Propriétés arithmétiques des anneaux

- **Exercice 1 [Quelques exemples].** 1. Déterminer tous les idéaux propres de l'anneau $A = \mathbb{Z}/180\mathbb{Z}$ et donner les inclusions les uns par rapport aux autres. Déterminer les idéaux premiers, les idéaux maximaux.
 - 2. Soit $A = \mathcal{C}([0,1],\mathbb{R})$ l'anneau des fonctions continues de [0,1] dans \mathbb{R} et soit I le sous-ensemble de A de fonctions qui s'annulent en 1/2. Montrer que I est idéal premier de A. Est-il maximal?
 - 3. Soient *E* un espace vectoriel et *F* un sous-espace vectoriel de *E*. On considère

$$I = \{ f \in \operatorname{End}(E) \text{ tel que } \operatorname{Im}(f) \subset F \}$$
 et $J = \{ f \in \operatorname{End}(E) \text{ tel que } F \subset \operatorname{Ker}(f) \}.$

Montrer que I est un idéal à droite principal et J est un idéal à gauche principal de End(E).

- **Exercice 2 [Idéaux premiers, idéaux maximaux].** 1. Parmi les idéaux (2X), (X,Y) et (2,X,Y) de $\mathbb{Z}[X,Y]$, lesquels sont premiers? maximaux?
 - 2. Soit A un anneau intègre. Montrer que si A contient un nombre fini d'idéaux alors A est un corps (on pourra considérer les idéaux de la forme (a^n)).
 - 3. Soit *A* un anneau commutatif. Montrer qui si *A* contient un nombre fini d'idéaux alors tout idéal premier est maximal.
 - 4. Soit A un anneau intègre tel que tout idéal est premier. Montrer que A est un corps (on pourra considérer les idéaux de la forme (x^2)).
- **Exercice 3 [Quelques idéaux non principaux].** 1. Montrer que (2, X) n'est pas un idéal principal de $\mathbb{Z}[X]$. A quoi est isomorphe $\mathbb{Z}[X]/(2, X)$?
 - 2. Montrer que (X, Y) n'est pas un idéal principal de A[X, Y].
 - 3. Soit $a \in A$. Montrer que A[X]/(X-a) est isomorphe à A.

Exercice 4 [Lemme chinois]. Soit *A* un anneau, *I* et *J* deux idéaux de *A*.

- 1. Soit I et J deux idéaux de A premiers entre eux (c'est à dire I+J=A). Montrer qu'alors $IJ=I\cap J$. Montrer que cette égalité n'est pas forcément vraie si on ne suppose plus les idéaux premiers entre eux.
- 2. Montrer que A/IJ est isomorphe à $A/I \times A/J$.
- 3. Soit I_1, \ldots, I_n des idéaux de A premiers entre eux deux à deux. Montrer que $A/(I_1 \ldots I_n)$ est isomorphe à $A/I_1 \times \cdots \times A/I_n$ (commencer par n=2).

Exercice 5. Soit *A* un anneau, *I* un idéal de *A*. Montrer :

- I est premier si et seulement si A/I est intègre;
- I est maximal si et seulement si A/I est un corps.
- **Exercice 6 [Premier vs irréductible].** 1. Soit A un anneau intègre. Un élément $a \in A$ est premier si l'idéal (a) est premier. Montrer qu'un élément premier de A est nécessairement irréductible.
 - 2. Soit *A* un anneau factoriel. Montrer que tout élément irréductible est premier.
 - 3. Soit *A* l'anneau $\mathbb{Z}[i\sqrt{5}]$.
 - (a) Vérifier que chacun des éléments 2, 3, $1 + i\sqrt{5}$ et $1 i\sqrt{5}$ est irréductible.
 - (b) Montrer qu'aucun de ces éléments n'est premier (Vérifier l'égalité $2.3 = (1 + i\sqrt{5})(1 i\sqrt{5})$).

Exercice 7 [Entiers de Gauss]. Soit $\mathbb{Z}[i]$ le sous-ensemble de \mathbb{C} constitué des nombres complexes de la formes a+ib avec $a,b\in\mathbb{Z}$.

- 1. Montrer que $\mathbb{Z}[i]$ est un sous-anneau de \mathbb{C} appellé l'anneau des entiers de Gauss.
- 2. Montrer que la norme $N : \mathbb{Z}[i] \to \mathbb{N}$ définie par $N(a+ib) = a^2 + b^2$ est multiplicative.
- 3. Quelle est la structure de groupe de $(\mathbb{Z}[i])^{\times}$?
- 4. Montrer que $\mathbb{Z}[i]$ est un anneau euclidien munit de la norme N.
- 5. Déterminer le pgcd dans $\mathbb{Z}[i]$ de 19 + 4i et 13 i.
- 6. Soit α un élément non inversible de $\mathbb{Z}[i]$, montrer que si $N(\alpha)$ est premier dans \mathbb{Z} alors α est irréductible dans $\mathbb{Z}[i]$.
- 7. Montrer si *m* et *n* sont tous deux sommes de deux carrés d'entiers, alors *mn* est somme de deux carrés également.
- 8. Soit p un entier premier. Montrer que p est une somme de deux carrés si et seulement si p n'est pas irréductible dans $\mathbb{Z}[i]$.
- 9. Soit p un entier premier. Montrer que les anneaux $\mathbb{Z}[i]/(p)$ et $\mathbb{F}_p[X]/(X^2+1)$ sont isomorphes. En déduire que p est irréductible dans dans $\mathbb{Z}[i]$ si et seulement si -1 n'est pas un carré dans $\mathbb{Z}/p\mathbb{Z}$.
- 10. Soit p un entier premier. Déduire de ce qui précède que p est une somme de deux carrés si et seulement si p = 2 ou $p = 1 \pmod{4}$.
- 11. Démontrer le théorème des deux carrés : soit n un entier naturel et $n=p_1^{v_{p_1}(n)}\dots p_k^{v_{p_k}(n)}$ sa décomposition en facteurs premiers. Alors n est somme de deux carrés d'entiers si et seulement si $v_p(n)$ est pair pour tout entier premier p tel que $p=3 \pmod 4$.

Exercice 8 [Anneau principal non euclidien]. Soit $\alpha = \frac{1+i\sqrt{19}}{2}$. On note $A = \mathbb{Z}[\alpha]$. On se propose de montrer que A est principal, mais pas euclidien.

- 1. Si $a \in A$, on note $N(a) = |a|^2$. Vérifier que N est une application multiplicative. Vérifier que si $a = u + v\alpha$, $u, v \in \mathbb{Z}$, alors $N(a) = u^2 + uv + 5v^2$. Quelles sont les unités de A?
- 2. Montrer que α vérifie $\alpha^2 \alpha + 5 = 0$. En déduire que A est isomorphe à $\mathbb{Z}[X]/(X^2 X + 5)$. Soit B un anneau, montrer qu'il existe un morphisme de A dans B si et seulement si il existe $b \in B$ vérifiant $b^2 b + 5 = 0$. En déduire qu'il n'existe pas de morphisme de A dans $\mathbb{Z}/2\mathbb{Z}$ ni dans $\mathbb{Z}/3\mathbb{Z}$.
- 3. Montrer que si un anneau B est euclidien alors il existe $x \in B \setminus B^{\times}$ tel que la restriction à $B^{\times} \cup \{0\}$ de la projection canonique de B sur B/(x) soit surjective.
- 4. En déduire que *A* n'est pas euclidien.
- 5. Soit *a* et *b* dans *A*. Montrer que l'une des situations suivantes est réalisée :
 - (a) il existe q et r dans A, avec r = 0 ou N(r) < N(b), et a = bq + r;
 - (b) il existe q et r dans A, avec r = 0 ou N(r) < N(b), et 2a = bq + r.
 - On a donc une pseudo-division euclidienne sur A.
- 6. Montrer que (2) est un idéal maximal de A.
- 7. Soit *I* un idéal non nul de *A*, montrer que *I* est principal.