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What about the Grigorchuk group?

a, b, c,d are involutions.
Infinite and finitely generated.

It contains no copy of Z as a subgroup. For every g € G,
there is n € N such that g" = 1¢.

Decidable word (and conjugacy) problem.
It has intermediate growth.
Amenable but not elementary amenable.

It is commensurable to its square. ie: G and G X G have an
isomorphic finite index subgroup.
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It contains no copy of Z as a subgroup. For every g € G,
there is n € N such that g" = 1¢.

Decidable word (and conjugacy) problem.
It has intermediate growth.

Amenable but not elementary amenable.

It is commensurable to its square. ie: G and G X G have an
isomorphic finite index subgroup.

The goal of this talk is to construct a strongly aperiodic SFT here.
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» AC is the set of configurations, x : G — A
» G ~ AC is the left shift action given by:

(gx)(h) := x(g~"h).

Definition: subshift

A closed and shift-invariant set X C A€ is called a subshift.

A subshift is a set of configurations avoiding patterns from a list F.
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Strongly aperiodic

A subshift X C A€ is strongly aperiodic if the shift action is free.

VxeX,gx =x = g=1g¢.
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Abelian case

Proposition

Every non-empty Z-SFT contains a periodic configuration.

Theorem (Berger 1966, Robinson 1971, Kari 1996, Jeandel & Rao

2015)
There exist strongly aperiodic SFTs on Z2.
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o (Cohen '15) If G has two or more ends.
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result: aye!

o (Folklore) Z¥ for d > 1.

@ (Sahin, Schraudner, Ugarcovici, '+oco ['14]) The discrete
Heisenberg group.

@ (Cohen, Goodman-Strauss, '15) Surface groups.
@ (Cohen, Goodman-Strauss, Rieck, '17) One-ended
Gromov-hyperbolic groups.

o (B, Sablik, '18+ ['16]) Groups of the form Z9 x, G with
d > 1, G f.g. and decidable word problem.

e (Jeandel, '16) f.g. policyclic groups which are not virtually Z.
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What about the Grigorchuk group?

All groups here are infinite, finitely generated and have decidable
word problem.

a factor of a subaction of a
G x H1 X H2—SFT

|

Every EC G-subshift is a sub- P
{action of a G x Hy x H»-sofic } [El SA EC subshifts in G]

ABF 2018+ (2015)
\ /BY

[3 SA SFTs in G x Gy ¥ G3j

|

[EI SA SFTs in the Grigorchuk groupj

N -
Every EC 6 ~ {0,1}7 s %EEvery EC Z-subshift is a sub- }

action of a Z2-sofic
AS 2010, DRS 2010

10



Reverse chronology

Commensurability

We say that two groups Gz, G» are commensurable if they contain
finite index subgroups Hi, H> such that H; = H,.

Gl<—’H1gH2;>Gz
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Reverse chronology

Commensurability

We say that two groups Gz, G» are commensurable if they contain
finite index subgroups Hi, H> such that H; = H,.

Gl<—’H1gH2;>G2

> Recall that the Grigorchuk group G is commensurable to its
square G X G

> if G is commensurable to G X G, then it is also commensurable
to G x G x G.

Theorem (Carroll-Penland, 2015)

Admitting a strongly aperiodic SFT is a commensurability
invariant.

11
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[EI SA SFTs in branch groups]

In fact, the same result can be extended to branch groups.

Let G be a finitely generated and recursively presented branch
group. Then G has decidable word problem if and only if there
exists a non-empty strongly aperiodic G-SFT.
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Let G = (V,E) be a graph. A vertex coloring is a function
x:V — A. We say it is square-free if for every odd-length path
p = Vvi...v, then there exists 1 < j < n such that

x(vj) # x(Vjtn)-

Cs has a square-free vertex coloring with 4 colors, but not with 3.
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Square-free vertex coloring

Some infinite graphs do not admit square-free vertex colorings: Ky.

Theorem: Alon, Grytczuk, Haluszczak and Riordan

Every finite graph with maximum degree A can be square-free
vertex colored with 217 A2 colors.

Let
r(G,S)=(6G,{{g.g5},8 € G,;s € S})

be the undirected right Cayley graph of G with respect to S € G.
A compactness argument shows:

(G, S) can be square-free vertex colored with 21°|S|? colors.

15
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Constructing an EC SA subshift

Let |A| > 29S| and X C A be the subshift such that every
square in (G, S) is forbidden.
o X £
@ Let g € G such that gx = x for some x € X.
o Factorize g as uwv with u = v~ and |w| minimal (as a word
on (SUS™H)*). If |[w| =0, then g = 1¢.
@ If not, let w = wy ... w, and consider the odd length walk
™= wWwVvi...Vpn_1 0N F(G, 5) defined by:

1c ifi=0
Vi=< Wy...w ifiE{l,...,n}
wwy ...wi—, ifie{n+1,...,2n—1}

@ 7misa path and x, = x,,,. =<
@ Therefore, g = 1¢.

If G has decidable word problem, then X is effectively closed.
16
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The philosophy behind it

Finitely presented group

A group G is finitely presented if G = (S|R) where both S and
R C (SUS™1)* are finite.

Z% = (a,b| aba tb71)

Recursively presented group

A group G is recursively presented if G = (S|R) where S C N and
R C (SUS™1)* are recursively enumerable sets.

L= (at|(at"at™™)? neN)
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The philosophy behind it

Theorem (Higman, 1961)

For every recursively presented group H there exists a finitely
presented group G such that H embeds into G.

“A complicated object is realized inside another object which
admits a much simpler presentation.”

Corollary [Theorem: Novikov 1955, Boone 1958]

There are finitely presented groups with undecidable word problem

Just apply Higman's theorem to
G =(a,b,c,d | b~"ab” = ¢ "dc", n € HALT)... done!

19
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In our case

@ Take G; EC SA subshift. Use simulation to obtain a
G1 X Gy x Gs-sofic subshift Y7 such that Gy x G3 act trivially
and G; acts freely.

@ Do the same for Gy, G3 to get Y2, Y.
@ Y1 X Yo x Y3 is a SA sofic subshift.
@ Any SFT extension X — Y7 X Y5 x Y3 works.




In our case

@ Take G; EC SA subshift. Use simulation to obtain a
G1 X Gy x Gs-sofic subshift Y7 such that Gy x G3 act trivially
and G; acts freely.

@ Do the same for Gy, G3 to get Y2, Y3.
@ Y1 X Yo x Y3 is a SA sofic subshift.
@ Any SFT extension X — Y7 X Y5 x Y3 works.
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How does one prove such a thing?

Every EC G ~ {0,1}Nis
a factor of a subaction of a
G x Hy x H-SFT

|

[Every EC G-subshift is a sub- }

action of a G x H; x Hs-sofic

Two ingredients:

@ A Toeplitz coding of EC actions from a work of me and M.
Sablik.

@ A coding of E. Jeandel of a theorem of Seward on
translation-like actions.

24
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How does one prove such a thing?

Let's keep it simple, let's do G x Z2. Consider an action
G~ Xc{o1}N
Let W: {0,1}N — {0,1,$}4 be given by:

W(x) x, ifj=23" mod 31
X)i =
! $  in the contrary case.

If we write x = xpx1X0x3 ... we obtain,

V(x) =...5x08x1x088x05x2x0$x1 X088 x0$$x0$x1 X0 $$x0$x3x0 . . -

25
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How does one prove such a thing?

L Sx08x1 X088 X0 B X0 x0 5 x1 X0 3 X0 $ S X0 S x1 X0 5 x0 S x3 X0 B . . .

I

L Sx05x X058 x0 5 x0x0 S x1 X0 5B X0 B xS x1 X0 $ P X0 P x3 X0 P . . .

!

L 8x1$x0x1 $8x1 $x3x1 $x0x1 $8x1 $5x1 $xox1 $x1 $xax1 $ . ..
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How does one prove such a thing?

> pick a finite set of generators S of G.
D> construct a subshift 1 where every configuration is (up to small
details) an S-tuple of configurations of the previous form.

S = {1(;,51,. ..Sn}

V(x)
V(s1(x))

W(sn(x))
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How does one prove such a thing?

> pick a finite set of generators S of G.
D> construct a subshift 1 where every configuration is (up to small
details) an S-tuple of configurations of the previous form.

S = {1(;,51,. ..Sn}

V(x)

V(s1(x)) cn

W(sn(x))

If G ~ X is an effectively closed action, I is an effectively closed
subshift.

27
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How does one prove such a thing?

a factor of a subaction of a

Every EC G ~ {0,1}Nis E
G x Hy x H-SFT

Every EC Z-subshift is a sub-
action of a Z2-sofic

> There exists a sofic Z2-subshift T1 having I in every horizontal
row.

> Using the decoding argument, construct a map from M to X.

> Put in every G-coset of G x Z? a configuration of M. Tie them
using local rules.

28
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How does one prove such a thing?
v V(sns1(x))
s, W(s15n51(x) i
A AT A :
\' W(spsns1(x))

V(s1(x))
(W(slsl(x))) _
: cn

W(sns1(x))

S1
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From Z? to H; x H,

How to go from Z2 to Hy x H»?
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From Z? to H; x H,

How to go from Z? to H; x H»?

[Whyte] translation-like action

an action G ~ (X, d) is translation-like if:
@ G acts freely

e For each g € G, sup,cx d(x, gx) < oc.
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How to go from Z? to H; x H»?

[Whyte] translation-like action

an action G ~ (X, d) is translation-like if:
@ G acts freely

e For each g € G, sup,cx d(x, gx) < oc.

Theorem (Seward, 2013)

Each infinite and f.g. group admits a translation-like action of Z.
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From Z? to H; x H,

How to go from Z? to H; x H»?

[Whyte] translation-like action

an action G ~ (X, d) is translation-like if:
@ G acts freely
e For each g € G, sup,cx d(x, gx) < oc.

Theorem (Seward, 2013)
Each infinite and f.g. group admits a translation-like action of Z.

This means that each infinite and f.g. group admits a Cayley graph
that can be partitioned into disjoint bi-infinite paths.
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From Z? to H; x H,

[Jeandel] Use the, set of generators of the Cayley graph to define
an SFT which godesthe translation-like action.

)

Figure: Finding a grid in H; x H;

Hy

31



Fin

a factor of a subaction of a
G x H1 X H2—SFT

|

Every EC G-subshift is a sub- T
action of a G x H; x H>-sofic [El S G bl G]

~.

[3 SA SFTs in Gy x Gy x G3]

|

[EI SA SFTs in the Grigorchuk group]

N -
Every EC 6 ~ {0,1}7is %[Every EC Z-subshift is a sub- }

action of a Z2-sofic
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Fin

Every EC G ~ {0,1}Nis
a factor of a subaction of a — _
G x Hl X HQ—SFT

Every EC G-subshift is a sub-
o G & @ 52 B 53 Hhecelfe (3 SA EC subshifts in G|

\/

[3 SA SFTs in Gy x G> x G3

|

[EI SA SFTs in the Grigorchuk group]
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Thank you for your attention!
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