On the Lebesgue measure of the Feigenbaum Julia set

Artem Dudko

IMPAN

Algorithmic Questions in Dynamical Systems Toulouse

March 27, 2018

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

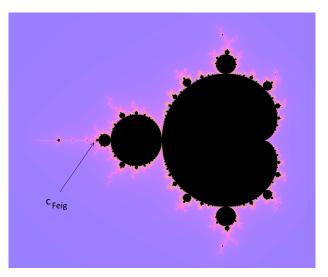
The Feigenbaum quadratic polynomial

 $f_{\rm Feig}(z) = z^2 + c_{\rm Feig}$, where $c_{\rm Feig} \approx -1.4011551890$ is the limit of the sequence of real period doubling parameters.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The Feigenbaum quadratic polynomial

 $f_{\rm Feig}(z) = z^2 + c_{\rm Feig}$, where $c_{\rm Feig} \approx -1.4011551890$ is the limit of the sequence of real period doubling parameters.



Julia set of a polynomial f

Filled Julia set $\mathcal{K}(f) = \{z \in \mathbb{C} : \{f^n(z)\}_{z \in \mathbb{N}} \text{ is bounded}\}.$ Julia set $\mathcal{J}(f) = \partial \mathcal{K}(f).$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Julia set of a polynomial f

Filled Julia set $\mathcal{K}(f) = \{z \in \mathbb{C} : \{f^n(z)\}_{z \in \mathbb{N}} \text{ is bounded}\}.$ Julia set $\mathcal{J}(f) = \partial \mathcal{K}(f).$

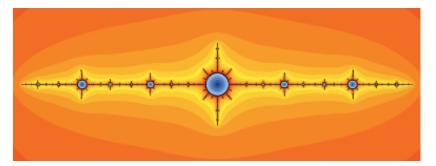


Figure: The airplane map $p(z) = z^2 + c$, $c \approx -1.755$.

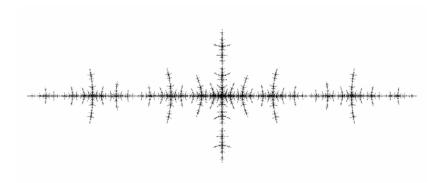


Figure: The Julia set of f_{Feig}

4日 > 4 同 > 4

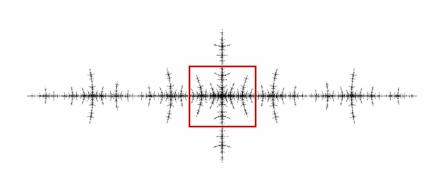


Figure: The Julia set of f_{Feig}

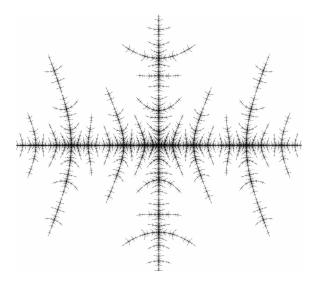


Figure: The Julia set of f_{Feig}

<ロト <回ト < 注ト < 注ト

э

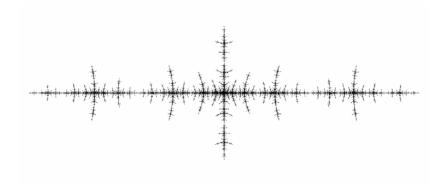


Figure: The Julia set of f_{Feig}

4日 > 4 同 > 4

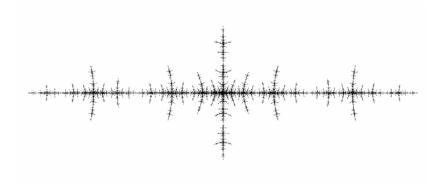


Figure: The Julia set of f_{Feig}

Theorem (D.-Sutherland)

The Julia set of f_{Feig} has Hausdorff dimension less than two (and hence its Lebesgue measure is zero).

A *quadratic-like map* is a ramified covering $f : U \to V$ of degree 2, where $U \Subset V$ are topological disks in \mathbb{C} .

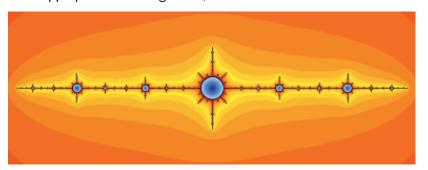
▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

A *quadratic-like map* is a ramified covering $f : U \to V$ of degree 2, where $U \subseteq V$ are topological disks in \mathbb{C} .

A quadratic-like map f is called *renormalizable with period* n if there there exist domains $U' \Subset U$ for which $f^n : U' \to V' = f^n(U')$ is a quadratic-like map. The map $f^n|_{U'}$ is called a *pre-renormalization of* f; the map $\mathcal{R}_n f := \Lambda \circ f^n|_{U'} \circ \Lambda^{-1}$, where Λ is an appropriate rescaling of U', is the *renormalization of* f.

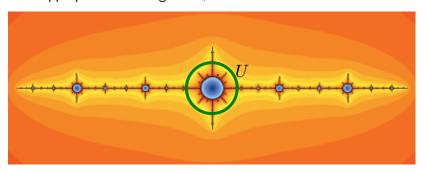
A *quadratic-like map* is a ramified covering $f : U \to V$ of degree 2, where $U \Subset V$ are topological disks in \mathbb{C} .

A quadratic-like map f is called *renormalizable with period* n if there there exist domains $U' \Subset U$ for which $f^n : U' \to V' = f^n(U')$ is a quadratic-like map. The map $f^n|_{U'}$ is called a *pre-renormalization of* f; the map $\mathcal{R}_n f := \Lambda \circ f^n|_{U'} \circ \Lambda^{-1}$, where Λ is an appropriate rescaling of U', is the *renormalization of* f.



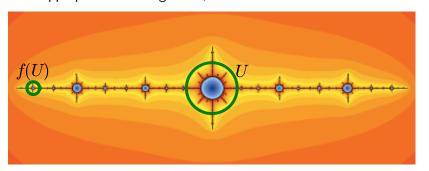
A *quadratic-like map* is a ramified covering $f : U \to V$ of degree 2, where $U \Subset V$ are topological disks in \mathbb{C} .

A quadratic-like map f is called *renormalizable with period* n if there there exist domains $U' \Subset U$ for which $f^n : U' \to V' = f^n(U')$ is a quadratic-like map. The map $f^n|_{U'}$ is called a *pre-renormalization of* f; the map $\mathcal{R}_n f := \Lambda \circ f^n|_{U'} \circ \Lambda^{-1}$, where Λ is an appropriate rescaling of U', is the *renormalization of* f.



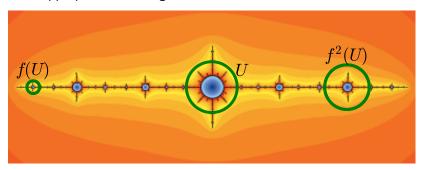
A *quadratic-like map* is a ramified covering $f : U \to V$ of degree 2, where $U \Subset V$ are topological disks in \mathbb{C} .

A quadratic-like map f is called *renormalizable with period* n if there there exist domains $U' \Subset U$ for which $f^n : U' \to V' = f^n(U')$ is a quadratic-like map. The map $f^n|_{U'}$ is called a *pre-renormalization of* f; the map $\mathcal{R}_n f := \Lambda \circ f^n|_{U'} \circ \Lambda^{-1}$, where Λ is an appropriate rescaling of U', is the *renormalization of* f.



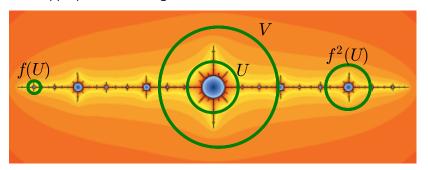
A *quadratic-like map* is a ramified covering $f : U \to V$ of degree 2, where $U \Subset V$ are topological disks in \mathbb{C} .

A quadratic-like map f is called *renormalizable with period* n if there there exist domains $U' \Subset U$ for which $f^n : U' \to V' = f^n(U')$ is a quadratic-like map. The map $f^n|_{U'}$ is called a *pre-renormalization of* f; the map $\mathcal{R}_n f := \Lambda \circ f^n|_{U'} \circ \Lambda^{-1}$, where Λ is an appropriate rescaling of U', is the *renormalization of* f.



A *quadratic-like map* is a ramified covering $f : U \to V$ of degree 2, where $U \Subset V$ are topological disks in \mathbb{C} .

A quadratic-like map f is called *renormalizable with period* n if there there exist domains $U' \Subset U$ for which $f^n : U' \to V' = f^n(U')$ is a quadratic-like map. The map $f^n|_{U'}$ is called a *pre-renormalization of* f; the map $\mathcal{R}_n f := \Lambda \circ f^n|_{U'} \circ \Lambda^{-1}$, where Λ is an appropriate rescaling of U', is the *renormalization of* f.



Feigenbaum maps

Lanford: period two renormalization operator has a fixed point F (*the Feigenbaum map*).

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Feigenbaum maps

Lanford: period two renormalization operator has a fixed point F (*the Feigenbaum map*).

Sullivan: the fixed point is unique in the class of quadratic like maps.

(ロ)、

Feigenbaum maps

Lanford: period two renormalization operator has a fixed point F (*the Feigenbaum map*).

Sullivan: the fixed point is unique in the class of quadratic like maps.

The map f_{Feig} is infinitely renormalizable. The sequence of germs $\mathcal{R}^k(f_{\text{Feig}})$ converges geometrically fast to F (Lanford, Sullivan, McMullen).

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Lanford: period two renormalization operator has a fixed point F (*the Feigenbaum map*).

Sullivan: the fixed point is unique in the class of quadratic like maps.

The map f_{Feig} is infinitely renormalizable. The sequence of germs $\mathcal{R}^k(f_{\text{Feig}})$ converges geometrically fast to F (Lanford, Sullivan, McMullen).

Definition

A Feigenbaum map is an infinitely renormalizable quadratic-like map with bounded combinatorics and a priori bounds.

Nice domains

Denote by f_n the *n*-th prerenormalization of f, by \mathcal{J}_n the Julia set of f_n and by $\mathcal{O}(f)$ the critical orbit of f.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Nice domains

Denote by f_n the *n*-th prerenormalization of f, by \mathcal{J}_n the Julia set of f_n and by $\mathcal{O}(f)$ the critical orbit of f.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Avila and Lyubich constructed domains $U^n \subset V^n$ (called *nice domains*) for which

For each $n \in \mathbb{N}$, let X_n be the set of points in U^0 that land in V^n under some iterate of f, and let Y_n be the set of points in A^n that never return to V^n under iterates of f. Introduce the quantities

$$\eta_n = \frac{\operatorname{area}(X_n)}{\operatorname{area}(U^0)}, \quad \xi_n = \frac{\operatorname{area}(Y_n)}{\operatorname{area}(A^n)}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

For each $n \in \mathbb{N}$, let X_n be the set of points in U^0 that land in V^n under some iterate of f, and let Y_n be the set of points in A^n that never return to V^n under iterates of f. Introduce the quantities

$$\eta_n = \frac{\operatorname{area}(X_n)}{\operatorname{area}(U^0)}, \quad \xi_n = \frac{\operatorname{area}(Y_n)}{\operatorname{area}(A^n)}.$$

Theorem (Avila-Lyubich)

Let f be a periodic point of renormalization ($\mathcal{R}^p f = f$ for some p). Then exactly one of the following is true:

For each $n \in \mathbb{N}$, let X_n be the set of points in U^0 that land in V^n under some iterate of f, and let Y_n be the set of points in A^n that never return to V^n under iterates of f. Introduce the quantities

$$\eta_n = \frac{\operatorname{area}(X_n)}{\operatorname{area}(U^0)}, \quad \xi_n = \frac{\operatorname{area}(Y_n)}{\operatorname{area}(A^n)}.$$

Theorem (Avila-Lyubich)

Let f be a periodic point of renormalization ($\mathcal{R}^p f = f$ for some p). Then exactly one of the following is true:

 η_n converges to 0 exponentially fast, inf ξ_n > 0, and dim_H(J_f) < 2 (Lean case);

For each $n \in \mathbb{N}$, let X_n be the set of points in U^0 that land in V^n under some iterate of f, and let Y_n be the set of points in A^n that never return to V^n under iterates of f. Introduce the quantities

$$\eta_n = \frac{\operatorname{area}(X_n)}{\operatorname{area}(U^0)}, \quad \xi_n = \frac{\operatorname{area}(Y_n)}{\operatorname{area}(A^n)}.$$

Theorem (Avila-Lyubich)

Let f be a periodic point of renormalization ($\mathcal{R}^{p}f = f$ for some p). Then exactly one of the following is true:

- η_n converges to 0 exponentially fast, inf ξ_n > 0, and dim_H(J_f) < 2 (Lean case);
- $\eta_n \simeq \xi_n \simeq \frac{1}{n}$ and $\dim_{\mathrm{H}}(\mathcal{J}_f) = 2$ with $\operatorname{area}(\mathcal{J}_f) = 0$ (Balanced case);

For each $n \in \mathbb{N}$, let X_n be the set of points in U^0 that land in V^n under some iterate of f, and let Y_n be the set of points in A^n that never return to V^n under iterates of f. Introduce the quantities

$$\eta_n = \frac{\operatorname{area}(X_n)}{\operatorname{area}(U^0)}, \quad \xi_n = \frac{\operatorname{area}(Y_n)}{\operatorname{area}(A^n)}.$$

Theorem (Avila-Lyubich)

Let f be a periodic point of renormalization ($\mathcal{R}^{p}f = f$ for some p). Then exactly one of the following is true:

- η_n converges to 0 exponentially fast, inf ξ_n > 0, and dim_H(J_f) < 2 (Lean case);
- $\eta_n \simeq \xi_n \simeq \frac{1}{n}$ and $\dim_{\mathrm{H}}(\mathcal{J}_f) = 2$ with $\operatorname{area}(\mathcal{J}_f) = 0$ (Balanced case);
- inf η_n > 0, ξ_n converges to 0 exponentially fast, and area(J_f) > 0 (Black Hole case).

An approach to prove $\dim_{\mathrm{H}}(\mathcal{J}_{\mathrm{Feig}}) < 2$.

One can construct a number C > 0 (depending on the geometry of A^n and the critical orbit $\mathcal{O}(f)$) such that if $\eta_n/\xi_n < C$ for some n then $\dim_{\mathrm{H}}(\mathcal{J}_{\mathrm{Feig}}) < 2$. But ...

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

An approach to prove $\dim_{\mathrm{H}}(\mathcal{J}_{\mathrm{Feig}}) < 2$.

One can construct a number C > 0 (depending on the geometry of A^n and the critical orbit $\mathcal{O}(f)$) such that if $\eta_n/\xi_n < C$ for some n then $\dim_{\mathrm{H}}(\mathcal{J}_{\mathrm{Feig}}) < 2$. But ...

it is extremely computationally complex both to construct such C and to compute η_n and ξ_n for large n. So ...

An approach to prove $\dim_{\mathrm{H}}(\mathcal{J}_{\mathrm{Feig}}) < 2$.

One can construct a number C > 0 (depending on the geometry of A^n and the critical orbit $\mathcal{O}(f)$) such that if $\eta_n/\xi_n < C$ for some n then $\dim_{\mathrm{H}}(\mathcal{J}_{\mathrm{Feig}}) < 2$. But ...

it is extremely computationally complex both to construct such C and to compute η_n and ξ_n for large n. So ...

need a different approach.

The structure of *F*.

The Cvitanović-Feigenbaum equation:

$$\begin{cases}
F(z) &= -\frac{1}{\lambda}F^{2}(\lambda z), \\
F(0) &= 1, \\
F(z) &= H(z^{2}),
\end{cases}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

with $H^{-1}(z)$ univalent in $\mathbb{C} \setminus ((-\infty, -\frac{1}{\lambda}] \cup [\frac{1}{\lambda^2}, \infty))$, where $\frac{1}{\lambda} = 2.5029...$ is one of the Feigenbaum constants.

The structure of *F*.

The Cvitanović-Feigenbaum equation:

$$\begin{cases} F(z) = -\frac{1}{\lambda}F^{2}(\lambda z), \\ F(0) = 1, \\ F(z) = H(z^{2}), \end{cases}$$

with $H^{-1}(z)$ univalent in $\mathbb{C} \setminus ((-\infty, -\frac{1}{\lambda}] \cup [\frac{1}{\lambda^2}, \infty))$, where $\frac{1}{\lambda} = 2.5029...$ is one of the Feigenbaum constants.

Proposition (H. Epstein)

The map F has a maximal analytic extension to $\hat{F} : \hat{W} \to \mathbb{C}$, where $\hat{W} \supset \mathbb{R}$ is open, simply connected and dense in \mathbb{C} .

The structure of *F*.

The Cvitanović-Feigenbaum equation:

$$\begin{cases} F(z) = -\frac{1}{\lambda}F^{2}(\lambda z), \\ F(0) = 1, \\ F(z) = H(z^{2}), \end{cases}$$

with $H^{-1}(z)$ univalent in $\mathbb{C} \setminus ((-\infty, -\frac{1}{\lambda}] \cup [\frac{1}{\lambda^2}, \infty))$, where $\frac{1}{\lambda} = 2.5029...$ is one of the Feigenbaum constants.

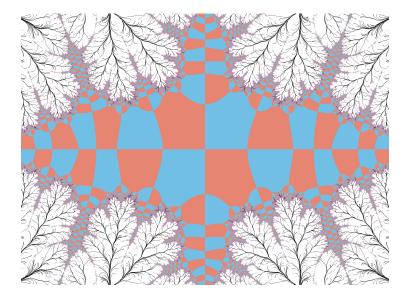
Proposition (H. Epstein)

The map F has a maximal analytic extension to $\hat{F} : \hat{W} \to \mathbb{C}$, where $\hat{W} \supset \mathbb{R}$ is open, simply connected and dense in \mathbb{C} .

Theorem (H. Epstein, X. Buff)

All critical points of \hat{F} are simple. The critical values of \hat{F} are contained in real axis. Moreover, \hat{F} is a ramified covering.

Partition of \hat{W}



Central tiles

Denote by $P_{\rm I}, P_{\rm II}, P_{\rm II}$ and $P_{\rm IV}$ the connected components of $\hat{F}^{-1}(\mathbb{H}_{\pm})$ containing 0 on the boundary. Set

$$W = \operatorname{Int}(\overline{P_{\mathsf{I}} \cup P_{\mathsf{II}} \cup P_{\mathsf{III}} \cup P_{\mathsf{IV}}}).$$

Central tiles

Denote by $P_{\rm I}, P_{\rm II}, P_{\rm II}$ and $P_{\rm IV}$ the connected components of $\hat{F}^{-1}(\mathbb{H}_{\pm})$ containing 0 on the boundary. Set

$$W = \mathsf{Int}(\overline{P_{\mathsf{I}} \cup P_{\mathsf{II}} \cup P_{\mathsf{III}} \cup P_{\mathsf{IV}}}).$$

Denote by F the quadratic like restriction of \hat{F}

$$W \to \mathbb{C} \setminus ((-\infty, -\frac{1}{\lambda}] \cup [\frac{1}{\lambda^2}, \infty)).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Central tiles

Denote by P_{I}, P_{II}, P_{III} and P_{IV} the connected components of $\hat{F}^{-1}(\mathbb{H}_{\pm})$ containing 0 on the boundary. Set

$$W = \operatorname{Int}(\overline{P_{\mathsf{I}} \cup P_{\mathsf{II}} \cup P_{\mathsf{III}} \cup P_{\mathsf{IV}}}).$$

Denote by F the quadratic like restriction of \hat{F}

$$\mathcal{W} o \mathbb{C} \setminus ((-\infty, -rac{1}{\lambda}] \cup [rac{1}{\lambda^2}, \infty)).$$

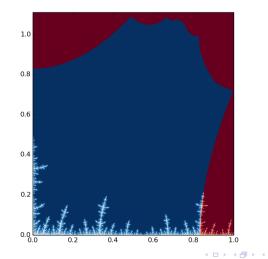
・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

For $n \in \mathbb{N}$ and any set A let $A^{(n)} = \lambda^n A$ and denote by $F_n = F^{2^n}|_{W^{(n)}}$ the *n*-th pre-renormalization of F.

$$ilde{X}_n=\{z\in W^{(1)}:F^k(z)\in W^{(n)} ext{ for some } k\}, \ ilde{\eta}_n=rac{ ext{area}(ilde{X}_n)}{ ext{area}(W^{(1)})}.$$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

$$ilde{X}_n = \{z \in W^{(1)} : F^k(z) \in W^{(n)} \text{ for some } k\}, \ ilde{\eta}_n = rac{\operatorname{area}(ilde{X}_n)}{\operatorname{area}(W^{(1)})}.$$



三 のへの

$$\widetilde{X}_n = \{ z \in W^{(1)} : F^k(z) \in W^{(n)} \text{ for some } k \},$$

$$\widetilde{\eta}_n = \frac{\operatorname{area}(\widetilde{X}_n)}{\operatorname{area}(W^{(1)})}.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

$$\widetilde{X}_n = \{ z \in W^{(1)} : F^k(z) \in W^{(n)} \text{ for some } k \},$$

$$\widetilde{\eta}_n = \frac{\operatorname{area}(\widetilde{X}_n)}{\operatorname{area}(W^{(1)})}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Using Avila-Lyubich trichotomy we obtain:

Proposition

 $\dim_{\mathrm{H}}(\mathcal{J}_{\mathsf{F}}) < 2$ if and only if $\tilde{\eta}_n \to 0$ exponentially fast.

$$\begin{split} \tilde{X}_n &= \{z \in W^{(1)} : F^k(z) \in W^{(n)} \text{ for some } k\}, \\ \tilde{\eta}_n &= \frac{\operatorname{area}(\tilde{X}_n)}{\operatorname{area}(W^{(1)})}. \end{split}$$

Using Avila-Lyubich trichotomy we obtain:

Proposition

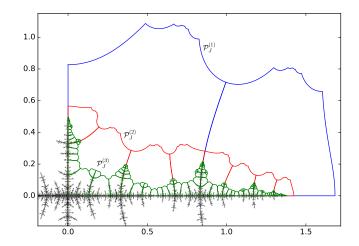
 $\dim_{\mathrm{H}}(\mathcal{J}_{\mathsf{F}}) < 2$ if and only if $\tilde{\eta}_n \to 0$ exponentially fast. Idea to prove $\tilde{\eta}_n \to 0$: construct recursive estimates of the form

$$\tilde{\eta}_{n+m} \leqslant C_{n,m} \tilde{\eta}_n \tilde{\eta}_m.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

We will call any connected component of $P_J^{(m)}$, where $k, m \in \mathbb{Z}_+$, J is a quadrant, a *copy of* $P_J^{(m)}$ *under* F^k .

We will call any connected component of $P_J^{(m)}$, where $k, m \in \mathbb{Z}_+$, J is a quadrant, a *copy of* $P_J^{(m)}$ *under* F^k .



▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

We will call any connected component of $P_J^{(m)}$, where $k, m \in \mathbb{Z}_+$, J is a quadrant, a *copy of* $P_J^{(m)}$ *under* F^k .

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

We will call any connected component of $P_J^{(m)}$, where $k, m \in \mathbb{Z}_+$, J is a quadrant, a copy of $P_J^{(m)}$ under F^k .

A copy Q of $P_J^{(m)}$ under F^k is primitive if $F^i(Q) \cap W^{(m)} = \emptyset$ for all $0 \leq i < k$.

We will call any connected component of $P_J^{(m)}$, where $k, m \in \mathbb{Z}_+$, J is a quadrant, a copy of $P_J^{(m)}$ under F^k .

A copy Q of $P_J^{(m)}$ under F^k is primitive if $F^i(Q) \cap W^{(m)} = \emptyset$ for all $0 \leq i < k$.

A copy Q of $P_J^{(m)}$ under F^k is *separated* if there exists $0 \le i < k$ with $F^i(Q) \subset W^{(m)}$ and $F^i(Q) \cap \mathcal{J}_F^{(n-1)} = \emptyset$ for maximal such *i*.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Comparing the returning sets

Fix $n, m \in \mathbb{N}$. Let \mathfrak{P} and \mathfrak{S} be the collection of all primitive and separated copies of $P_J^{(m)}$, where J is any quadrant. Modulo zero measure one has:

$$ilde{X}_n = igcup_{Q\in\mathfrak{P}} Q.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Comparing the returning sets

Fix $n, m \in \mathbb{N}$. Let \mathfrak{P} and \mathfrak{S} be the collection of all primitive and separated copies of $P_J^{(m)}$, where J is any quadrant. Modulo zero measure one has:

$$\tilde{X}_n = \bigcup_{Q \in \mathfrak{P}} Q.$$

For a copy Q of P under F^k set

$$X_Q = F^{-k}(\lambda^{n-1}\tilde{X}_{m+1}) \cap Q.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Comparing the returning sets

Fix $n, m \in \mathbb{N}$. Let \mathfrak{P} and \mathfrak{S} be the collection of all primitive and separated copies of $P_J^{(m)}$, where J is any quadrant. Modulo zero measure one has:

$$\tilde{X}_n = \bigcup_{Q \in \mathfrak{P}} Q.$$

For a copy Q of P under F^k set

$$X_Q = F^{-k}(\lambda^{n-1}\tilde{X}_{m+1}) \cap Q.$$

Modulo zero measure one has

$$ilde{X}_{n+m} = igcup_{Q\in\mathfrak{P}\cup\mathfrak{S}} X_Q.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Koebe space

Proposition

Let T be a primitive or a separated copy of $P_J^{(m)}$ under F^k with $m \ge 2$. Then the inverse branch $\phi : P_J^{(m)} \to T$ of F^k analytically continues to a univalent map on $\operatorname{sign}(P_J^{(m)}) \lambda^m \mathbb{C}_{\lambda}$ where

$$\mathbb{C}_{\lambda} = \mathbb{C} \setminus \left(\left(-\infty, -\frac{1}{\lambda} \right] \cup \left[\frac{F(\lambda)}{\lambda^2}, \infty \right) \right).$$

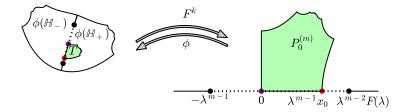
▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Koebe space

Proposition

Let T be a primitive or a separated copy of $P_J^{(m)}$ under F^k with $m \ge 2$. Then the inverse branch $\phi : P_J^{(m)} \to T$ of F^k analytically continues to a univalent map on $\operatorname{sign}(P_J^{(m)}) \lambda^m \mathbb{C}_{\lambda}$ where

$$\mathbb{C}_{\lambda} = \mathbb{C} \setminus \left(\left(-\infty, -\frac{1}{\lambda} \right] \cup \left[\frac{F(\lambda)}{\lambda^2}, \infty \right) \right).$$



・ロト ・ 一下・ ・ ヨト・

Koebe distortion

We construct numbers M(A) such that

Corollary

Let A, B be two measurable subsets of P_J of positive measure and let T be a primitive or a separated copy of $P_L^{(m)}$ under F^k for some $k \ge 0$ and $m \ge 2$. Then

$$\frac{\operatorname{area}(F^{-k}(B^{(m)})\cap T)}{\operatorname{area}(F^{-k}(A^{(m)})\cap T)} \leq M(A)\operatorname{area}(B).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Koebe distortion

We construct numbers M(A) such that

Corollary

Let A, B be two measurable subsets of P_J of positive measure and let T be a primitive or a separated copy of $P_L^{(m)}$ under F^k for some $k \ge 0$ and $m \ge 2$. Then

$$rac{rea(F^{-k}(B^{(m)})\cap T)}{rea(F^{-k}(A^{(m)})\cap T)} \leq M(A) ext{area}(B).$$

Notice, $\lambda^{n-1} \tilde{X}_{m+1} \subset W^{(n)}$.

Koebe distortion

We construct numbers M(A) such that

Corollary

Let A, B be two measurable subsets of P_J of positive measure and let T be a primitive or a separated copy of $P_L^{(m)}$ under F^k for some $k \ge 0$ and $m \ge 2$. Then

$$\frac{\operatorname{area}(F^{-k}(B^{(m)})\cap T)}{\operatorname{area}(F^{-k}(A^{(m)})\cap T)} \leq M(A)\operatorname{area}(B).$$

Notice, $\lambda^{n-1} \tilde{X}_{m+1} \subset W^{(n)}$. Set

$$\Sigma_{n,m} = P_{\mathsf{I}}^{(n)} \setminus (\lambda^{n-1} \tilde{X}_{m+1} \cup \bigcup_{Q \in \mathfrak{S}} Q),$$

 $M_{n,m} = M((\lambda^{-n} \Sigma_{n,m}) \cap P_{\mathsf{I}}).$

Recursive estimates

Using the identities

$$\operatorname{area}(\tilde{X}_n) = \sum_{Q \in \mathfrak{P}} \operatorname{area}(Q),$$

 $\operatorname{area}(\tilde{X}_{n+m}) = \sum_{Q \in \mathfrak{P} \cup \mathfrak{S}} \operatorname{area}(X_Q),$

we show:

Recursive estimates

Using the identities

$$\operatorname{area}(\tilde{X}_n) = \sum_{Q \in \mathfrak{P}} \operatorname{area}(Q),$$

 $\operatorname{area}(\tilde{X}_{n+m}) = \sum_{Q \in \mathfrak{P} \cup \mathfrak{S}} \operatorname{area}(X_Q),$

we show:

Proposition

For every $n \ge 2$ and $m \ge 1$, one has

 $\tilde{\eta}_{n+m} \leqslant M_{n,m} \operatorname{area}(P_I) \tilde{\eta}_n \tilde{\eta}_{m+1}.$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Results of computations

Using rigorous computer estimates we prove:

$$M_6 = \lim M_{6,m} < 9.4, \qquad \tilde{\eta}_6 = \frac{\operatorname{area}(\tilde{X}_6 \cap P_1^{(1)})}{\operatorname{area}(P_1^{(1)})} < \frac{0.09}{\operatorname{area}(P_1)}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

We obtain $\tilde{\eta}_6 M_6 \operatorname{area}(P_1) < 0.846 < 1$, so \mathcal{J}_F has Hausdorff dimension less than 2.

Let
$$V_2 = (-\infty, -\frac{1}{\lambda}] \cup F^{-3}(V) \cup [\frac{1}{\lambda^2}, \infty).$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

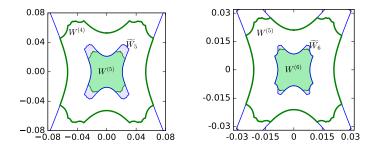
Let
$$V_2 = (-\infty, -\frac{1}{\lambda}] \cup F^{-3}(V) \cup [\frac{1}{\lambda^2}, \infty).$$

Denote by \widetilde{W}_n the closure of the union of copies of P_J under F^{2^n-6} containing zero on the boundary.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Let
$$V_2 = (-\infty, -\frac{1}{\lambda}] \cup F^{-3}(V) \cup [\frac{1}{\lambda^2}, \infty).$$

Denote by \widetilde{W}_n the closure of the union of copies of P_J under F^{2^n-6} containing zero on the boundary.



▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Lemma

Let D be a disk in the complement of V₂ and let D₀ be a connected component of $F^{-k}(D)$ for any $k \ge 0$. Then for $n \ge 3$, either D₀ $\cap W^{(n)} = \emptyset$ or D₀ $\subset \widetilde{W}^{(n)}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Lemma

Let D be a disk in the complement of V₂ and let D₀ be a connected component of $F^{-k}(D)$ for any $k \ge 0$. Then for $n \ge 3$, either D₀ $\cap W^{(n)} = \emptyset$ or D₀ $\subset \widetilde{W}^{(n)}$.

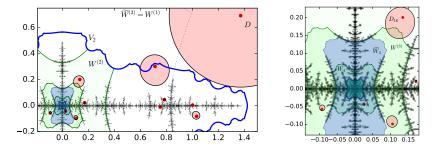


Figure: While the preimage labeled D_{16} partially intersects $W^{(3)}$, it lies completely inside $\widetilde{W}_3 = W^{(1)}$.

Thank you!