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Introduction Motivation

Motivation

An intellect which at a certain moment would know all forces
that set nature in motion, and all positions of all items of which
nature is composed, if this intellect were also vast enough to
submit these data to analysis, it would embrace in a single
formula the movements of the greatest bodies of the universe
and those of the tiniest atom; for such an intellect nothing would
be uncertain and the future just like the past would be present
before its eyes.

— Pierre Simon Laplace, A Philosophical Essay on Probabilities
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Introduction Motivation

The big philosophical question

If we have good enough data/models what can we tell/predict about
nature?

Questions:

Can a digital computer be used to predict properties of some natural
phenomena, before we can observe it?

Are there devices better suited than digital computers for the above
task?

What can we tell (compute) about the world? Is it sufficient to have high
quality data and models? Are (digital) computers Laplace’s demon?
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Ordinary Differential equations Why study ODEs?

Which model should we consider?

Almost every (macroscopic) system which follows the classical
(deterministic) laws of physics can be written in terms of differential
equations.

In particular many systems can be modeled as ordinary differential
equations (ODEs).

Moreover ODEs are better understood from a mathematical
perspective than PDEs.

In this talk we will study ODEs from a computational perspective

What can be computed about ODEs using Turing-like models?
I This talk

What can be computed with models of computation defined with
ODEs? I Olivier Bournez’s talk
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Ordinary Differential equations Why study ODEs?

Computation of the evolution of dynamical systems

Two common problems, with many applications in practice, are to know
the behavior of a dynamical system:

1 At a given time t

2 Near infinity (asymptotic behavior)

Transient 
behavior

Asymptotic 
behavior
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Ordinary Differential equations Computation at time t

For the first case we need to study the computability of the solutions of an
ODE

y ′ = f (y)

over a non-compact domain (note that y ′ = f (t, y) can be reduced to
the above case by replacing t by a new variable x ′n+1 = 1, x(0) = 0).

But isn’t this a trivial task?

No. The standard theory (via Picard iterations) is only guaranteed to
work in a compact, where a Lipschitz constant for f exists

With this Lipschitz constant one is able to compute rigorous bounds
on the error made by the approximation (the bound depends on the
Lipschitz constant)

But what to do in an open, potentially infinite domain, where no
single Lipschitz constant is valid there?
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Ordinary Differential equations Computation at time t

It is possible to show that there is a maximal interval of existence in
the sense that either the solution if defined for all times or it “blows
up” in finite time.

The construction of this interval is as follows: a solution which is
defined in a compact set is extended over and over again to a
“bigger” compact set yielding, in the limit, a unique solution in the
maximal interval of existence.

Alas this procedure is not computable since this limit procedure is not
computable.
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Ordinary Differential equations Computation at time t

Maximal interval of existence

Theorem (G., Zhong, Buescu ’09)

The maximal interval of existence is not computable. We cannot even
decide whether it is bounded. These results hold even if f is analytic.

The solution of{
y ′ = 1

cos2 x
y(0) = 0

is
y(x) = tan(x)

The maximal interval of
existence of the solution is(
−π

2 ,
π
2

)
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Ordinary Differential equations Computation at time t

Computability of ODEs in the maximal interval

Theorem (Cauchy-Peano)

If f is continuous, then the initial-value problem x ′ = f (t, x), x(t0) = x0

has a solution on a neighborhood of x0

The notion of maximal interval of existence still makes sense in this case

Can we still compute the solution (assuming it is unique) over its
whole maximal interval of existence?

Theorem (Collins, G. ’09)

If f is continuous, and y is the unique solution of x ′ = f (t, x), x(t0) = x0,
then the operator which maps (f , t0, x0) to y is computable (you can
compute y(t) on the whole maximal interval)
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Ordinary Differential equations Computation at time t

Idea of the proof

Exhaustive: generate all possible (partial) coverings of the state space
(and of the tangent space)

We can check
(recursively) if a covering
covers the solution

We show that coverings of
arbitrary small diameters
exist

So just keep testing coverings until you find an appropriate one
(Hence the “ten thousand monkeys approach” in the title of this
paper. This is terribly inefficient, but enough for our purposes).
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Ordinary Differential equations Computation at time t

What about computational complexity?

Results for the compact case. The leftmost column has assumptions on
f in y ′ = f (y), y(0) = 0. The two rightmost columns indicate the
complexity of the solution.

Assumptions Upper bound Lower bound

ODE with unique solution Computable Arbitrary high complexity
Lipschitz ODE PSPACE PSPACE
f is of class C 1 PSPACE PSPACE
f is of class C k , k > 1 PSPACE CH
f is analytic polynomial-time polynomial-time

These results were obtained by people such as [Miller ’70], [Ko ’83],
[Müller, ’87] [Kawamura, ’10],[Kawamura et al., ’14]
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Ordinary Differential equations Computation at time t

What about computational complexity?

Can’t we just use the previous results?

No!

This is because previous results are valid on a (time) bounded domain.

Sometimes it is claimed that, by using rescaling techniques, if the
solution of y ′ = f (y) is computable in time O(F (n)) in [0, 1], then it
will also be computable in time O(F (n)) in its maximal interval.

I But this is incorrect!
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Ordinary Differential equations Computation at time t

Example

The solution of
y ′1(t) = y1(t)
y ′2(t) = y1(t)y2(t)

. . .
y ′n(t) = y1(t) · · · yn(t)


y1(0) = 1
y2(0) = 1

. . .
yn(0) = 1

is polynomial-time computable on any (time) bounded set.

However its
solution is

y1(t) = et y2(t) = ee
t−1 yn(t) = ee

. .
.e
et−1

−1

which is obviously not polynomial-time computable on its maximal interval
of definition (R).
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Ordinary Differential equations Computation at time t

In short:

It seems natural that, as t increases, the more computational
resources are needed to compute y(t) with some precision 2−n.

Therefore it seems natural to measure the time needed to compute
y(t) against n and t.

However, in some cases the time t can be bounded (e.g. the case of
an ODE having tan as solution) and we do not know how to tell when
such cases occur (because this problem is not computable).

I Therefore we have to use parametrized complexity (complexity is
measured against one or more extra parameters).
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Ordinary Differential equations Computation at time t

Proposition

If (α, β) is the maximal interval of existence of the solution y of an ODE
y ′ = f (t, y) and β < +∞ then y(t) gets unbounded as t → β

Solution: measure complexity against the length of the solution curve y
between (0, y(0)) and (t, y(t))
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Ordinary Differential equations Computation at time t

Theorem (G., Pouly ’16)

There is a numerical method SolvePIVP such that, for any t ∈ R, ε > 0, if
y satisfies y ′ = p(y), y(t0) = y0, it halts and returns a value
x = SolvePIVP(t0, y0, p, t, ε) such that:

‖x − y(t)‖ 6 ε

the (bit) complexity of the algorithm is bounded by

poly(k, Len(t0, t), log ‖y0‖ , log Σp,− log ε)d

where k is the maximum degree of the components of p, d is the number
of components of p, Σp is the sum of the absolute values of the
coefficients of p, and Len(t0, t) is a bound on the length of the curve y(·)
from the point (t0, y(t0)) to the point (t, y(t)).
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Ordinary Differential equations Computation at time t

Idea behind the proof

Use a variable order method

Use the hypothesis that the function defining the ODE is constituted
by polynomials to get majorants

Use an argument based on Cauchy majorants to establish a lower
bound on the local radius of convergence

Choose the step length |ti+1 − ti | to be a constant fraction of the
estimated radius of convergence

Choose an order of the method ωi in the interval [ti+1 − ti ] based on
the computed majorants

Start with a bound I = 1 for the length of the curve and double it in
each run of the method if it does not succeed (this can be
algorithmically detected).
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Ordinary Differential equations Asymptotic behavior

Computation of the asymptotic behavior of ODEs

In dynamical systems theory there is a great interest in telling what
happens to a system “when time goes to infinity”.

I In general this is a very hard problem!

Related problems can be found in applications (e.g. verification,
control theory):

Given an initial point x0, will the trajectory starting from x0 eventually
reach some “unsafe region” (Reachability)?
How many attractors (“steady states”) a system has? Can we
characterize these attractors? Can we compute their basins of
attractions – the set of points on which the trajectory will converge
towards a given attractor?
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Ordinary Differential equations Computability of attractors

Are attractors (limit sets) computable?

Roughly, attractors are invariant sets to which nearby trajectories
converge. Some types of attractors:

Fixed points

Periodic orbits (cycles)

Strange attractors (Smale’s horseshoe, Lorenz attractor, etc.):
attractors with a fractal structure
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Ordinary Differential equations Computability of attractors

Problem

Given a dynamical system y ′ = f (y), is it possible to compute the set of
states (the non-wandering set NW (f )) to which the dynamics converge
when time goes to infinity?

This is an interesting problem, but...

Except for some very particular classes of systems, it is unknown in
general how NW (f ) looks like

We do know what happens on the (compact) two-dimensional case

The are some theories (still on their early infancy) which try to
address the three-dimensional case

But for dimensions ≥ 4: ????
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Ordinary Differential equations Computability of attractors

The 2-dimensional case

Theorem (Peixoto ’59)

On the two-dimensional disk D = [0, 1]2, the set of structurally stable
systems forms an open and dense set over the class of C 1 dynamical
systems defined over D (i.e. structurally stable systems are generic on
C 1(D)). Moreover, any structurally stable system y ′ = f (y) over D has
the following properties:

NW (f ) consists only of a finite number of periodic orbits and fixed
points

All periodic orbits and equilibria are hyperbolic

There are no saddle connections
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Ordinary Differential equations Computability of attractors

Example: Van der Pol system

{
x ′ = y
y ′ = µ(1− x2)y − x

, where µ = 0.7
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Ordinary Differential equations Computability of attractors

Previous results - fixed points

Theorem (G., Zhong ’11)

Given as input an analytic function f , the problem of computing the
number of equilibrium points of y ′ = f (y) is undecidable, even on
compact sets.

Noncomputability arises from the well-known non-continuity problems
related to finding the zeros of f .

Theorem (G., Zhong ’11)

There is no algorithm which (uniformly) computes the limit set of a
dynamical system defined by an ODE y ′ = f (y) on the two-dimensional
disk D = [0, 1]2.

Idea: use bifurcation phenomena.
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Ordinary Differential equations Computability of attractors

Periodic orbits

Theorem (G., Zhong ’11)

Given as input an analytic function f , the problem of computing the
number of periodic orbits of y ′ = f (y) is undecidable (on R2), even on
compact sets.

Consider the function g defined by

g(k , i) =

{
0 if TMk stops in ≤ i steps with input k
1 otherwise.

Then
∑∞

i=1
g(k,i)

2i
is a computable number.

The computable system given in polar coordinates{
r ′ =

(
r −

∑∞
i=1

g(k,i)
2i

)
(r − 1)

θ′ = 1

has two periodic orbits if the Turing machine TMk halts on input k ,
and has only one periodic orbit otherwise.
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Work on progress with N. Zhong

The limit set NW (f ) is computable for structurally stable systems defined
on the two-dimensional disk D = [0, 1]2.

The set consisting of all fixed points/periodic orbits of f can be upper
semi-computed by discretizing the space into small squares and by
defining a transition function over a finite set. We can then compute
the invariant sets of this discretization.

Structural stability ensures that approximating a system by finite but
arbitrarily accurate approximations will still provide meaningful results.

We can then measure the “diameter” of the approximation to get a
bound on its accuracy
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A small detour: Hilbert’s 16th problem

Hilbert’s 16th Problem

Determine an upper bound on the maximum number of periodic orbits
that a nth degree polynomial ODE{

x ′ = pn(x , y)
y ′ = qn(x , y)

in the plane can have (the original formulation also asks for the relative
position of the periodic orbits).

Problem

Can we uniformly compute the maximum number periodic orbits that a
nth degree polynomial ODE can have?

Non-computability does not imply that no solution exists for Hilbert’s
16th problem.
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What about strange attractors?

Theorem (G., Zhong, Buescu ’12)

The Smale Horseshoe is a computable (recursive) closed set.
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Idea of the proof

We show that the complement of Smale’s horseshoe is computable by
using the following fact (Zhong, 1996): An open subset U ⊆ I is
computable if and only if there is a computable sequence of rational open
rectangles (having rational corner points) in I , {Jk}∞k=0, such that

(a) Jk ⊂ U for all k ∈ N,

(b) the closure of Jk , J̄k , is contained in U for all k ∈ N, and

(c) there is a recursive function e : N→ N such that the Hausdorff

distance d(I \ ∪e(n)
k=0Jk , I \ U) ≤ 2−n for all n ∈ N.

Toulouse 2018 Computing the asymptotic behavior of low-dimensional dynamical systems 28



Ordinary Differential equations Computability of attractors

The Lorenz attractor


x ′ = σ(y − x)
y ′ = x(ρ− z)− y
z ′ = xy − βz

Classical values for parameters: σ = 10, ρ = 28, β = 8/3
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The butterfly effect

However the Lorenz system has sensitive dependence on initial
conditions – i.e. it exhibits the “butterfly effect”: the flutter of a
butterfly’s wing can ultimately cause a typhoon halfway around the
world

This term was coined by E. Lorenz since the Lorenz system represents
a simplified mathematical model for atmospheric convection.
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Some preliminaries

In the late 1970s several authors suggested the use of geometrical
Lorenz models to better understand the Lorenz attractor.

Such models assume the qualitative behavior which was numerically
observed on the Lorenz system.

It was soon shown that geometrical Lorenz models have a strange
attractor with properties compatible to those observed via numerical
experiments.

W. Tucker essentially showed in 2002 (using rigorous numerics and
normal form theory) that the Lorenz system behaves like a geometric
Lorenz model, thus supporting a strange attractor.
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p

F(p)

0
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Results

Theorem (G., Rojas, Zhong ’18)

Let φ be the a (C 2) flow of some Lorenz geometric system. Then:

1 The global attractor A of a geometric Lorenz flow φ is computable
from a (C 2) name of φ.

2 The geometric Lorenz flow admits a physical measure which is
computable from a (C 2) name of φ.
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Results

What about the Lorenz attractor

Question

Does the previous result prove computability of the (real) Lorenz attractor?

Not yet!

The problem has to do with the fact that we need a constructive
version of Tucker’s proof.

In particular it is not enough to show that a foliation exists for the
Lorenz attractor.

We still have to show that a computable foliation of the Lorenz
attractor exists which can be computably mapped into the standard
foliation.

Probably some combination of theory about foliations and rigorous
numerics is needed to prove that result (to be done!)
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Results Results about basins of attraction

What about basins of attraction?

Problem: can we tell to which attractor a trajectory starting in a given
initial point will converge?

In some cases, the answer is YES (example: linear ODEs defined with
hyperbolic matrices)

In other cases the answer is NO (e.g. C k systems, where different
functions can be “glued” together to allow the simulation of Turing
machines)

I But what if the system is analytic?

Recall that in analytic functions, local behavior determines global behavior
⇒ no C k gluing allowed, even if k = +∞
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Results Results about basins of attraction

Theorem (G., Zhong ’15)

There exists a computable analytic dynamical system having a computable
hyperbolic equilibrium point such that its basin of attraction is recursively
enumerable, but not computable.

Thus, even if:

The attractor is of the simplest type (a fixed point)

Trajectories converge in a well-behaved manner towards the fixed
point (hyperbolicity: trajectories converge exponentially fast to the
fixed point)

The system is analytic (no gluing tricks allowed)

All initial data is computable

Then the resulting basin of attraction may not be computable
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Results Results about basins of attraction

Idea behind the proof

Simulate a Turing machine with an analytic map (use interpolation
techniques, and allow a certain error in the simulation—the map can
still simulate a Turing machine even if the initial point and/or the
dynamics are constantly perturbed. Use special techniques to keep
the error under control)

Suspend the previous map into an ODE. The classical suspension
technique does not work here because it is not constructive. Instead
we develop a new whole “computable” suspension technique which
allows to embed a computable map into a computable ODE, under
certain conditions

The previous ODE will simulate a Turing machine and we “massage”
the ODE so that the halting state corresponds to an hyperbolic fixed
point (the ODE simulation of TMs is robust to perturbations)

Then deciding which initial points will converge to the previous
hyperbolic fixed point is equivalent to solving the Halting Problem
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Results Results about basins of attraction

Thank you!
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