limit case: accelerating the computation to compute the limit
tape.

Limit case: Aim

» compute the limit of a computation;

» send the result to the next successor simulation computation.

Limit case: Aim

» compute the limit of a computation;

» send the result to the next successor simulation computation.

Continuous petard: a change of variables - - -

Time + space

Some solutions of x'=f(x)
1000

- to obtain an “accumulation”

Build a Cp-ODE such that its trajectories:
» start from X(0) = (x, x0);
> are simulating the previous ones;

> in a time bounded by 1.

Content of the limit tape

Limit step: content of the limit tape = computation of a serie;
» some of the variables go to 0;

» some others encode the value of the series.

N
O

Content of the limit tape: the limit convention

» Emulating a lim sup is not easy.

» Equivalent easier convention: at limit ordinal time p, if p is
the ordinal written in the ordinal tape then the content of a
cell of limit tape is 1 (and 0 otherwise) iff it was already 1 at
atimepu<m<p.

Limit on the encodings = limit on the tapes.

Limit case: aim

» compute the limit of a computation;

» send the result to the next successor simulation computation.

Path between two petards

» The result of the computation by the first petard, obtained by
some real number p; (encodinga limit tape), is sent to the
second.

Nested petards

> Imbrication of petards in a fixed dimension space.

» Different from PCD where limits necessarily imply that
dimension must increase.

Menu

How to simulate a Cy-ODE by an ITTM

Inversion of petards

Idea: simulate the dynamics in the other direction.

But

We want an algorithm to solve Co-ODE, but:
» non-unicity of the solutions;

» continuous and general equation.

Existential point of view

If a solution exists, ten thousand monkeys will finish to find it!

The ten thousand Monkeys algorithm

Y

» ten thousand monkeys algorithm of [CG09];

» covering the solution by a finite amount of boxes.

The w-Monkeys algorithm

PN
P

> extended version to output solutions using ITTM;

» covering the solution by an ordinal amount of boxes.

Main result

Theorem (ITTM are equivalent to Co-ODE's)

Any Infinite Time Turing Machine can be simulated by some
computable (hence continuous) ordinary differential equation
forward uniqueand vice-versa.

Consequences

infinite time Turing machines

model for algorithms proving logical properties

Continuous ordinary differential equations = Infinite time
Turing machines.

Consequences

» Every non-procrastinating infinite time trajectory of a Co-ODE
either halts or repeats itself in countably many steps.

» WO is decidable by some computable (hence continuous)
ordinary differential equation.

» Every M1 set is decidable by some computable (hence
continuous) ordinary differential equation. Hence, every ¥}
set is decidable by some computable (hence continuous)
ordinary differential equation.

Menu

Perspectives

Back to ITTM: gaps in computation times

AT

Bo

Bo

gaps containing admissible ordinals

> admissible = beginning of gaps

Consequences and questions

v

Are there gaps in the Cy-ODE?

Can we define only countable ordinals?

v

v

Applying transfinite techniques to Analysis.

v

Transposing Analysis questions to transfinite computations.

v

2 dual views for the same computability questions.

discrete transfinite time = continuous time.

v

Thank you for your attention.

Some references:

[@ P. Collins and D.S. Graca.
Effective Computability of Solutions of Differential Inclusions
The Ten Thousand Monkeys Approach.
Journal of Universal Computer Science, 15(6):1162-1185,
2009.

@ Joel D. Hamkins and Andrew Lewis.
Infinite time turing machines.
Journal of Symbolic Logic, 65(2):567-604, 2000.

[@ Philip D. Welch.
Characteristics of discrete transfinite time turing machine
models: Halting times, stabilization times, and normal form
theorems.
Theoretical Computer Science, 410(4-5):426-442, 20009.

Encoding countable ordinals

Countable ordinal = well order on N.

Encoding countable ordinals by reals:

Let < be an order on the natural numbers.

The real r is a code for the order-type of < if, for i = (x, y), the
i-th bit of riis 1 if and only if x < y.

Example: w.2 = w + w ~» even integers lower than odd integers.

0= <O, O> 1= <0, 1> e = 00110203041506171819110 s

Arithmetical hierarchy

> Y ; = Recursively enumerable sets.

» Y, = Sets recursively enumerable in a set in Xj.

» Y3 = Sets recursively enumerable in a set in X».

>

> Y411 = Sets recursively enumerable in a set in 2.

Hyper-arithmetical hierarchy

> > 1 = Recursively enumerable sets.
> ¥ ,4+1 = Sets recursively enumerable in a set in X.

» Y, = Sets recursively enumerable in a diagonalisation of ¥,

> ¥ ,+1 = Sets recursively enumerable in a set in ¥,

> Yomlimy = Sets recursively enumerable in a diagonalisation of
Y<a
> 3,11 = Sets recursively enumerable in a set of X,

	Introduction
	Continuous ordinary differential equations (C0-ODE)
	ITTM

	How to simulate an ITTM by a C0-ODE
	Accelerating a computation

	How to simulate a C0-ODE by an ITTM
	Perspectives

