Lecture 5: Starting the study of extremal particles	08/01/2029
II/Extremal particles of the BBM	
In this chapter, we study the asymptotic behavior of T71 := max Xu(1	b .
We always assume that $E[L^2] < \infty$.	
III. 1) First order	
We have seen that $\frac{77L}{L} \xrightarrow{P} \lambda_c = \sqrt{2m}$ (when $P(L=0) = 0$, i.e. no extinct	rion).
We prove here the following stronger result:	
Theorem: $\frac{1}{F} \xrightarrow{a.s.}_{F \to \infty} d_c = \sqrt{2m}$ on the survival event,	
Recall the definition of the additive martingale: $W_{t}^{\lambda} := \sum_{e \in \Delta P(t)} e^{\lambda K_{u}(t) - (\frac{\lambda^{2}}{2} + m)t}$	• • • •
	• • • •
(Upper bound : Keeping only the highest particle, we get Wh > e 2774 - ($\frac{1}{2}$ + m)
With $1 = \sqrt{2m}$, it yields $W_{\mu}^{+} \ge eqp(\sqrt{2m}(\sqrt{2m}+1))$.	
But $W_{\mu}^{\lambda_c} \longrightarrow W_{\infty}^{\lambda_c} < \infty \text{ a.s. so linesup } \overline{\Pi_{\mu}} - \overline{\mathbb{Z}_m} + < \infty \text{ a.s.}$	
This proves $\lim_{t\to\infty} \frac{77t}{t} \leq \sqrt{2m} a.s.$	
(Remark: Using that W_12m = 0 a.s. we can even deduce lim T4 - 12m + =	~
(f)	• • • •
$W_{l}^{\lambda+\Sigma} = \sum_{\nu \in \mathcal{N}(l)} \left\{ \begin{array}{c} (\lambda+\Sigma) X_{\nu}(l) - \left(\left(\frac{\lambda+\Sigma}{2} \right)^{2} + m \right) k \\ \leq \lambda X_{\nu}(l) + \Sigma \Pi_{l} \end{array} \right\} \\ \leq e^{\sum_{\nu \in \mathcal{N}(l)} \left(\lambda+\Sigma \right)^{2} + m - k} \\ \leq e^{\sum_{\nu \in \mathcal{N}(l)} \left(\frac{\lambda+\Sigma}{2} \right)^{2} + m - k} \\ \leq e^{\sum_{\nu \in \mathcal{N}(l)} \left(\frac{\lambda+\Sigma}{2} \right)^{2} + m - k} \\ \leq e^{\sum_{\nu \in \mathcal{N}(l)} \left(\frac{\lambda+\Sigma}{2} \right)^{2} + m - k} \\ \leq e^{\sum_{\nu \in \mathcal{N}(l)} \left(\frac{\lambda+\Sigma}{2} \right)^{2} + m - k} \\ \leq e^{\sum_{\nu \in \mathcal{N}(l)} \left(\frac{\lambda+\Sigma}{2} \right)^{2} + m - k} \\ \leq e^{\sum_{\nu \in \mathcal{N}(l)} \left(\frac{\lambda+\Sigma}{2} \right)^{2} + m - k} \\ \leq e^{\sum_{\nu \in \mathcal{N}(l)} \left(\frac{\lambda+\Sigma}{2} \right)^{2} + m - k} \\ \leq e^{\sum_{\nu \in \mathcal{N}(l)} \left(\frac{\lambda+\Sigma}{2} \right)^{2} + m - k} \\ \leq e^{\sum_{\nu \in \mathcal{N}(l)} \left(\frac{\lambda+\Sigma}{2} \right)^{2} + m - k} \\ \leq e^{\sum_{\nu \in \mathcal{N}(l)} \left(\frac{\lambda+\Sigma}{2} \right)^{2} + m - k} \\ \leq e^{\sum_{\nu \in \mathcal{N}(l)} \left(\frac{\lambda+\Sigma}{2} \right)^{2} + m - k} \\ \leq e^{\sum_{\nu \in \mathcal{N}(l)} \left(\frac{\lambda+\Sigma}{2} \right)^{2} + m - k} \\ \leq e^{\sum_{\nu \in \mathcal{N}(l)} \left(\frac{\lambda+\Sigma}{2} \right)^{2} + m - k} \\ \leq e^{\sum_{\nu \in \mathcal{N}(l)} \left(\frac{\lambda+\Sigma}{2} \right)^{2} + m - k} \\ \leq e^{\sum_{\nu \in \mathcal{N}(l)} \left(\frac{\lambda+\Sigma}{2} \right)^{2} + m - k} \\ \leq e^{\sum_{\nu \in \mathcal{N}(l)} \left(\frac{\lambda+\Sigma}{2} \right)^{2} + m - k} \\ \leq e^{\sum_{\nu \in \mathcal{N}(l)} \left(\frac{\lambda+\Sigma}{2} \right)^{2} + m - k} \\ \leq e^{\sum_{\nu \in \mathcal{N}(l)} \left(\frac{\lambda+\Sigma}{2} \right)^{2} + m - k} \\ \leq e^{\sum_{\nu \in \mathcal{N}(l)} \left(\frac{\lambda+\Sigma}{2} \right)^{2} + m - k} \\ \leq e^{\sum_{\nu \in \mathcal{N}(l)} \left(\frac{\lambda+\Sigma}{2} \right)^{2} + m - k} \\ \leq e^{\sum_{\nu \in \mathcal{N}(l)} \left(\frac{\lambda+\Sigma}{2} \right)^{2} + m - k} \\ \leq e^{\sum_{\nu \in \mathcal{N}(l)} \left(\frac{\lambda+\Sigma}{2} \right)^{2} + m - k} \\ \leq e^{\sum_{\nu \in \mathcal{N}(l)} \left(\frac{\lambda+\Sigma}{2} \right)^{2} + m - k} \\ \leq e^{\sum_{\nu \in \mathcal{N}(l)} \left(\frac{\lambda+\Sigma}{2} \right)^{2} + m - k} \\ \leq e^{\sum_{\nu \in \mathcal{N}(l)} \left(\frac{\lambda+\Sigma}{2} \right)^{2} + m - k} \\ \leq e^{\sum_{\nu \in \mathcal{N}(l)} \left(\frac{\lambda+\Sigma}{2} \right)^{2} + m - k} \\ \leq e^{\sum_{\nu \in \mathcal{N}(l)} \left(\frac{\lambda+\Sigma}{2} \right)^{2} + m - k} \\ \leq e^{\sum_{\nu \in \mathcal{N}(l)} \left(\frac{\lambda+\Sigma}{2} \right)^{2} + m - k} \\ \leq e^{\sum_{\nu \in \mathcal{N}(l)} \left(\frac{\lambda+\Sigma}{2} \right)^{2} + m - k} \\ \leq e^{\sum_{\nu \in \mathcal{N}(l)} \left(\frac{\lambda+\Sigma}{2} \right)^{2} + m - k} \\ \leq e^{\sum_{\nu \in \mathcal{N}(l)} \left(\frac{\lambda+\Sigma}{2} \right)^{2} + m - k} \\ \leq e^{\sum_{\nu \in \mathcal{N}(l)} \left(\frac{\lambda+\Sigma}{2} \right)^{2} + m - k} \\ \leq e^{\sum_{\nu \in \mathcal{N}(l)} \left(\frac{\lambda+\Sigma}{2} \right)^{2} + m - k} \\ \leq e^{\sum_{\nu \in \mathcal{N}(l)} \left(\frac{\lambda+\Sigma}{2} \right)^{2} + m - k} \\ \leq e^{\sum_{\nu \in \mathcal{N}(l)} \left(\frac{\lambda+\Sigma}{2} \right)^{2} + m - k} \\ \leq e^{\sum_{\nu \in \mathcal{N}(l)} \left(\frac{\lambda+\Sigma}{2} \right)^{2} + m - k} \\ \leq e^{\sum_$	$\mathcal{L} = \mathcal{M}_{\mathcal{L}} $
$\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i$	
On the survival event, $W_{L}^{L+\Sigma} \longrightarrow W_{\infty}^{L+\Sigma} > 0$ a.s. and $e^{-\frac{\Sigma^{2}L}{2}} W_{L}^{L} \longrightarrow 0$. .
so $e^{\sum (1/r - \lambda r)} \longrightarrow \infty$ a.s., which implies limit $\frac{77_{L}}{r} \ge \lambda$ a.s.	
This concludes the proof by letting $d \rightarrow d_c = \sqrt{2m}$.	
(Remark: A key idea behad this proof is that if $T_{4} \leq \lambda t$ then $W_{4}^{\lambda+2}$ should be Indeed W_{4}^{λ} is mainly supported by particles with a position $\lambda t + O(\delta T)$: note the	e small.
Indeed W_1 is mainly supported by particles with a position $At + O(dt)$: note H	nat
$\mathbb{E}\left[\sum_{u\in\mathcal{N}_{L}}\sum_{e}\lambda_{v}^{k}(H-(m+\frac{\lambda^{e}}{2}))+4\times(H/4[\lambda I-K/\overline{I},\lambda I+K/\overline{I}]\right] = \mathbb{E}\left[\sum_{u\in\mathcal{N}_{L}}\sum_{e}\lambda_{u}^{k}(H-K/\overline{I},\lambda I+K/\overline{I})\right] = \mathbb{E}\left[\sum_{u}\sum_{u}\sum_{e}\lambda_{u}^{k}(H-K/\overline{I},\lambda I+K/\overline{I})\right] = \mathbb{E}\left[\sum_{u}\sum_{u}\sum_{u}\sum_{u}\sum_{u}\sum_{u}\sum_{u}\sum_{u}$	many-bo-ome
$= P(B_{1} \notin [-KJI, KJI]) by Girsanov (see for a for $	a proof!)
$\mathbb{P}(\mathbb{P}_{\mathcal{A}} \in [-\mathcal{K}, \mathcal{K}]) \xrightarrow{\sim} \mathbb{O} \times \mathbb{O} \times \mathbb{O}$	

Exercise A: A proof without additive matricely
Recall that
$$N_{1}(A) := \sum_{d \in A} d_{X,B} a_{X,B} a_{X} = \sum_{d \in A} \left[N_{1}(A) \right] := \sum_{d \in A} d_{X} d_{X} = \sum_{d \in A} d_{X} = \sum_{d \in A$$

III.2) A reference model : the i.i.d. case To see the influence of the tree structure on the maximal position at time to, we compre it to the case we would consider [ent] particles with independent Brownian trajectories of leight t. Let (Bi) 130 for i >1 be id Brownian motions. We compare $(X_{\nu}(t), \nu \in \mathcal{OP}(F))$ with $(B_{\nu}, i \in \{1, \dots, \lfloor e^{-it} \rfloor\})$ Remark: We have the same result for the many-to-one (up to the integer part): $\mathbb{E}\left[\sum_{i=1}^{L_{s}} F\left((B_{s})_{s\in[0,l]}\right)\right] = \left[e^{-L}\right] \mathbb{E}\left[F\left((B_{s})_{s\in[0,l]}\right)\right].$ Correlations can only be seen at the level of many-to-two there we have $\mathbb{E}\left[\sum_{\substack{j=1\\j\neq j}\\ i\neq j}^{le^{nj}} F\left((B_{s}^{i})_{s\in[0,l]}, (B_{s}^{j})_{s\in[0,l]}\right)\right] = \left\lfloor e^{nl} \right] \left(\lfloor e^{nl} \rfloor - 1\right)' \mathbb{E}\left[F\left((B_{s}^{i})_{s\in[0,l]}, (B_{s}^{2})_{s\in[0,l]}\right)\right]$ which is different from the BBT7 case Our goal is to compare the maximal position in the BBM and the i.i.d. cases. Exercise 2: Prove that $\frac{57_{4}}{4}$ a.s. $d_{c} = \sqrt{2}m$ The first order is the same! We prove here the more precise expansion: $\frac{1}{1 + 2\lambda_{c}} = \frac{1}{2\lambda_{c}} + \frac{1}{2\lambda_{c}} \log \left(\frac{1}{1 + 2\lambda_{c}} + \frac{1}{2\lambda_{c}} \log \left(\frac{1}{\lambda_{c}} \log \left(\frac{1}{\lambda_{c}} \log \left(\frac{1}{\lambda_{c}} \log \left(\frac{1}{\lambda_{c}} + \frac{1}{\lambda_{c}} \right) \right) \right) \right)$ where Gumbel (c, b) for cER and b>0 has completive distribution function $z \in \mathbb{R}$ $\longrightarrow \exp(-e^{-(z-c)/b})$. <u>Remark</u>: When looking at max (X, _, Xn) as n - so where (Xi): , are iid random variables, there are three possible families of limiting distributions. (after proper recentring): Gumbel, Fréchet and Weibull distributions. Remark: Note that the bail of G ~ Gumbel (c, b) is asymmetric we have $P(G > x) \sim e^{-(x-c)/b}$ and $P(X \leq -x) \sim e^{-e^{(x+c)/b}}$ as $x \rightarrow \infty$

so the left hell is much thismer (death expredict) then the right hell
(expression). This is not surprising for the built of a maximum : having a
large maximum only requires one rive to be large whereas having a smaller
an index all rive to be small anoth.
Proof: We prove convergence of the conditive distribution function.
Fix ry ER. Write
$$x_{k} = \lambda_{k}t - \frac{4}{2\lambda_{k}}\log t$$
, g .
 $P(\widetilde{T}_{k} - \lambda_{k}t + \frac{4}{2\lambda_{k}}\log t \leq g) = P(\widetilde{T}_{k} \leq x_{k}) = P(R_{k} \leq x_{k})^{|z^{-1}|} = (A - P(R_{k} > x_{k}))^{|z^{-1}|}$
Thus $P(R_{k} > x_{k}) = P(R_{k} > \frac{\pi}{4t}) \sim \frac{4\pi}{2\pi \tau} e^{-\frac{\pi}{2}/2t}$ as $t \to \infty$ (known $\frac{\pi}{4t} - \infty$)
 $\sim \frac{4}{12\pi \tau} \sum_{k} \exp(-\frac{4\pi}{2t}\log^{12} - \frac{4\pi}{4t}\log^{12} - \frac{3}{2} - \log(k/2k_{k}) - \frac{\pi}{4t}\log^{12})$
 $\sim \frac{4\pi}{12\pi \tau} \sum_{k} \exp(-\frac{4\pi}{2t}\log^{12} - \frac{4\pi}{4t}\log^{12} - \frac{3}{2} - \log(k/2k_{k}) - \frac{\pi}{4t}\log^{12})$
 $\sim \frac{4\pi}{12\pi \tau} \sum_{k} \exp(-\frac{4\pi}{2t}\log^{12} - \frac{4\pi}{4t}\log^{12} - \frac{3}{2} - \log(k/2k_{k}) - \frac{\pi}{4t}\log^{12})$
 $\sim \frac{4\pi}{12\pi \tau} \sum_{k} \exp(-\frac{4\pi}{2t}\log^{12} - \frac{4\pi}{4t}\log^{12} - \frac{3}{4})$
 $\sim \frac{4\pi}{12\pi \tau} \sum_{k} \exp(-\frac{4\pi}{2t}\log^{12} - \frac{4\pi}{4t}\log^{12} - \frac{4\pi}{4t}\log^{12} - \frac{\pi}{4t}\log^{12}))$
 $\sim \frac{4\pi}{12\pi \tau} \sum_{k} \exp(-\frac{4\pi}{2t}\log^{12} - \frac{4\pi}{4t}\log^{12} - \frac{4\pi}{4t}\log^{12} - \frac{\pi}{4t}\log^{12}))$
 $\sim \frac{4\pi}{12\pi \tau} \sum_{k} \exp(-\frac{4\pi}{2t}\log^{12} - \frac{4\pi}{4t}\log^{12} - \frac{4\pi}{4t}\log^{12} - \frac{4\pi}{4t}\log^{12} - \frac{\pi}{4t}\log^{12} - \frac{\pi}{4t$

Reach: Analler reference model would be the case of Lilly correlated periods:
at the *V*, it easists at [a⁻¹] periods following the some Bommin whin
at length *V*. In that case the measure is simply the position of one
Bommian which is of order term in the apparents of The for the BBT.
Sparler: legorithmic correction with a different constant.
Note that we have the following general result helling us that more correlations
implies a smaller maximum (if the variances are the case !)
Stepin's lemma: let with the (X,...,X) and (Y,...,Yu) he concerned foregoin vedore.
If V:,
$$E[X_1^2] = E[Y_1^2]$$
 and V: j , $E[X,X_j] \leq E[Y,Y_j]$, then
 $\max(Y_1,...,Y_n)$ is elochestically dominated by $\max(X_1,...,X_n)$.
(We say that Z is stochastically dominated by $\max(X_1,...,X_n)$.
(We say that Z is stochastically dominated by $\max(X_1,...,X_n)$.
(We say that Z is stochastically dominated by $\max(X_1,...,X_n)$.
(We say that Z is stochastically dominated by $\max(X_1,...,X_n)$.
(We say that Z is stochastically dominated by $\max(X_1,...,X_n)$.
(We say that Z is stochastically dominated by $\max(X_1,...,X_n)$.
(We say that Z is stochastically dominated by $\max(X_1,...,X_n)$.
(We say that Z is stochastically dominated by $\max(X_1,...,X_n)$.
(We say that Z is stochastically dominated by $\max(X_1,...,X_n)$.
(We say that Z is stochastically dominated by $\max(X_1,...,X_n)$.
(We say that Z is stochastically dominated by $\max(X_1,...,X_n)$.
(We say that Z is stochastically dominated by $\max(X_1,...,X_n)$.
(We say that Z is stochastically dominated by $\max(X_1,...,X_n)$.
(We say that Z is stochastically dominated by $\max(X_1,...,X_n)$.
(We say that Z is stochastically dominated by $\max(X_1,...,X_n)$.
(If $f(Z(th)) \in O$. (This beck is a couple to prove
theat $\frac{d}{dt} \in [f(Z(th)] \in O$. (This beck is a left dominated form in the polation).
 $\frac{1}{dt} E[g(Z(th)] = E[\frac{d}{dt}(f(TX \cdot TaT + Y))]]$
 $= \sum_{i=n}^{\infty} E[\frac{d}{dt}(X_i = \frac{Y_i}{2}[Z(th)] - \frac{d}{2}E[Y_i + \frac{Y_i}{2}[Z(th)]])$
 $= \sum_{i=n}^{\infty} E[X_i + \frac{Y_i}{2}[Z(th)] - \frac{d}{2}E[Y_i + \frac{Y_i}{2}[Z$

 $=\frac{1}{z}\sum_{i,j=1}^{z}\left(\mathbb{E}[X;X_{j}]-\mathbb{E}[\gamma;\gamma_{j}]\right)\mathbb{E}\left(\frac{\partial^{2}f}{\partial x_{j}\partial z_{i}}\left(2(\mu)\right)\right]$ $\leq 0 \quad \text{if } :=j \quad \text{if } i=j$ This proves the first claim. Now to prove the lemma, consider xER. We aim at showing $\mathbb{P}\Big(\max\left(X_{A},-,X_{n}\right)\leq x\Big)\leq \mathbb{P}\Big(\max\left(T_{A},-,T_{n}\right)\leq x\Big)$ $\Longrightarrow \mathbb{E}\left[\left| \prod_{i=A}^{\infty} \mathcal{I}_{(-\infty,x]}(X_i) \right| \right] \le \mathbb{E}\left[\left| \prod_{i=A}^{\infty} \mathcal{I}_{(-\infty,x]}(Y_i) \right| \right]$ Let $h_k: \mathbb{R} \longrightarrow [0,1]$ be \mathbb{C}^2 non-increasing functions such that $h_k \longrightarrow \mathbb{I}_{(-\infty,2]}$ Then $f_k: x \in \mathbb{R} \longrightarrow \widetilde{\Pi} h_k(x_i)$ satisfies the assumptions of the claim so $\mathbb{E}[f_k(X)] \leq \mathbb{E}[f_k(Y)]$, which gives (*) by letting $k \longrightarrow \infty$. Lemma (Gaussian integration by part): Let u >1 and g E C¹(R⁻) such that ∇_g is bounded. Let $X = (X_1 - X_n)$ be a centered Gaussian vector Then, for any $i \in \{1, ..., n\}$, $\mathbb{E}[X; g(X)] = \sum_{j=1}^{\infty} \mathbb{E}[X; X_j] \mathbb{E}\left[\frac{\partial g}{\partial x_j}(X)\right]$. Exercise 4 (Proof) 1. Prove the result for n = 1 using the usual integration by parts. 2. Fix i E { 1, _____ }. Prove that there exist a Gaussian vector Z = (Z_1. ___ Z_n) $\text{ hopended of } X_{i} = \mathbb{E}[X_{i} \times Y_{j}] X_{i} + Z_{j}.$ 3. Co-dude Remark: To use Slepian's lemma to compare two models, we need exactly the same number of variables, so it cannot be used directly to say. My SM, where "(still means shochashically dominated, but we can get My É My applying Slepian's lemme conditionally on the tree (recall TIL is defined in exercise 3).