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Dynamical models of computations

Two types of models of computation:
I Functional models, e.g. recursive functions, λ-calculus;
I Dynamical models, e.g. Turing machines, counter machines, cellular

automata.

Classical dynamical models are symbolic dynamical systems: continuous
transformations of AN or AZ (or a subset thereof) with the Cantor topology,
where A is a finite alphabet.

From here:

Which dynamical systems are models of computation?
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Turing-universality

A symbolic dynamical system is Turing-universal (or Turing-complete, or is
a model of computation. . . ) if:

I It can embed arbitrary / universal computation;

I Its problem is undecidable (or as hard as for Turing machines);

(and “everything is undecidable”, i.e. Rice-style theorem)

I It is universal à la Blondel-Delvenne-Kurka;
I The bounded-time prediction problem is P-complete;
I Its single limit points are the same as Turing machines;

(and maybe sets of limit points as well)

I It is able of “robust” computation, i.e. on random points or subjected to
noise.
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Dynamical models of computation

Definition
The shift action is defined as σ(x)i = xi+1.

Standard (moving-tape) Turing machine
Given two finite set of states Q and symbols A and a decision function

δ : Q ×A 7→ Q ×A× {−1, 0, 1},

For q, x ∈ Q ×AZ, TM(q, x) is determined as follows:
I The new state is δ1(q, x0);
I The new configuration is obtained by replacing x0 by δ2(q, x0) and

shifting by δ3(q, x0).
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Dynamical models of computation

Cellular automata
A cellular automaton is a continuous, σ-commuting transformation of AZ.

Equivalently, it can be defined by a local rule over a finite window:
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Halting and reachability problems

Halting problem

Input An finite word;

Output Does the Turing machine eventually halt on this input?

Theorem (Turing 36)
The halting problem for Turing machines is undecidable.

Theorem (Rice 51)
Any nontrivial property on the set of input words on which the Turing machine
halts is undecidable.
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Halting and reachability problems

Point-to-set reachability problem for Turing machines

Input An finite point x ;

Output Does TM t (x) eventually reach the set [h]?

Theorem (Turing 36)
The point-to-set reachability problem on finite points for Turing machines is
undecidable.
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Halting and reachability problems

Point-to-set reachability problem for Turing machines

Input An finite point x ;

Output Does TM t (x) eventually reach the set [h]?

Theorem (Turing 36)
The point-to-set reachability problem on finite points for Turing machines is
Σ0

1-complete.

Theorem (Rice 51)
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halts is Σ0
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Input/output discussion

Universal system The input is a description of the initial point

Universal class The input is a description of the system + the initial point.

Choice of the input family

I Models of computation work on a countable family of states (usual
choices: finite, σ-periodic, almost σ-periodic);

I Choosing an arbitrary countable family may lead to absurd notions
(example later).
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Cellular automata

Definition (Davis 56)
A system is Turing-universal if its halting problem is Σ0

1-complete.

Theorem (Banks / Smith III 71)
The point-to-point reachability problem on finite points for cellular automata is
Σ0

1-complete.

Theorem (Cook 00)
The point-to-point reachability problem on almost periodic points for Rule 110
is Σ0

1-complete.

(point-to-set and Rice-style theorem follow)
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Cautionary tale I

Can we generalize this intuition to an arbitrary countable dense family
(Hemmerling 02)?

Counterexample (Durand, Róka 99)
Take the full shift ({0, 1}Z, σ) and the set of computable points as input
states. Fix:

{xn = 1n0t 1∞ : the n-th TM stops in t steps} (possibly t =∞)

The point-to-set reachability problem:

Input A point xn;

Output Is [01] reachable under the action of σ?

is Σ0
1-complete.

Another problem
The infinite precision on the choice of the initial input might be unphysical and
lead to non-robust undecidability results.
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Universality à la Delvenne - Kurka - Blondel

A definition in the spirit of set-to-set reachability.
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Model-checking problem (on the trace)

Input A finite automaton labelled by
elements of A;

Output Does the automaton reach a
halting state for some trajectory?

Equivalently: is the intersection of the trace
language w/ some regular language empty?

Definition (Delvenne, Kurka, Blondel 05)
A system is Turing-universal if its model-checking problem is Σ0

1-complete.
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P-completeness

Definition
A problem is P-complete if any problem in P can be reduced to it using
logarithmic space.

Proposition
The bounded-time point-to-set reachability problem for Turing machines:

Input An input word

Output Does the machine reach [h] before time t?

is P-complete.

Theorem (Neary, Woods 06)
The bounded-time, point-to-set reachability problem for almost periodic input
points in the rule 110 cellular automaton is P-complete.
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Cautionary tale II

A Turmite is a two-dimensonal Turing machine on the alphabet A = Z/nZ
defined by a rule A → {R, L}.

At each step:
I it increases x0 by one;
I it shifts the configuration by (−1, 0);
I it rotates the configuration by ±90o

(depending on the rule).

Theorem (Maldonado, Gajardo, H., Moreira 18)
Bounded-time point-to-set reachability on almost periodic or finite points for
Turmites is P-complete (except for some trivial rules).

Conjecture (Langton)
For the rule RL (at least), the unbounded-time reachability problem on finite
points is decidable.



Cautionary tale II

A Turmite is a two-dimensonal Turing machine on the alphabet A = Z/nZ
defined by a rule A → {R, L}.

At each step:
I it increases x0 by one;
I it shifts the configuration by (−1, 0);
I it rotates the configuration by ±90o

(depending on the rule).

Theorem (Maldonado, Gajardo, H., Moreira 18)
Bounded-time point-to-set reachability on almost periodic or finite points for
Turmites is P-complete (except for some trivial rules).

Conjecture (Langton)
For the rule RL (at least), the unbounded-time reachability problem on finite
points is decidable.



Cautionary tale II

A Turmite is a two-dimensonal Turing machine on the alphabet A = Z/nZ
defined by a rule A → {R, L}.

At each step:
I it increases x0 by one;
I it shifts the configuration by (−1, 0);
I it rotates the configuration by ±90o

(depending on the rule).

Theorem (Maldonado, Gajardo, H., Moreira 18)
Bounded-time point-to-set reachability on almost periodic or finite points for
Turmites is P-complete (except for some trivial rules).

Conjecture (Langton)
For the rule RL (at least), the unbounded-time reachability problem on finite
points is decidable.



Cautionary tale II

A Turmite is a two-dimensonal Turing machine on the alphabet A = Z/nZ
defined by a rule A → {R, L}.

At each step:
I it increases x0 by one;
I it shifts the configuration by (−1, 0);
I it rotates the configuration by ±90o

(depending on the rule).

Theorem (Maldonado, Gajardo, H., Moreira 18)
Bounded-time point-to-set reachability on almost periodic or finite points for
Turmites is P-complete (except for some trivial rules).

Conjecture (Langton)
For the rule RL (at least), the unbounded-time reachability problem on finite
points is decidable.



Cautionary tale II

A Turmite is a two-dimensonal Turing machine on the alphabet A = Z/nZ
defined by a rule A → {R, L}.

At each step:
I it increases x0 by one;
I it shifts the configuration by (−1, 0);
I it rotates the configuration by ±90o

(depending on the rule).

Theorem (Maldonado, Gajardo, H., Moreira 18)
Bounded-time point-to-set reachability on almost periodic or finite points for
Turmites is P-complete (except for some trivial rules).

Conjecture (Langton)
For the rule RL (at least), the unbounded-time reachability problem on finite
points is decidable.



Limit points

Definition?
The points that can be reached as the single limit of TM t (x) for some Turing
machine TM and some finite point x are the ∆0

2-computable points.

Proposition
The points that can be reached as the single limit of F t (x) for some cellular
automaton F and some finite point x are the ∆0

2-computable points.

Corollary (Rice-style theorem)

Input A finite point x

Output Does F t (x) has a limit point that satisfy property P?
is undecidable for any property P .
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Limit measures

Definition?
The probability measures that can be reached as the single limit of µ ◦ TM−t

for some Turing machine TM and initial uniform Bernoulli measure µ are the
∆0

2-computable measures.

Theorem (H., Sablik 14; Delacourt, H. 16)
The probability measures that can be reached as the single limit of µ ◦ F−t

for some cellular automaton F and initial uniform Bernoulli measure µ are the
σ-invariant ∆0

2-computable measures.

(+ set version and Rice-style theorem)
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Cautionary tale III

The topological entropy of a Turing machine is defined as

lim
n→∞

log #Ln

n
,

where Ln is the set of n-letter words appearing in its trace.

Theorem (Delvenne, Blondel 04)
Approximating the entropy of Turing machines:

Input A Turing machine TM and a precision n ∈ N
Output A 2−n-approximation of the entropy of TM.

is an uncomputable problem.

Theorem (Jeandel 13)
The entropy of one-tape Turing machines is computable.
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Conclusion

I ∼50% of this talk due to:

J. C. Delvenne, “What is a universal computing machine?”
(Applied Mathematics and Computation, 2009)

I “Turing-universal system” is ambiguous, but it’s getting clearer
(at least for me, hopefully for you)

I A better point of view could be:

I’ve embedded (some kind of) universal computation, what can I prove?

I Many topics left uncovered: limit set / attractor point of view, dynamical
properties, robustness to noise, other universalities. . .

Questions and remarks are appreciated!
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