Computing to the infinite with ordinary differential equations.

Olivier Bournez¹ Sabrina Ouazzani²

¹Ecole Polytechnique Laboratoire d'Informatique de l'X

²Paris-Est Créteil University LACL

March 2018 Algorithmic Questions In Dynamical Systems

Menu

Introduction

How to simulate an ITTM by a \mathcal{C}_0 -ODE

How to simulate a C_0 -ODE by an ITTM

Perspectives

$$y'=f(y)$$

- f is at least Lipschitz or C^1 and computable;
- ► Cauchy-Lipschitz Theorem: existence and unicity of solutions;
- ► → Turing machine simulation and vice-versa.

$$y'=f(y)$$

- f is at least Lipschitz or C^1 and computable;
- Cauchy-Lipschitz Theorem: existence and unicity of solutions;
- ▶ ~ Turing machine simulation and vice-versa.

Extended framework:

- what happens if f is (only) continuous?
- Cauchy-Peano-Ascoli Theorem: existence but non unicity of solutions;

$$y'=f(y)$$

- f is at least Lipschitz or C^1 and computable;
- Cauchy-Lipschitz Theorem: existence and unicity of solutions;
- ▶ ~ Turing machine simulation and vice-versa.

Extended framework:

- what happens if f is (only) continuous?
- Cauchy-Peano-Ascoli Theorem: existence but non unicity of solutions;

Non unicity: a classical counter-example

Solutions over \mathbb{R} of f continuous such that:

$$\begin{cases} x' = f(x) \\ x(0) = 0 \end{cases} \text{ with } \begin{cases} f(x) = 3x^{2/3} \\ f(0) = 0 \end{cases} :$$

all functions $y_{-a,b}$ with $a,b \in \mathbb{R}^+ \cup \{+\infty\}$, where

$$y_{a,b}(t) = \begin{cases} 0 & \text{if } -a \le t \le b \\ (t+a)^3 & \text{if } t < -a \\ (t-b)^3 & \text{if } t > b \le a \le b \end{cases}$$

$$y'=f(y)$$

- f is at least Lipschitz or C^1 and computable;
- Cauchy-Lipschitz Theorem: existence and unicity of solutions;
- ▶ ~ Turing machine simulation and vice-versa.

Extended framework:

- what happens if f is (only) continuous?
- Cauchy-Peano-Ascoli Theorem: existence but non unicity of solutions;

- Main idea: describing transfinite time computations by (continuous time) dynamical systems and conversely.
- Concrete work: show that

Continuous ordinary differential equations \equiv Infinite time Turing machines.

Motivations:

- Applying gaps properties to Analysis.
- Applying the differential equation description to transfinite computation model.

Main result

Theorem (ITTM are equivalent to C_0 -ODE's)

Any Infinite Time Turing Machine can be simulated by some continuous ordinary differential equation forward unique and vice-versa.

The idea

We consider C_0 -ODE, equations x' = f(x), where

- $ightharpoonup f: \mathbb{R}^n \to \mathbb{R}^n$;
- f is continuous.

Pedagogical illustration:

▶ f piecewise constant.

A trajectory of a Piecewise Constant Derivative System

(0,0) reached in:

- $\blacktriangleright \omega$ steps;
- in finite time 5/2(x + x/2 + x/4 + ...) = 5x.

Recognizing the halting problem of a Turing machine in dimension 4

Consequence: an ordinal time computation can be simulated in finite time.

PCD in continuous time? [Bournez99]

Extending [Asarin-Maler95].

Dimension	Languages semi-recognized
2	$<\Sigma_1$
3	Σ_1
4	Σ_2
5	$oldsymbol{\Sigma}_{\omega}$
6	$\Sigma_{\omega+1}$
7	$oldsymbol{\Sigma}_{\omega^2}$
8	$\Sigma_{\omega^2}^{\perp} onumber \ \Sigma_{\omega^2+1}$
2p+1	$\sum_{\omega^{ ho}-1}$
2p+2	$rac{\Sigma_{\omega^{p-1}}}{\Sigma_{\omega^{p-1}+1}}$

ITTM computational power

What about recognizing ITTMs in dimension at least 5?

Figure: Projective hierarchy

Here we have talked about PCD \cdots what about x' = f(x) with f continuous?

We want:

- to use continuous functions
- ▶ to compute using ordinals

Accelerate an everywhere continuous dynamic.

- ▶ But still with *f* non-smooth on the whole space.
- ► Main construction: "Petard"

But for x' = f(x) with f continuous, solutions exist necessarily but may be non unique.

Non unicity and procrastination

Non unicity and procrastination: an illustration

Solutions over \mathbb{R} of f continuous such that:

$$\begin{cases} x' = f(x) \\ x(0) = 0 \end{cases} \text{ with } \begin{cases} f(x) = 3x^{2/3} \\ f(0) = 0 \end{cases} :$$

all functions $y_{-a,b}$ with $a,b \in \mathbb{R}^+ \cup \{+\infty\}$, where

$$y_{a,b}(t) = \begin{cases} 0 & \text{if } -a \le t \le b \\ (t+a)^3 & \text{if } t < -a \\ (t-b)^3 & \text{if } t > b \le a \le b \end{cases}$$

Computing with ordinals

We restrict to:

- non-procrastinating trajectories:
 - ▶ Basic observation: There is a trajectory from $x(0) = x_0$ to some point x^* iff there is some non-procrastinating trajectory from $x(0) = x_0$ to x^* .
- forward-unique:
 - locally unicity holds in terms of future for non-procrastinating trajectories

We want:

- to use continuous functions
- ▶ to compute using ordinals

Ordinals

Definition (Ordinal)

Transitive well-ordered set for the membership relation.

$$\begin{array}{c} 0 := \emptyset \\ 1 := \{0\} = \{\emptyset\} \\ & \dots \\ \omega := \{0, 1, 2, 3, \dots\} \\ \omega + 1 := \{0, 1, 2, 3, \dots, \omega\} \\ & \dots \\ & \dots \\ \omega . 2 := \\ \{0, 1, 2, \dots, \omega, \omega + 1, \omega + 2 \dots\} \end{array}$$

- ▶ If α is an ordinal, then $\alpha \cup \{\alpha\}$, denoted $\alpha + 1$ is called successor of α and is an ordinal;
- ▶ let A be a set of ordinal numbers, then $\alpha = \bigcup_{\beta \in A} \beta$ is a limit ordinal.

Transfinite time computation models

- Ordinals as time for computation.
- Peculiar ordinal properties.
- ▶ Different computation models: register machines, Turing machines, ordinal-tape Turing machines . . .
- Proof of mathematical properties from an algorithmic point of view.

Structure of infinite time Turing machines (ITTM)

- 3 right-infinite tapes
- a single head
- ▶ binary alphabet {0,1}

Configuration

- additional special limit state lim
- computation steps are indexed by ordinals

Operating an ITTM

Configuration at $\alpha + 1$.

 $t = 420 \ 0 \ 1 \ 0 \ 0 \ 1 \ 0 \ 0 \ \cdots$

 \sim

Configuration at α .

$$t = 007 \ 0 \ 0 \ 1 \ 1 \ 1 \ 0 \ 0 \ \cdots$$

Operating an ITTM

Configuration limit:

- head: initial position;
- state: lim;
- each cell: lim sup of cell values before.

Some litterature

- ▶ Machines halt when they reach the halting state.
- ► Either an ITTM halts in a countable numer of steps, either it begins looping in a **countable number of steps** ([HL00]).
- ▶ WO is decidable by an ITTM.
- ► Every Π_1^1 and Σ_1^1 set is decidable by an ITTM.

Peculiar ITTM ordinals

Halting on input $000... \rightarrow$ two natural notions of ordinals.

Definition (Clockable ordinal)

 α clockable: there exists an ITTM that **halts** on input 000 . . . in exactly α steps of computation.

Definition (Writable ordinal)

 α writable: there exists an ITTM that writes a code for α on input 000 . . . and halts.

Theorem (Welch [Wel09])

The supremum of the clockable ordinals is equal to the supremum of the writable ordinals. It is called λ .

 λ is a rather large countable recursively inacessible ordinal. . .

Gap

There exist writable ordinals that are not clockable such that:

- they form intervals;
- these intervals have limit sizes.

Definition (Gap)

Intervals of not clockable ordinals.

size

Proof of gap existence

Simulation of all programs on input 0. In blue: halting programs. In red: limit step, begins a gap?

We want:

- to use continuous functions
- ▶ to compute using ordinals

Menu

Introduction

How to simulate an ITTM by a $\mathcal{C}_0\text{-}\mathsf{ODE}$

How to simulate a C_0 -ODE by an ITTM

Perspectives

Simulation of an ITTM by a C_0 -ODE

- successor case: classical Turing machine
- limit case: accelerating the computation to compute the limit tape.

Simulation of an ITTM by a C_0 -ODE

- successor case: classical Turing machine
- limit case: accelerating the computation to compute the limit tape.

Successor case

- discrete time dynamical system;
- differential equations.

Successor case: Turing Machines

- ▶ Let M be some one tape Turing machine, with *m* states and 10 symbols.
- ▶ If

...
$$B B B a_{-k} a_{-k+1}$$
... $a_{-1} a_0 a_1$... $a_n B B B$...

is the tape content of M, it can be seen as

$$y_1 = a_0 a_1 ... a_n$$

 $y_2 = a_{-1} a_{-2} ... a_{-k}$ (1)

► The configuration of M is then given by three values: its internal state *s*, *y*₁ and *y*₂.

Successor case: Alternative view of a Turing machine

$$y_1 = a_0 10^{-1} + a_1 10^{-2} + ... + a_n 10^{-n-1} y_2 = a_{-1} 10^{-1} + a_{-2} 10^{-2} + ... + a_{-k} 10^{-k}.$$
 (2)

Turing Machine	PAM
State Space	State Space
$\{q_1,q_2,\cdots,q_m\} imes \Sigma^*$	$[1,m+1]\times[0,1]$
State $(q_i, a_{-m}a_{-1}, a_0a_n)$	State $x = s + y_2$
q_1 : if 2 is read, then write 4; goto q_2	$\begin{cases} x := x+1 \\ y_1 := y_1 + \frac{2}{10} \end{cases} \text{ if } \begin{cases} 1 \le x < 2 \\ \frac{2}{10} \le y_1 < \frac{3}{10} \end{cases}$
if 3 is read, q ₅ : then move right; goto	$\begin{cases} x := \frac{x-5}{10} + \frac{3}{10} + 1 \\ y := 10 * y - 3 \end{cases} \text{ if } \begin{cases} 5 \le x < 6 \\ \frac{3}{10} \le y < \frac{4}{10} \end{cases}$
q ₃ : if 5 is read, then move left; goto q ₇	$\begin{cases} x &:= 10(x-3)-j+7 \\ y &:= \frac{y}{10}+\frac{j}{10} \\ &\text{if } \begin{cases} 3+\frac{j}{10} \leq x < 3+\frac{j+1}{10} \\ \frac{5}{10} \leq y_1 < \frac{6}{10} \\ &\text{for } j \in \{0,1,\dots,9\}. \end{cases}$

 $f(t) = (x(t+1), y_1(t+1))$ piecewise affine \rightarrow can be made smooth.

Iterating a function with an ODE

$$z_1(t) = (x(t), y(t))$$

We want to alternate $z_2 := f(z_1)$, $z_1 := z_2$.

Iterating a function with an ODE

$$z_1(t) = (x(t), y(t))$$

We want to alternate
$$z_2 := f(z_1)$$
, $z_1 := z_2$. \rightarrow Branicky's clock (1995).

The solution of $y' = c(g - y)^3 \phi(t)$:

- converges at t = 1/2 the goal g;
- with some arbitrary precision;
- ▶ independantly from initial condition at t = 0;
- ▶ this roughly does y(1/2) := g.

The following system is a solution:

$$\begin{cases} z'_1 = c_1(z_2 - z_1)^3 \theta(-\sin(2\pi t)) & \begin{cases} z_1(0) = x_0 \\ z'_2 = c_2(f(z_1) - z_2)^3 \theta(\sin(2\pi t)) \end{cases} & \begin{cases} z_1(0) = x_0 \\ z_2(0) = x_0 \end{cases}$$

considering functions:

- θ such that $\theta(x) = 0$ if $x \le 0$;
- $\theta(x) = x^2 \text{ if } x > 0.$

Illustrative example: $z_1(t+1) := 2 * z_1(t)$

We want to alternate $z_2 := f(z_1)$, $z_1 := z_2$. Here $f = " \times 2"$.

Simulation of iterations of $h(n) = 2^n$ by ODEs.

Illustrative example: $z_1(t+1) := 2 * z_1(t)$

We want to alternate $z_2 := f(z_1)$, $z_1 := z_2$. Here $f = " \times 2"$.

Simulation of iterations of $h(n) = 2^n$ by ODEs.

Any Turing machine can be simulated by iterating as above.

Simulation of an ITTM by a C_0 -ODE

- successor case: classical Turing machine
- limit case: accelerating the computation to compute the limit tape.

Limit case: Aim

- compute the limit of a computation;
- send the result to the next successor simulation computation.

Limit case: Aim

- compute the limit of a computation;
- send the result to the next successor simulation computation.

Continuous petard: a change of variables · · ·

Time + space

· · · to obtain an "accumulation"

Build a C_0 -ODE such that its trajectories:

- ▶ start from $X(0) = (x, x_0)$;
- are simulating the previous ones;
- ▶ in a time bounded by 1.

Content of the limit tape

Limit step: content of the limit tape = computation of a serie;

- some of the variables go to 0;
- some others encode the value of the series.

Content of the limit tape: the limit convention

- Emulating a lim sup is not easy.
- ▶ Equivalent easier convention: at limit ordinal time ρ , if μ is the ordinal written in the ordinal tape then the content of a cell of limit tape is 1 (and 0 otherwise) iff it was already 1 at a time $\mu < \pi < \rho$.

Limit on the encodings = limit on the tapes.

Limit case: aim

- compute the limit of a computation;
- send the result to the next successor simulation computation.

Path between two petards

▶ The result of the computation by the first petard, obtained by some real number p_1 (encodinga limit tape), is sent to the second.

Nested petards

- ▶ Imbrication of petards in a fixed dimension space.
- ▶ Different from PCD where limits necessarily imply that dimension must increase.

Menu

Introduction

How to simulate an ITTM by a C_0 -ODE

How to simulate a $\mathcal{C}_0\text{-}\mathsf{ODE}$ by an ITTM

Perspectives

Inversion of petards

Idea: simulate the dynamics in the other direction.

But · · ·

We want an algorithm to solve $\mathcal{C}_0\text{-}\mathsf{ODE}$, but:

- non-unicity of the solutions;
- continuous and general equation.

Existential point of view

If a solution exists, ten thousand monkeys will finish to find it!

The ten thousand Monkeys algorithm

- ten thousand monkeys algorithm of [CG09];
- covering the solution by a finite amount of boxes.

The ω -Monkeys algorithm

- extended version to output solutions using ITTM;
- covering the solution by an ordinal amount of boxes.

Main result

Theorem (ITTM are equivalent to C_0 -ODE's)

Any Infinite Time Turing Machine can be simulated by some computable (hence continuous) ordinary differential equation forward uniqueand vice-versa.

Consequences

Continuous ordinary differential equations \equiv Infinite time Turing machines.

Consequences

- Every non-procrastinating infinite time trajectory of a C₀-ODE either halts or repeats itself in countably many steps.
- WO is decidable by some computable (hence continuous) ordinary differential equation.
- Every Π_1^1 set is decidable by some computable (hence continuous) ordinary differential equation. Hence, every Σ_1^1 set is decidable by some computable (hence continuous) ordinary differential equation.

Menu

Introduction

How to simulate an ITTM by a C_0 -ODE

How to simulate a C_0 -ODE by an ITTM

Perspectives

Back to ITTM: gaps in computation times

Consequences and questions

- ▶ Are there gaps in the C_0 -ODE?
- Can we define only countable ordinals?
- Applying transfinite techniques to Analysis.
- Transposing Analysis questions to transfinite computations.
- 2 dual views for the same computability questions.
- discrete transfinite time = continuous time.

Thank you for your attention.

Some references:

P. Collins and D.S. Graça.

Effective Computability of Solutions of Differential Inclusions The Ten Thousand Monkeys Approach.

Journal of Universal Computer Science, 15(6):1162–1185, 2009.

Joel D. Hamkins and Andrew Lewis. Infinite time turing machines. Journal of Symbolic Logic, 65(2):567-604, 2000.

Philip D. Welch.

Characteristics of discrete transfinite time turing machine models: Halting times, stabilization times, and normal form theorems.

Theoretical Computer Science, 410(4-5):426–442, 2009.

Encoding countable ordinals

Countable ordinal = well order on \mathbb{N} .

Encoding countable ordinals by reals:

Let < be an order on the natural numbers.

The real r is a code for the order-type of < if, for $i = \langle x, y \rangle$, the i-th bit of r is $\mathbf{1}$ if and only if x < y.

Example: $\omega.2 = \omega + \omega \Rightarrow$ even integers lower than odd integers.

$$0 = \langle 0, 0 \rangle \ \mathbf{1} = \langle 0, 1 \rangle \ \cdots \ r = 0_0 1_1 0_2 0_3 0_4 1_5 0_6 1_7 1_8 1_9 1_{10} \cdots$$

Arithmetical hierarchy

- $ightharpoonup \Sigma_1 = \text{Recursively enumerable sets.}$
- Σ_2 = Sets recursively enumerable in a set in Σ_1 .
- $\Sigma_3 = \text{Sets}$ recursively enumerable in a set in Σ_2 .
- **.** . . .
- ▶ Σ_{k+1} = Sets recursively enumerable in a set in Σ_k .

Hyper-arithmetical hierarchy

- $ightharpoonup \Sigma_1 = \text{Recursively enumerable sets.}$
- **...**
- ▶ Σ_{k+1} = Sets recursively enumerable in a set in Σ_k .
- ullet $\Sigma_{\omega}=$ Sets recursively enumerable in a diagonalisation of $\Sigma_{\gamma<\omega}$
- $ar{\Sigma}_{\omega+1} = \mathsf{Sets}$ recursively enumerable in a set in Σ_ω
- $ightharpoonup \Sigma_{lpha=\lim\gamma}=$ Sets recursively enumerable in a diagonalisation of $\Sigma_{\gamma<lpha}.$
- lacksquare $\Sigma_{lpha+1}=$ Sets recursively enumerable in a set of Σ_{lpha}