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I The Shannon-McMillan-Breiman Theorem recovers the entropy of

an ergodic measure from almost every single point. I will explain

the classical theorem, obtained 1949-1959, and its algorithmic

versions based on randomness, obtained from 2009 (Hochman,

Hoyrup).

I I will explain quantum bits (qubits), and finite sequences of them.

Because of entanglement, one needs density operators, which are

statistical superpositions of finite sequences of the same length.

I Infinite sequences of qubits are formalised by coherent sequences of

density operators. They are states on a suitable C∗ algebra.

I Introduce an algorithmic notion of randomness for states (with

Volkher Scholz, arXiv:1709.08422, 2017). Work towards an

algorithmic version of the SMB theorem in the quantum setting.

Do the i.i.d. case. (With Tomamichel.)
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Quantum bits and sequences of quantum bits
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Quantum bits

I A classical bit can be in states 0, 1. Write them as |0〉, |1〉.
I A qubit is a physical system with two classical states. E.g.

- polarisation of photon horizontal/vertical,

- hydrogen atom with electron in basic/excited state.

I A qubit is in a superposition of the two classical states:

α | 0〉+ β | 1〉,

α, β ∈ C, |α|2 + |β|2 = 1. E.g. α = 2/
√

5, β = −i/
√

5.

I Measurement of a qubit w.r.t. standard basis |0〉, |1〉 yields 0

with probability |α|2, and 1 with probability |β|2.
I Measurement forces the system to settle on a classical state.
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Hilbert spaces and their tensor products

I The state of a physical system is represented by a vector in a

finite-dimensional Hilbert space.

I 〈a|b〉 denotes the inner product of vectors a, b, linear in the

second component and antilinear in the first.

I For systems A,B, the tensor product A⊗B is a Hilbert space

that represents the combined system.

I One defines an inner product on A⊗B by

〈a⊗ b|c⊗ d〉 = 〈a|c〉〈b|d〉.
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Finite sequences of quantum bits

I Mathematically, a qubit is simply a unit vector in C2. The

(pure) state of a system of n qubits is a unit vector in the

tensor power

(C2)⊗n := C2 ⊗ . . .⊗ C2︸ ︷︷ ︸
n

.

I We denote the standard basis of C2 by |0〉, |1〉. The standard

basis of (C2)⊗n is given by n-bit strings: it consists of vectors

|a1 . . . an〉 := |a1〉 ⊗ . . .⊗ |an〉.
I The state of the system of n qubits is a linear superposition of

them. Example: n = 2, “maximally entangled” state
1√
2
|00〉+ 1√

2
|11〉.
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Mixed states, or density operators
So far we have considered “pure” states |ψ〉 viewed as unit vectors

in (C2)⊗n. Let |ψ〉〈ψ| denote the orthogonal projection onto the

subspace spanned by |ψ〉, fixing |ψ〉.

A mixed state is a convex linear combination∑2n

i=1 pi|ψi〉〈ψi|

for pairwise orthogonal pure states ψi. E.g. 1
3
|0〉〈0|+ 2

3
|1〉〈1| is a

mixed state where n = 1.

Recall that for an operator S on A, the trace is

Tr(S) = sum of diagonal of S = sum of eigenvalues of S.

A mixed state is the same as a positive Hermitean operator S on

(C2)⊗n with Tr(S) = 1 (aka density operator).
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Partial trace TB : L(A⊗B)→ L(A)
Recall: Given systems (finite dimensional Hilbert spaces) A,B, the

tensor product A⊗B is a Hilbert space that represents the combined

system. L(A) denotes the space of the linear operators on A.

The partial trace TB is the unique linear operator

L(A⊗B)→ L(A) such that for R ∈ L(A), S ∈ L(B), we have

TB(R⊗ S) = R · Tr(S).

I Example: Let A = B = C2. The partial trace TB corresponds to

deleting the last qubit. E.g. TB(|10〉〈10|) = |1〉〈1|.

I Let’s consider again the EPR state 1√
2
(|00〉+ |11〉), now viewed as

projection β in L(A⊗B).

I We have TB(β) = 1
2 |0〉〈0|+

1
2 |1〉〈1| which is a mixed state!

Mixed states are necessary to be able to delete a qubit.
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Erasing last qubit of a finite sequence

Recall: (C2)⊗n has a base consisting of the vectors |σ〉, for σ a

string of n classical bits.

Let us arithmetically describe the partial trace operation

Tn : M2n+1 →M2n (“erase the last qubit”).

Bit strings are seen as numbers written in “reverse” binary: the

least significant digit on the left.

For a 2n+1 × 2n+1 matrix M = (aσr,τs) where |σ|, |τ | = n, r, s are

bits, N = Tn(M) is given by the 2n × 2n matrix

bσ,τ = aσ0,τ0 + aσ1,τ1.
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Infinite coherent sequences of density operators
M2n denotes the set of 2n × 2n matrices over C. We have a partial

trace operation Tn : M2n+1 →M2n (“erase the last qubit”).

“Quantum Cantor space” S(M∞) consists of the sequences (ρn)n∈N
of density operators in M2n such that Tn(ρn+1) = ρn for each n.

I This is the set of states (positive linear functionals of norm 1) on

the computable C∗ algebra M∞ = limnM2n , known as the CAR

algebra (for “canonical anticommutation relations”).

I S(M∞) is compact in the weak-∗ topology (the weakest topology

for which all the maps ρ→ ρ(a), a ∈M∞, are continuous), and has

a convex structure.

I It also has dynamics (shift map) T , erasing the first qubit.
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Embed Cantor space into quantum Cantor space

Recall: Given a 2n+1 × 2n+1 matrix M = (aσr,τs) where |σ|, |τ | = n, and

r, s are bits. N = Tn(M) is given by the 2n × 2n matrix

bσ,τ = aσ0,τ0 + aσ1,τ1.

I A classical bit sequence Z turns into (ρn)n∈N where the bit

matrix B = ρn ∈M2n satisfies bσ,τ = 1⇐⇒ σ = τ = Z � n.

I If all the ρn are diagonal matrices, we describe a measure on

Cantor space. Classical bit sequences are Dirac measures.
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Shannon-McMillan-Breiman theorem

1949 — 1955 — 1959

see Logic Blog 2017, linked from my web site, for more background
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A.e. convergence of empirical entropy
Let A be an alphabet, and let ω denote an element of A∞. The

“log-likelihood” random variables are defined by

hn(ω) = − 1

n
log2 µ[ω � n.]

The SMB theorem says that the entropy of an ergodic measure can

be seen from almost every trajectory ω as the limit of the

(normalised) empirical entropies hn(ω).

It relies on a lemma that holds for T -invariant measures in general:

Let µ be an invariant measure for the shift operator T on the space

A∞. Then for µ-a.e. x, h(x) = limn hn(x� n) exists.
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Ergodic measure
Recall that µ is ergodic iff every µ-integrable function f with

f ◦ T = f is constant µ-a.s. An equivalent condition: for u, v ∈ A∗,

lim
n

1

n

n−1∑
k=0

µ([u] ∩ T−k[v]) = µ[u]µ[v].

Bernoulli measure on A∞ is ergodic (and in fact, strongly mixing).

For ergodic µ, the entropy h(µ) is defined as limnHn(µ), where

Hn(µ) = − 1

n

∑
|w|=n

µ[w] log µ[w].

I In other words, Hn(µ) = Eµhn.

I Hn+1(µ) ≤ Hn(µ) ≤ 1 so that the limit exists.
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The SMB theorem
“For ergodic measures, µ-a.s. the empirical entropy equals h(µ).”

Theorem (SMB theorem)

Let µ be an ergodic invariant measure for the shift operator T on

the space A∞. For µ-a.e. ω we have limn hn(ω) = h(µ).

Proof: We already know that for µ-a.e. ω, h(ω) = limn hn(ω � n) exists.

I Now, first one checks that since µ is T -invariant, we have

h(Tω) ≤ h(ω) for each ω.

I Next, from the Poincare recurrence theorem it follows that

B = {x : h(Tx) < q < h(x)} is a null set for each q (because we

can’t return to B outside a null set). So h is actually invariant:

h(Tω) = h(ω) for µ-a.e. ω.

I Also, h ∈ L1(µ) by the dominated convergence theorem. So if µ is

ergodic then h(ω) has some constant value, for µ-a.s. ω.

I A final step is then to show that this constant value equals H(µ).
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Instructive: a direct proof of SMB in the i.i.d.

case

Let µ be a Bernoulli measure on A∞, giving probability pi to the

event that symbol ai is in a particular position, A = {a1, . . . , ak}.
For µ-a.e. ω we have limn hn(ω) = h(µ).

I By ki,n(ω) we denote the number of occurences of the symbol

ai in ω � n.

I By independence, we have

hn(ω) = − 1

n
log

∏
i

p
ki,n(ω)
i = − 1

n

∑
i

ki,n(ω) log pi.

I By the strong law of large numbers, for µ-a.e. ω, ki,n(ω)/n

converges to pi.
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An algorithmic version of the SMB theorem

We now assume that we can compute µ[u] uniformly from a

string u. This holds e.g. for the Bernoulli measure when the pi are

all computable reals.

Thm (Hochman 2009, Hoyrup 2012)

Let µ be a computable ergodic invariant measure for the shift

operator T on the space A∞.

If ω is µ-Martin-Löf random, then limn hn(ω) = h(µ).
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Quantum SM(B?) theorem

2004, recent

Again see Logic Blog 2017 for more background
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Recall quantum setting

I We only consider the analog of the case of binary alphabet.

I “Quantum Cantor space” consists of the state set S(M∞),

which is a convex, compact, connected set.

I Given a finite sequence of qubits, “deleting” a particular one

generally results in a statistical superposition of the remaining

ones.

I This is why S(M∞) consists of coherent sequences of density

matrices in M2n(C) (which formalise such superpositions)

rather than just of sequences of unit vectors in (C2)⊗n.

I Dynamics is given by shift operator (which we interpret as

deleting the first qubit).

Notation: given state ρ, write ρn for ρ�M2n
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Quantum Shannon-McMillan theorem
I Bjelakovich et al.(2004) provided a quantum version of the

Shannon-McMillan theorem, building on work of Hiai and

Petz.

(They worked with bi-infinite sequences, which makes little

difference here, as a stationary process is given by its marginal

distributions on the places from 0 to n, for all n.)

I They first convert the classical SM theorem into an equivalent

form which doesn’t directly mention measure; rather, they

have “chained typical sets” which are coherent sequences of

Shannon’s typical sets. This is then transferred to the

quantum setting.
I The reason they avoided the full Breiman version is that on

S(M∞) there has been so far no reasonable way to say “for

almost every”.
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Quantum ML-randomness
Let µ be a computable shift-invariant state on M∞.

I A quantum Σ0
1 set has the form G = 〈pn〉n∈N, where pn ∈M2n

is a uniformly computable projection with algebraic matrix

entries, and pn ≤ pn+1. For a state ρ, let

G(ρ) = supn Tr(ρnpn) = supn ρ(pn) (the “set” is [0, 1]-valued).
I A quantum Martin-Löf test relative to µ is a uniformly

computable sequence 〈Gr〉r∈N of quantum Σ0
1 sets such that

µ(Gr) ≤ 2−r.
I State ρ fails test 〈Gr〉r∈N at level δ > 0 if Gr(ρ) > δ for each r.

Else ρ passes at level δ.
I State ρ is quantum Martin-Löf random if it passes each test

〈Gr〉r∈N at each level: infrGr(ρ) = 0.

Fact. There is a universal quantum ML-test relative to µ.
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Quantum ML-randomness: facts and examples
The tracial state τ is random, even though it corresponds to the

uniform measure on Cantor space and hence, from a different point of

view, is computable.

Theorem (with Scholz)

I Every ML-random bit sequence is quantum ML-random.

I We can generalise this to measures ψ (i.e. diagonal states): if

ψ(Gm)→m 0 for each classical ML-test 〈Gm〉m∈N then ψ is

quantum ML random.

Following my suggestion, Tejas Bhojraj (a student of Joseph Miller in

Madison) showed that the quantum analog of Solovay tests yields the

same notion. Using this, he showed that the quantum ML-random

states form a convex set. (What are the extreme points?)
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Effective quantum SMB theorem?
A state µ on M∞ is called ergodic if it is an extreme point on the

convex set of shift invariant states.

I The von Neumann entropy of a density matrix S is

H(S) = −Tr(S logS).
I By concavity of log the following exists:

h(µ) = lim
1

n
H(µn)

Conjecture (and some special cases are known)

Let µ be an ergodic computable state on M∞. Let ρ be a state

that is quantum ML-random with respect to µ. Then

h(µ) = − lim
1

n
Tr(ρn log µn).
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A pathway for settling the conjecture

h(µ) = − lim
1

n
Tr(ρn log µn) ???

Go through more and more general cases for both ρ and µ.

I The computable state µ can be the uniform measure, i.i.d. but

quantum, a computable ergodic measure, and finally any

computable ergodic state.

I The random state ρ can be a bit sequence that is ML random

w.r.t. µ, a µ-random measure on 2N, and finally any state that

is quantum ML-random relative to µ.

I The combination that: ρ is a bit sequence, and µ a measure, is

the effective version of classical SMB theorem.
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The case of i.i.d µ but general µ-random ρ
I To say that µ (seen as a sequence of RV’s) is i.i.d. means that

for some fixed computable v ∈ S(M2), i.e. a 2× 2 density

matrix, we have µ�M2n = v⊗n.

I Note that the partial trace removes the “final v”, so this

“infinite tensor power v⊗∞” indeed can be seen as a computable

state on M∞.

I There is a computable unitary u ∈M2 such that uvu∗ is

diagonal, with p, 1− p on the diagonal, p is computable.

I The von Neumann entropy is

h(µ) = −p log p− (1− p) log(1− p).

Theorem
For i.i.d. µ we have − limn

1
n
Tr(ρn log µn) = h(µ).
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Preparation of proof: diagonalise

For i.i.d. µ we have − limn
1
n
Tr(ρn log µn) = h(µ).

I qML(µ)-randomness is closed under the unitary of M∞ which

is obtained applying conjugation by u∗ “qubit-wise”.

I So replacing ρ by its conjugate we may as well assume that

the 2× 2 density matrix v is diagonal.

Fix δ > 0. Let Pn,δ be the projection in M2n corresponding to the

set of bitstrings with empirical entropy close to h(µ):

{x : |x| = n ∧ | − 1
n

log µ[x]− h(µ)| ≤ δ}.

P⊥n,δ corresponds to the other strings.
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Preparation of proof: Chernoff bounds

For i.i.d. µ we have − limn
1
n
Tr(ρn log µn) = h(µ).

I Since µ is a product measure, log µ[x] is a sum of n

independent random variables looking at the single bits of x,

and the expectation of − 1
n

log µ[x] is h(µ).

I The usual Chernoff bound yields µ(P⊥n,δ) ≤ 2 exp(−2nδ2).

I Let Gm,δ =
⋃
n>m P

⊥
n,δ where these projectors are now viewed

as clopen sets in Cantor space, so that Gm,δ determines a

classical µ-ML-test.

I Since ρ is qML random w.r.t. µ, we have limmGm,δ(ρ) = 0.
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The case of i.i.d µ but general µ-random ρ

For i.i.d. µ we have limn− 1
n
Tr(ρn log µn) = h(µ).

Fix δ > 0. We insert the identity term I2n = P⊥n,δ + Pn,δ between

the two factors. By linearity of the trace, the limit equals

limn− 1
n
Tr(ρnP

⊥
n,δ log µn) + limn− 1

n
Tr(ρnPn,δ log µn).

We look separately at both resulting limits.
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Left hand side

lim
n
− 1

n
Tr(ρnP

⊥
n,δ log µn)︸ ︷︷ ︸+ limn− 1

n
Tr(ρnPn,δ log µn).

For positive operators A,B we have Tr(AB) ≤ ||A||1 · ||B||∞ where

||A||1 is the sum of the eigenvalues, and ||B||∞ is their maximum.

− 1
n
Tr(ρnP

⊥
n,δ log µn) ≤ 1

n
||P⊥n,δρnP⊥n,δ||1 log µn||∞.

I || 1
n

log µn||∞ has a bound that depends only on p

I for large enough n we have ||P⊥n,δρnP⊥n,δ||1 ≤ 2δ since ρ passes

the quantum ML test.

So the left hand limit is 0.
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Right hand side

limn− 1
n
Tr(ρnP

⊥
n,δ log µn) + lim

n
− 1

n
Tr(ρnPn,δ log µn)︸ ︷︷ ︸.

We show that the right hand limit is in the interval

[h(µ)(1− 2δ), h(µ) + δ].

This goes to h(µ with δ → 0, as required.

I Use that µn is a diagonal matrix in M2n with pk(1− p)n−k in

the position (σ, σ), where the binary string σ of length n has k

0s.

I By definition of Pn,δ, ||Pn,δ(− 1
n

log µn)− h(µ)Pn,δ||∞ ≤ δ.

(See 2017 Logic Blog, page 16, for the full calculation.)
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Random states satisfy the law of large number

The strong law of large numbers says that for B(p) distributed i.i.d.

random variables (Xi),
1
n

∑n−1
0 Xi goes to p almost surely.

Let µ be an i.i.d computable state with eigenvalues p, 1− p, and let

ρ be quantum ML-random relative to µ.

For i < n let Sn,i be the subspace of C2n generated by those

vectors |σ〉 with σi = 1. We have

limn
1
n

∑
i<n Tr(ρnSn,i) = p

(Sn,i is identified with its orthogonal projection).
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