Fonctions I : Limites et continuité

1 Notion de fonction

Définition 1. Une fonction d'une variable réelle à valeurs réelles est une application $f: U \longrightarrow \mathbb{R}$, où U est une partie de \mathbb{R} . En général, U est un intervalle ou une réunion d'intervalles. On appelle U le domaine de définition de la fonction f.

Définition 2 (Opérations sur les fonctions). Soient $f:U\longrightarrow \mathbb{R}$ et $g:U\longrightarrow \mathbb{R}$ deux fonctions définies sur une même partie U de \mathbb{R} . On peut définir les fonctions suivantes :

- le **somme** de f et g est la fonction $f+g:U\longrightarrow\mathbb{R}$ définie par (f+g)(x)=f(x)+g(x) pour tout $x\in U$.
- le **produit** de f et g est la fonction $f \times g : U \longrightarrow \mathbb{R}$ définie par $(f \times g)(x) = f(x) \times g(x)$ pour tout $x \in U$.
- la multiplication par un scalaire $\lambda \in \mathbb{R}$ de f est la fonction $\lambda.f: U \longrightarrow \mathbb{R}$ définie par $(\lambda.f)(x) = \lambda.f(x)$ pour tout $x \in U$.

Définition 3 (Majoration et minoration). Soit $f: U \longrightarrow \mathbb{R}$ une fonction.

- f est **constante** sur U si $\exists a \in \mathbb{R}, \forall x \in U, f(x) = a$.
- f est majorée sur U si $\exists M \in \mathbb{R}, \forall x \in U, f(x) \leq M$.
- f est **minorée** sur U si $\exists m \in \mathbb{R}, \forall x \in U, f(x) \geq M$.
- f est **bornée** sur U si $\exists M \in \mathbb{R}, \forall x \in U, |f(x)| \leq M$.

Définition 4 (Fonctions monotones). Soit $f: U \longrightarrow \mathbb{R}$ une fonction.

- f est **croissante** sur U si $\forall x, y \in U, x \leq y \Longrightarrow f(x) \leq f(y)$.
- f est strictement croissante sur U si $\forall x, y \in U, x < y \Longrightarrow f(x) < f(y)$.
- f est **décroissante** sur U si $\forall x, y \in U, x \leq y \Longrightarrow f(x) \geq f(y)$.
- f est strictement décroissante sur U si $\forall x, y \in U, x < y \Longrightarrow f(x) > f(y)$.
- f est monotone sur U si elle est croissante ou décroissante.

Définition 5 (Parité). Soit I un intervalle de \mathbb{R} symétrique par rapport à 0, c'est à dire de la forme [-a, a] ou]-a, a[. Soit $f: I \longrightarrow \mathbb{R}$ une fonction définie sur \mathbb{R} .

- f est **paire** si $\forall x \in I$, f(-x) = f(x).
- f est **impaire** si $\forall x \in I, f(-x) = -f(x)$.

Définition 6 (Parité). Soit $f : \mathbb{R} \longrightarrow \mathbb{R}$ une fonction et $T \in \mathbb{R}$. La fonction f est **périodique** de période T si $\forall x \in \mathbb{R}, f(x+T) = f(x)$.

Exercice 1. Donner des exemples de fonction pour toutes ces définitions.

Exercice 2. 1. Soit $U =]-\infty, 0[$ et $f: U \longrightarrow \mathbb{R}$ définie par $f(x) = \frac{1}{x}$. La fonction f est elle monotone? Et si $U =]0, +\infty[$? Et si $U =]-\infty, 0[\cup]0, +\infty[$?

- 2. Pour deux fonctions paires que peut-on dire sur la parité de la somme? du produit? et de la composée? Et pour deux fonctions impaires? Et si l'une est paire et l'autre impaire?
- 3. On note $E: \mathbb{R} \to \mathbb{R}$ la fonction partie entière de x. On note $\operatorname{frac}(x) = x E(x)$ la partie fractionnaire de x. Tracer le graphe de la fonction $x \mapsto \operatorname{frac}(x)$ et montrer quelle est périodique.
- 4. Soit $f: \mathbb{R} \to \mathbb{R}$ la fonction définie par $f(x) = \frac{x}{1+x^2}$. Montrer que |f| est majorée par $\frac{1}{2}$, étudier les variations de f (sans utiliser de dérivée) et tracer son graphe.
- 5. On considère la fonction $g: \mathbb{R} \longrightarrow \mathbb{R}$, $g(x) = \sin(\pi f(x))$, où f est définie à la question précédente. Déduire de l'étude de f les variations, la parité, la périodicité de g et tracer son graphe.

2 Limites

2.1 Définition de limite

Définition 7 (Limite en un point). Soit $f: I \longrightarrow \mathbb{R}$ une fonction définie sur un intervalle I de \mathbb{R} soit $x_0 \in I$ ou une de ces extrémités.

— Soit $l \in \mathbb{R}$. On dit que f a pour limite l en x_0 si

$$\forall \epsilon > 0, \ \exists \delta > 0, \ \forall x \in I, \ |x - x_0| \le \delta \Longrightarrow |f(x) - l| \le \epsilon$$

— On dit que f a pour limite $+\infty$ en x_0 si

$$\forall A > 0, \ \exists \delta > 0, \ \forall x \in I, \ |x - x_0| < \delta \Longrightarrow f(x) > A$$

— On dit que f a pour limite $-\infty$ en x_0 si

$$\forall A > 0, \ \exists \delta > 0, \ \forall x \in I, \ |x - x_0| \le \delta \Longrightarrow f(x) \le -A$$

Exercice 3. Soit $x_0 \in \mathbb{R}$. En utilisant la définition, montrer que

$$x \underset{x \to x_0}{\longrightarrow} x_0, \qquad x^2 \underset{x \to x_0}{\longrightarrow} x_0^2, \qquad \frac{1}{x^2} \underset{x \to 0}{\longrightarrow} +\infty$$

Définition 8 (Limite en $+\infty$). Soit $f: I \longrightarrow \mathbb{R}$ une fonction définie sur un intervalle $I = [a, +\infty[$.

— Soit $l \in \mathbb{R}$. On dit que f a pour limite l en $+\infty$ si

$$\forall \epsilon > 0, \ \exists B \in \mathbb{R}, \ \forall x \in I, \ x \geq B \Longrightarrow |f(x) - l| \leq \epsilon$$

— On dit que f a pour limite $+\infty$ en $+\infty$ si

$$\forall A > 0, \ \exists B \in \mathbb{R}, \ \forall x \in I, \ x \geq B \Longrightarrow f(x) \geq A$$

— On dit que f a pour limite $-\infty$ en $+\infty$ si

$$\forall A > 0, \ \exists B \in \mathbb{R}, \ \forall x \in I, \ x \ge B \Longrightarrow f(x) \le -A$$

Exercice 4. Soit $x_0 \in \mathbb{R}$. En utilisant la définition, montrer que

$$x^2 \underset{x \to +\infty}{\longrightarrow} +\infty, \qquad 1 - \frac{1}{x} \underset{x \to +\infty}{\longrightarrow} 1$$

Montrer que $x \mapsto \cos(x)$ n'admet pas de limite en $+\infty$.

Définition 9 (Limite à gauche et à droite). Soit $f:I\longrightarrow\mathbb{R}$ une fonction définie sur un intervalle $I=[a,x_0[\cup]x_0,b]$.

- On appelle **limite à droite** en x_0 de f la limite de la fonction f restreinte à $]x_0, b]$.
- On appelle **limite à gauche** en x_0 de f la limite de la fonction f restreinte à $[a, x_0]$.

On le note respectivement

$$\lim_{\substack{x>x_0\\x\to x_0}} f(x) \text{ et } \lim_{\substack{x< x_0\\x\to x_0}} f(x)$$

Exercice 5. 1. Etudier les limite à gauche et à droite de $x \mapsto \frac{1}{x}$ en 0.

2. Etudier les limite à gauche et à droite de $x \mapsto E(x)$ en $x_0 \in \mathbb{Z}$ (on rappelle que E est la fonction partie entière).

2.2 Propriétés

Proposition 1

Si une fonction admet une limite, alors cette limite est unique.

Proposition 2

Soient deux fonctions f et g. On suppose que x_0 est un réel, ou que $x_0 = +\infty$ ou $x_0 = -\infty$. Si $\lim_{x_0} f = l \in \mathbb{R}$ et $\lim_{x_0} g = l' \in \mathbb{R}$, alors $-\lim_{x_0} \lambda. f = \lambda. l \text{ pour } \lambda \in \mathbb{R}.$ $-\lim_{x_0} f + g = l + l'.$ $-\lim_{x_0} f \times g = l \times l'.$ $-\sin_{x_0} f \times g = l \times l'.$ $-\sin_{x_0} f \times g = l \times l'.$

Proposition 3

Soient deux fonctions f et g. On suppose que x_0 est un réel, ou que $x_0 = +\infty$ ou $x_0 = -\infty$.

— $Si \lim_{x_0} f = +\infty$ et g minorée alors $\lim_{x_0} f + g = +\infty$.

— $Si \lim_{x_0} f = -\infty$ et g majorée alors $\lim_{x_0} f + g = -\infty$.

— $Si \lim_{x_0} f = +\infty$ et $g \ge \alpha > 0$ alors $\lim_{x_0} f \times g = +\infty$.

— $Si \lim_{x_0} f = +\infty$ et $\lambda > 0$ alors $\lim_{x_0} \lambda f = +\infty$.

— $Si \lim_{x_0} f = +\infty$ et $\lambda < 0$ alors $\lim_{x_0} \lambda f = -\infty$.

— $Si \lim_{x_0} f = +\infty$ ou $-\infty$ alors $\lim_{x_0} \lambda \frac{1}{f} = 0$.

Proposition 4

 $Si \lim_{x_0} f = l \in \mathbb{R} \text{ et } \lim_{l} g = l' \in \mathbb{R}, \text{ alors } \lim_{x_0} g \circ f = l' \in \mathbb{R}.$

Il y a des situations où l'on ne peut rien dire sur les limites. Par exemple si $\lim_{x_0} f = +\infty$ et $\lim_{x_0} g = -\infty$ alors on ne peut à priori rien dire sur la limite de f + g (cela dépend vraiment de f et de g). On raccourci cela en $+\infty - \infty$ est une forme indéterminée.

Voici une liste de formes indéterminées : $+\infty - \infty$; $0 \times \infty$; $\frac{\infty}{\infty}$; $\frac{0}{0}$; 1^{∞} ; ∞^0 .

Exemple 1. On a les limites classiques suivantes pour tout $n \ge 1$:

$$\lim_{x \to +\infty} x^n = +\infty, \qquad \lim_{x \to -\infty} x^n = \begin{cases} +\infty & \text{si } n \text{ pair} \\ -\infty & \text{si } n \text{ impair} \end{cases} \qquad \lim_{x \to +\infty} \frac{1}{x^n} = 0 \qquad \lim_{x \to -\infty} \frac{1}{x^n} = 0$$

Proposition 5 Limite et inégalité

Soient deux fonctions f et g. On suppose que x_0 est un réel, ou que $x_0 = +\infty$ ou $x_0 = -\infty$.

- Si $f \leq g$ et si $\lim_{x_0} f = l \in \mathbb{R}$ et $\lim_{x_0} g = l' \in \mathbb{R}$ alors $l \leq l'$.
- Si $f \leq g$ et si $\lim_{x_0} f = +\infty$ alors $\lim_{x_0} g = +\infty$.
- Si $f \leq g \leq h$ et si $\lim_{x_0} f = l = \lim_{x_0} h$ alors $\lim_{x_0} g = l$.

Exercice 6. 1. Déterminer, si elle existe, la limite de $\frac{2x^2-x-2}{3x^2+2x+2}$ en 0 et en $+\infty$.

- 2. Déterminer, si elle existe, la limite de sin $(\frac{1}{x})$ et $\frac{\cos(x)}{\sqrt{x}}$ en $+\infty$.
- 3. Montrer que si f admet une limite finie en x_0 alors il existe $\delta > 0$ tel que f soit bornée sur $]x_0 \delta, x_0 + \delta[$.
- 4. Déteminer, si elle existe, $\lim_{x\to 0} \frac{\sqrt{1+x}-\sqrt{1+x^2}}{x}$ et $\lim_{x\to 2} \frac{x^2-4}{x^2-3x+2}$

3 Continuité en un point

3.1 Definition

Définition 10. Une fonction $f: I \to \mathbb{R}$ est continue en $x_0 \in I$ si f admet une limite en x_0 et cette limite est $f(x_0)$. Autrement dit si

$$\forall \epsilon > 0, \ \exists \delta > 0, \ \forall x \in I, \ |x - x_0| \le \delta \Longrightarrow |f(x) - f(x_0)| \le \epsilon$$

Exemple 2. Les fonctions suivantes sont continues :

- les fonctions constantes sur \mathbb{R} ;
- les fonctions polynôme sur \mathbb{R} ;
- le fonction racine carré sur $[0, +\infty[$;
- les fonctions sin, cos sur \mathbb{R} ;
- la fonction $x \mapsto |x|$ sur \mathbb{R} ;
- la fonction $x \mapsto \exp(x)$ sur \mathbb{R} ;
- la fonction $x \mapsto \ln(x)$ sur $]0, +\infty[$;

3.2 Propriétés

Proposition 6

Soient $f, g: I \to \mathbb{R}$ deux fonctions continues en un point $x_0 \in \mathbb{R}$.

- $\lambda.f$ est continue en x_0 pour tout $\lambda \in \mathbb{R}$.
- f + g est continue en x_0 .
- $f \times g$ est continue en x_0 .
- si $f(x_0) \neq 0$ alors $\frac{1}{f}$ est continue en x_0 .

Proposition 7

Soient $f: I \to \mathbb{R}$ et $g: J \to \mathbb{R}$ deux fonctions telles que $f(I) \subset J$. Si f continue en un point $x_0 \in \mathbb{R}$ et g est continue en un point $f(x_0)$, alors $g \circ f$ est continue en x_0 .

Exemple 3. Les propositions précédentes permettent de vérifier que d'autres fonctions usuelles sont continues : les fonctions puissance $x \mapsto x^n$ sur \mathbb{R} , les polynômes sur \mathbb{R} (somme et produit de fonctions puissance et de fonctions constantes), les fractions rationnelles $x \mapsto \frac{P(x)}{Q(x)}$ sur tout intervalle où le polynôme Q(x) ne s'annule pas, $x \mapsto \sin(P(x))$ sur \mathbb{R} ou P est un polynôme...

3.3 Prolongement par continuité

Définition 11. Soit I un intervalle, x_0 un point de I et $f: I \setminus \{x_0\} \to \mathbb{R}$ une fonction. On dit que f est **prolongeante par continuité en** x_0 si f admet une limite finie en x_0 noté $l = \lim_{x_0} f$. On définit alors le prolongement par continuité par $\tilde{f}: I \to \mathbb{R}$ par

$$\tilde{f} = \begin{cases} f(x) & \text{si } x \neq x_0 \\ l & \text{si } x = x_0 \end{cases}$$

Exercice 7. Donner le prolongement par continuité de la fonction $f: \mathbb{R}^* \to \mathbb{R}$ définie par $f(x) = x \sin(\frac{1}{x})$ pour $x \in \mathbb{R}^*$.

3.4 Suites et continuité

Proposition 8

Soit $f: I \to \mathbb{R}$ une fonction et x_0 un point de I. La fonction f est continue en x_0 si et seulement si pour toute suite (u_n) convergeant vers x_0 , la suite $(f(u_n))_{n\in\mathbb{N}}$ converge vers $f(x_0)$.

Démonstration: \Longrightarrow On suppose f continue en x_0 est que $(u_n)_{n\in\mathbb{N}}$ est une suite qui converge vers x_0 . On veut montrer que la suite $(f(u_n))_{n\in\mathbb{N}}$ converge vers $f(x_0)$.

Soit $\epsilon > 0$. Comme f est continue en x_0 , il existe $\delta > 0$ tel que

$$\forall x \in I, \qquad |x - x_0| \le \delta \Longrightarrow |f(x) - f(x_0)| \le \epsilon.$$

Pour ce δ , comme $(u_n)_{n\in\mathbb{N}}$ converge vers x_0 , il existe $N\in\mathbb{N}$ tels que

$$\forall n \in \mathbb{N}, \quad n \ge N \Longrightarrow |u_n - x_0| \le \delta.$$

On en déduit que pour tout $n \ge N$, comme $|u_n - x_0| \le \delta$, on a $|f(u_n) - f(x_0)| \le \epsilon$. Comme c'est vrai pour tout ϵ , on peut conclure que $(f(u_n))_{n \in \mathbb{N}}$ converge vers $f(x_0)$.

 $\stackrel{\longleftarrow}{\longleftarrow}$ On va montrer la contraposée : supposons que f n'est pas continue en x_0 et montrons qu'il existe une suite $(u_n)_{n\in\mathbb{N}}$ qui converge vers x_0 .

Par hypothèse, f n'est pas continue en x_0 . Donc

$$\exists \epsilon_0 > 0, \ \forall \delta > 0, \ \exists x_\delta \text{ tel que } |x_\delta - x_0| \leq \delta \text{ et } |f(x_\delta) - f(x_0)| > \epsilon_0$$

On construit la suite $(u_n)_{n\in\mathbb{N}^*}$ de la façon suivante : pour $n\in\mathbb{N}^*$, on choisit dans l'assertion suivante $\delta=\frac{1}{n}$ et on obtient un u_n (qui correspond à $x_{1/n}$) tel que

$$|u_n - x_0| \le \frac{1}{n}$$
 et $|f(u_n) - f(x_0)| > \epsilon_0$.

La suite $(u_n)_{n\in\mathbb{N}^*}$ converge vers x_0 mais la suite $(f(u_n))_{n\in\mathbb{N}^*}$ ne peut pas converger vers $f(x_0)$.

Remarque 1. On retiendra surtout l'implication : si f est continue sur I et si $(u_n)_{n\in\mathbb{N}}$ est une suite convergente de limite l, alors $(f(u_n))_{n\in\mathbb{N}}$ converge vers f(l). On l'utilisera intensivement pour l'étude des suites récurrentes $u_{n+1} = f(u_n)$. Dans ce cas, si f est continue et $u_n \xrightarrow[n \to \infty]{} l$, alors f(l) = l.

Exercice 8. Soit la suite définie par $u_0 > 0$ et $u_{n+1} = \sqrt{u_n}$. Montrer que $(u_n)_{n \in \mathbb{N}}$ converge et donner sa limite.

4 Applications de la continuité

4.1 Théorème des valeurs intermédiaires

Théorème 9

Soit $f:[a,b] \longrightarrow \mathbb{R}$ une fonction continue sur un segment. Pour tout y entre f(a) et f(b), il existe $c \in [a,b]$ tel que f(c) = y.

Démonstration: On se place dans le cas où f(a) < f(b) et on choisit y tel que $f(a) \le y \le f(b)$.

Soit $A = \{x \in [a, b] : f(x) \le y\}$. Comme $a \in A$, $A \ne \emptyset$, de plus A est majoré par b. On en déduit que A admet une borne supérieure noté $c = \sup A$. On va montrer que f(c) = y.

Montrons que $f(c) \leq y$: Comme $c = \sup A$, il existe une suite $(u_n)_{n \in \mathbb{N}}$ d'éléments de A telle que $\lim_{n \to \infty} u_n = c$. Par continuité de f, on a $\lim_{n \to \infty} f(u_n) = f(c)$. Cependant, pour tout $n \in \mathbb{N}$, on a $u_n \in A$ donc $f(u_n) \leq y$. Par passage à la limite, on obtient que $f(c) \leq y$.

Montrons que $f(c) \ge y$: Si c = b, on a terminer car $y \le f(b)$. Sinon pour $x \in]c, b]$, on a f(x) > y car sinon $x \in \overline{A}$ ce qui est contradictoire avec le fait que x > c. Or f est continue en c, donc la limite à droite de f en c est f(c) et doit être supérieur à g. Donc $f(c) \ge g$.

Corollaire 10

Soit $f:[a,b] \longrightarrow \mathbb{R}$ une fonction continue. Si f(a).f(b) < 0, alors il existe $c \in]a,b[$ tels que f(c)=0.

Corollaire 11

Soit $f: I \longrightarrow \mathbb{R}$ une fonction continue sur un intervalle I. Alors f(I) est un intervalle.

Exercice 9. Le théorème des valeurs intermédiaires est-il vrai si f n'est pas continue?

Exercice 10. 1. Montrer les trois corollaires précédent.

2. Est ce que si f est continue sur [a,b] et f(a) < f(b), alors on a nécessairement $f([a,b]) \subset [f(a),f(b)]$?

Exercice 11. 1. Montrer qu'il existe $x \ge 0$ tel que $2^x + 3^x = 7^x$.

2. Monter qu'il existe $x \in \mathbb{R}$ tel que x = cos(x).

4.2 Fonctions continues sur un segment

Théorème 12

Soit $f:[a,b] \longrightarrow \mathbb{R}$ une fonction continue. Alors il existe deux réels m et M tels que f([a,b]) = [m,M]. Autrement dit $f:[a,b] \longrightarrow \mathbb{R}$ continue est bornée sur [a,b] et atteins ses bornes.

Démonstration: Montrons que f est bornée: Pour $r \in \mathbb{R}$, on note $A_r = \{x \in [a,b] : f(x) \ge r\}$. Fixons r tel que $A_r \ne \emptyset$, comme $A_r \subset [a,b]$, le nombre $s = \sup A_r$ existe. Soit $(x_n)_{n \in \mathbb{N}}$ un suite qui tend vers s avec $x_n \in A_r$ pour tout $n \in \mathbb{N}$. Par définition $f(x_n) \ge r$ pour tout $n \in \mathbb{N}$ et que f est contininue, à la limite on a $f(s) \ge r$ et ainsi $s \in A_r$.

Supposons par l'absurd que f ne soit pas majorée. Pour tout $n \geq 0$, A_n est non vide. Notons $s_n = \sup A_n$. Comme si $f(x) \geq n+1$ alors $f(x) \geq n$, on a $A_{n+1} \subset A_n$ et donc $s_{n+1} \leq s_n$. La suite $(s_n)_{n \in \mathbb{N}}$ est donc décroissante et minorée par a. Encore une fois f est continue donc $\lim_n f(s_n) = f(l)$ qui est fini. Mais $f(s_n) \geq n$ donc $\lim_n f(s_n) = +\infty$, ce qui est contradictoire. On en déduit que f est majorée.

Un raisonnement tout à fait similaire prouve que f est aussi minorée, donc bornée. Par ailleurs on sait déjà que f([a,b]) est un intervalle (c'est le théorème des valeurs intermédiaires), donc maintenant f([a,b]) est un intervalle borné. Il reste à montrer qu'il du type [m,M] (et pas [m,M] par exemple).

Montrons maintenant que f([a,b]) est un intervalle fermé. Notons $m=\inf f([a,b])$ et $M=\sup f([a,b])$. Supposons par l'absurde que $M\notin f([a,b])$. Alors pour tout $t\in [a,b], M>f(t)$. La fonction $g:t\longrightarrow \frac{1}{M-f(t)}$ est bien définie et contininue (comme quotient de fonction qui le sont). D'après la partie précédente, elle est bornée, disons par un réel K. Comme $M=\sup f([a,b])$, il existe une suite $(y_n)_{n\in\mathbb{N}}$ d'éléments de f([a,b]) tel que $\lim_n y_n=M$. Comme pour tout $n\in\mathbb{N}, y_n\in f([a,b])$, il existe $x_n\in [a,b]$ tel que $f(x_n)=y_n$ donc $\lim_n f(x_n)=M$. Ainsi

$$g(x_n) = \frac{1}{M - f(x_n)} \underset{n \to +\infty}{\longrightarrow} +\infty$$

Cela contredit le fait que g est bornée. Ainsi $M \in f([a,b])$. De même $m = \inf f([a,b]) \in f([a,b])$. On en conclut que f([a,b]) = [m,M].

Exercice 12. Soient f et g deux fonctions continues sur [0,1] telles que $\forall x \in [0,1]$, f(x) < g(x). Montrer qu'il existe m > 0 tel que $\forall x \in [0,1]$, f(x) + m < g(x). Ce résultat est-il vrai si on remplace [0,1] par \mathbb{R} ?

Dessiner le graphe d'une fonction continue $f: \mathbb{R} \longrightarrow \mathbb{R}$ telle que $f(\mathbb{R}) = [0,1], f(\mathbb{R}) = [0,1[, f(\mathbb{R}) = [0,1[, f(\mathbb{R}) = [0,1], f(\mathbb{R}) = [0,1[, f(\mathbb{R}) = [0,1], f(\mathbb{R}) = [0,1], f(\mathbb{R}) = [0,1[, f(\mathbb{R}) = [0,1], f(\mathbb{R}) = [0,1], f(\mathbb{R}) = [0,1], f(\mathbb{R}) = [0,1[, f(\mathbb{R}) = [0,1], f(\mathbb{R}) = [0,1], f(\mathbb{R}) = [0,1], f(\mathbb{R}) = [0,1], f(\mathbb{R}) = [0,1[, f(\mathbb{R}) = [0,1], f(\mathbb{R}) = [0,1], f(\mathbb{R}) = [0,1], f(\mathbb{R}) = [0,1], f(\mathbb{R}) = [0,1[, f(\mathbb{R}) = [0,1], f($

4.3 Fonctions monotones et bijection

Théorème 13

Soit $f:I\longrightarrow \mathbb{R}$ une fonction définie sur un intervalle I de \mathbb{R} . Si f est continue et strictement monotone sur I, alors

- 1. f établit une bijection de l'intervalle I dans l'intervalle image J = f(I),
- 2. la fonction réciproque $f^{-1}: J \longrightarrow I$ est continue et strictement monotone sur J. De plus, elle a le même sens de variation que f.

Considérons la fonction carrée définie sur \mathbb{R} par $f(x)=x^2$. La fonction f n'est pas strictement monotone sur \mathbb{R} : elle n'est pas même pas injective car un nombre et son opposé ont même carré. Cependant, en restreignant son ensemble de définition à $]-\infty,0]$ d'une part et à $[0,+\infty[$ d'autre part, on définit deux fonctions strictement monotones:

$$f_1:]-\infty,0] \longrightarrow [0,+\infty[$$
 et $f_2: [0,+\infty[\longrightarrow [0,+\infty[$ $x \longmapsto x^2$

On remarque que $f(]-\infty,0])=f([0,+\infty[)=[0,+\infty[$. D'après le théorème précédent, les fonctions f_1 et f_2 sont des bijections. Leur fonctions réciproques sont

qui sont respectivement strictement décroissante et strictement croissante.

Lemme 14

Soit $f: I \longrightarrow \mathbb{R}$ une fonction définie sur un intervalle I de \mathbb{R} . Si f est strictement monotone sur I, alors f est injective sur I.

Démonstration: Soient $x, x' \in I$ tels que f(x) = f(x'). Si on avait x < x' alors comme f est strictement monotone, on a f(x) < f(x') ou f(x) > f(x') suivant que f est strictement croissante ou strictement décroissante. Comme c'est impossible, on en déduit que $x \ge x'$. En faisant le même raisonnement en inversant le rôle de x et x', on obtient que $x \le x'$ et donc x = x'. On en déduit que $x \ge x'$ est injective.

Démonstration (Preuve du théorème 13): D'après le lemme précédent, f est injective sur I. En restreignant son ensemble d'arrivée à son image J = f(I), on obtient que f établit une bijection de I dans J. Comme f est continue, par le théorème des valeurs intermédiaires, l'ensemble J est un intervalle.

Supposons que f est strictement croissante.

Montrons que f^{-1} est strictement croissante sur J. Soient $y, y' \in J$ tels que y < y'. Notons $x = f^{-1}(y) \in I$ et $x' = f^{-1}(y') \in I$. Alors y = f(x), y' = f(x') et donc y = f(x) < y' = f(x'). Comme f est strictement croissante, x < x' et donc $f^{-1}(y) < f^{-1}(y')$. Ainsi f^{-1} est strictement croissante.

Montrons que f^{-1} est continue sur J. On se limite au cas où I est de la forme]a,b[, les autres cas se montrent de la même manière. Soit $y_0 \in J$, on note $x_0 = f^{-1}(y_0) \in I$. Soit $\epsilon > 0$, on peut supposer que $[x_0 - \epsilon, x_0 + \epsilon] \subset I$. On cherche $\delta > 0$ tel que pour tout $y \in J$ on ait

$$y_0 - \delta < y < y_0 + \delta \Longrightarrow f^{-1}(y_0) - \epsilon < f^{-1}(y) < f^{-1}(y_0) + \epsilon$$

On pose $\delta > 0$ tel que $f(x_0 - \epsilon) < y_0 - \delta$ et $f(x_0 + \epsilon) > y_0 + \delta$. Pour tout $y \in J$, il existe $x \in I$ tel que f(x) = y. On a alors

$$y_0 - \delta < y = f(x) < y_0 + \delta \implies f(x_0 - \epsilon) < f(x) < f(x_0 + \epsilon)$$

$$\implies x_0 - \epsilon < x < x_0 + \epsilon \qquad \text{car } f \text{ est croissante}$$

$$\implies f^{-1}(y_0) - \epsilon < x < f^{-1}(y_0) + \epsilon \qquad \text{car } f^{-1}(y_0) = x_0$$

Exercice 13. 1. En donnant des exemples appropriés, montrer que chacune des hypothèses "continue" et "strictement monotone" est nécessaire dans l'énoncé du théorème de la bijection.

- 2. Soit $f: \mathbb{R} \longrightarrow \mathbb{R}$ définie par $f(x) = x^3 + x$. Montrer que f est bijective, tracer le graphe de f et de f^{-1} .
- 3. Soit $n \in \mathbb{N}^*$. Montrer que $f(x) = 1 + x + x^2 + \dots + x^n$ définit une bijection de l'intervalle [0,1] vers un intervalle à préciser.
- 4. Existe-t-il une fonction continue $f:[0,1[\longrightarrow]0,1[$ qui soit bijective? $f:[0,1[\longrightarrow]0,1[$ qui soit injective? $f:[0,1[\longrightarrow]0,1[$ qui soit surjective?
- 5. Pour $y \in \mathbb{R}$, on considère l'équation $x + e^x = y$. Montrer qu'il existe une unique solution pour chaque $y \in \mathbb{R}$. Comment varie y en fonction de x? Comment varie x en fonction de y?

Langage mathématique (Solutions)