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fFeig(z) = z2 + cFeig, where cFeig ≈ −1.4011551890 is the limit of
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Julia set of a polynomial f

Filled Julia set K(f ) = {z ∈ C : {f n(z)}z∈N is bounded}.
Julia set J (f ) = ∂K(f ).

Figure: The airplane map p(z) = z2 + c , c ≈ −1.755.
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Theorem (D.-Sutherland)

The Julia set of fFeig has Hausdorff dimension less than two (and
hence its Lebesgue measure is zero).
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Renormalization
A quadratic-like map is a ramified covering f : U → V of degree 2,
where U b V are topological disks in C.

A quadratic-like map f is called renormalizable with period n if
there there exist domains U ′ b U for which f n : U ′ → V ′ = f n(U ′)
is a quadratic-like map. The map f n|U′ is called a
pre-renormalization of f ; the map Rnf := Λ ◦ f n|U′ ◦ Λ−1, where Λ
is an appropriate rescaling of U ′, is the renormalization of f .
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Feigenbaum maps

Lanford: period two renormalization operator has a fixed point F
(the Feigenbaum map).

Sullivan: the fixed point is unique in the class of quadratic like
maps.

The map fFeig is infinitely renormalizable. The sequence of germs
Rk(fFeig) converges geometrically fast to F (Lanford, Sullivan,
McMullen).

Definition
A Feigenbaum map is an infinitely renormalizable quadratic-like
map with bounded combinatorics and a priori bounds.
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Nice domains

Denote by fn the n-th prerenormalization of f , by Jn the Julia set
of fn and by O(f ) the critical orbit of f .

Avila and Lyubich constructed domains Un ⊂ V n (called nice
domains) for which

I fn(Un) = V n;

I Un ⊃ Jn ∩ O(f );

I V n+1 ⊂ Un;

I f k(∂V n) ∩ V n = ∅ for all n, k ;

I An = V n \ Un is “far” from O(f );

I area(An) � area(Un) � diam(Un)2 � diam(V n)2.
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Escaping and returning set
For each n ∈ N, let Xn be the set of points in U0 that land in V n

under some iterate of f , and let Yn be the set of points in An that
never return to V n under iterates of f . Introduce the quantities

ηn =
area(Xn)

area(U0)
, ξn =

area(Yn)

area(An)
.

Theorem (Avila-Lyubich)

Let f be a periodic point of renormalization ( Rpf = f for some
p). Then exactly one of the following is true:

I ηn converges to 0 exponentially fast, inf ξn > 0, and
dimH(Jf ) < 2 (Lean case);

I ηn � ξn � 1
n and dimH(Jf ) = 2 with area(Jf ) = 0 (Balanced

case);

I inf ηn > 0, ξn converges to 0 exponentially fast, and
area(Jf ) > 0 (Black Hole case).
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An approach to prove dimH(JFeig) < 2.

One can construct a number C > 0 (depending on the geometry of
An and the critical orbit O(f )) such that if ηn/ξn < C for some n
then dimH(JFeig) < 2. But . . .

it is extremely computationally complex both to construct such C
and to compute ηn and ξn for large n. So . . .

need a different approach.
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The structure of F .

The Cvitanović-Feigenbaum equation:
F (z) = − 1

λF
2(λz),

F (0) = 1,
F (z) = H(z2),

with H−1(z) univalent in C \ ((−∞,− 1
λ ] ∪ [ 1

λ2
,∞)), where

1
λ = 2.5029 . . . is one of the Feigenbaum constants.

Proposition (H. Epstein)

The map F has a maximal analytic extension to F̂ : Ŵ → C,
where Ŵ ⊃ R is open, simply connected and dense in C.

Theorem (H. Epstein, X. Buff)

All critical points of F̂ are simple. The critical values of F̂ are
contained in real axis. Moreover, F̂ is a ramified covering.
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Partition of Ŵ



Central tiles

Denote by PI,PII,PIII and PIV the connected components of
F̂−1(H±) containing 0 on the boundary. Set

W = Int(PI ∪ PII ∪ PIII ∪ PIV).

Denote by F the quadratic like restriction of F̂

W → C \ ((−∞,− 1
λ ] ∪ [ 1

λ2
,∞)).

For n ∈ N and any set A let A(n) = λnA and denote by
Fn = F 2n |W (n) the n-th pre-renormalization of F .
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Idea to prove η̃n → 0: construct recursive estimates of the form

η̃n+m 6 Cn,mη̃nη̃m.
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J is a quadrant, a copy of P
(m)
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We will call any connected component of P
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J is a quadrant, a copy of P
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A copy Q of P
(m)
J under F k is primitive if F i (Q) ∩W (m) = ∅ for

all 0 6 i < k .

A copy Q of P
(m)
J under F k is separated if there exists 0 6 i < k

with F i (Q) ⊂W (m) and F i (Q) ∩ J (n−1)
F = ∅ for maximal such i .
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Comparing the returning sets

Fix n,m ∈ N. Let P and S be the collection of all primitive and

separated copies of P
(m)
J , where J is any quadrant. Modulo zero

measure one has:
X̃n =

⋃
Q∈P

Q.

For a copy Q of P under F k set

XQ = F−k(λn−1X̃m+1) ∩ Q.

Modulo zero measure one has

X̃n+m =
⋃

Q∈P∪S
XQ .
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Koebe space

Proposition

Let T be a primitive or a separated copy of P
(m)
J under F k with

m ≥ 2. Then the inverse branch φ : P
(m)
J → T of F k analytically

continues to a univalent map on sign(P
(m)
J )λmCλ where

Cλ = C \
(

(−∞,− 1
λ ] ∪ [F (λ)

λ2
,∞)

)
.

T

φ( − )
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P
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0

−λm− 1 0 λm− 1x0 λm− 2F(λ)

F k

φ
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Koebe distortion

We construct numbers M(A) such that

Corollary

Let A,B be two measurable subsets of PJ of positive measure and

let T be a primitive or a separated copy of P
(m)
L under F k for some

k > 0 and m ≥ 2. Then

area(F−k(B(m)) ∩ T )

area(F−k(A(m)) ∩ T )
≤ M(A)area(B).

Notice, λn−1X̃m+1 ⊂W (n). Set

Σn,m = P
(n)
I \ (λn−1X̃m+1 ∪

⋃
Q∈S

Q),

Mn,m = M((λ−nΣn,m) ∩ PI).
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Recursive estimates

Using the identities

area(X̃n) =
∑
Q∈P

area(Q),

area(X̃n+m) =
∑

Q∈P∪S
area(XQ),

we show:

Proposition

For every n > 2 and m > 1, one has

η̃n+m 6 Mn,marea(PI) η̃n η̃m+1.
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Results of computations

Using rigorous computer estimates we prove:

M6 = limM6,m < 9.4, η̃6 =
area(X̃6 ∩ P

(1)
I )

area(P
(1)
I )

<
0.09

area(PI)
.

We obtain η̃6M6area(PI) < 0.846 < 1, so JF has Hausdorff
dimension less than 2.



Computing the escaping set

Let V2 = (−∞,− 1
λ ] ∪ F−3(V ) ∪ [ 1

λ2
,∞).

Denote by W̃n the closure of the union of copies of PJ under
F 2n−6 containing zero on the boundary.
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Computing the escaping set

Lemma
Let D be a disk in the complement of V2 and let D0 be a
connected component of F−k(D) for any k > 0. Then for n > 3,

either D0 ∩W (n) = ∅ or D0 ⊂ W̃ (n).
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Figure: While the preimage labeled D16 partially intersects W (3), it lies

completely inside W̃3 = W (1).
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Thank you!


