

Proof of the theorem (1st part): We prove that $Z_t \xrightarrow{a.s.} Z_\infty \geq 0$.

Recall $E_L = \{ \forall s \geq 0, \forall u \in \mathcal{N}(s), X_u(s) \leq \lambda_c s + L \}$ and $P(E_L) \xrightarrow{L \rightarrow \infty} 1$. Moreover, the family of events $(E_L)_{L \geq 0}$ is increasing and $P(E_L) \rightarrow 1$ so $P(\bigcup_{L \geq 0} E_L) = 1$.

We are going to prove a.s. convergence of Z_t on E_L for any $L > 0$.

On E_L , $Z_t^{(L)} = \sum_{u \in \mathcal{N}_t} (\lambda_c t + L - X_u(t)) e^{\lambda_c (X_u(t) - \lambda_c t)}$

$$= Z_t + L W_t^{\lambda_c}$$

Recall $W_t^{\lambda_c} = \sum_{u \in \mathcal{N}_t} e^{\lambda_c (X_u(t) - (\lambda_c t + \frac{1}{2} \lambda_c^2))}$

$$\lambda_c^2 = 2\mu \Rightarrow \sum_{u \in \mathcal{N}_t} e^{\lambda_c (X_u(t) - \lambda_c t)}$$

But we know that $Z_t^{(L)} \xrightarrow{a.s.} Z_\infty^{(L)}$ and $W_t^{\lambda_c} \xrightarrow{a.s.} 0$

$$\text{so, on } E_L, Z_t = Z_t^{(L)} - L W_t^{\lambda_c} \xrightarrow{a.s.} Z_\infty^{(L)} \geq 0$$

Since $P(\bigcup_{L \geq 0} E_L) = 1$, $(Z_t)_{t \geq 0}$ converges a.s. on the full probability space to some limit $Z_\infty \geq 0$ (which satisfies $\forall L > 0$, on E_L , $Z_\infty = Z_\infty^{(L)}$ a.s.). \blacksquare

Remark: $Z_\infty^{(L)}$ is nondecreasing in L , so one can write $Z_\infty = \liminf_{L \rightarrow \infty} Z_\infty^{(L)}$.

Now it remains to prove that $Z_\infty > 0$ a.s. on survival. We start by proving that $Z_\infty^{(L)}$ is nontrivial.

Lemma: For any $L > 0$, $(Z_t^{(L)})_{t \geq 0}$ converges in L^2 to Z_∞ .

Proof: It is enough to prove that $(Z_t^{(L)})_{t \geq 0}$ is bounded in L^2 .

$$\text{Write } f_t^{(L)}(x) = (\lambda_c t + L - x) e^{\lambda_c (x - \lambda_c t)}$$

We first decompose the square as follows:

$$(Z_t^{(L)})^2 = \sum_{u \in \mathcal{N}_t} f_t^{(L)}(X_u(t))^2 \mathbb{1}_{\max_{s \in [0, t]} X_u(s) - \lambda_c s \leq L}$$

$$+ \sum_{\substack{u, v \in \mathcal{N}_t \\ u \neq v}} f_t^{(L)}(X_u(t)) \mathbb{1}_{\max_{s \in [0, t]} X_u(s) - \lambda_c s \leq L} f_t^{(L)}(X_v(t)) \mathbb{1}_{\max_{s \in [0, t]} X_v(s) - \lambda_c s \leq L}$$

We now bound the expectation of each of these terms by a constant (depending on L).

• For the 1st term, by the many-to-one, we get

$$\begin{aligned}
& \mathbb{E} \left[\sum_{u \in \mathcal{N}_t} f_t^{(L)}(X_u(t))^2 \mathbb{1}_{\max_{s \in [0,t]} X_u(s) - \lambda_c s \leq L} \right] = e^{-\lambda_c t} \mathbb{E} \left[f_t^{(L)}(B_t)^2 \mathbb{1}_{\max_{s \in [0,t]} B_s - \lambda_c s \leq L} \right] \\
& \leq e^{-\lambda_c t} \mathbb{E} \left[(\lambda_c t + L - B_t)^2 e^{2\lambda_c (B_t - \lambda_c t)} \mathbb{1}_{\max_{s \in [0,t]} B_s - \lambda_c s \leq L} \right] \\
& = e^{-\lambda_c t} \mathbb{E} \left[e^{-\lambda_c B_t - \frac{\lambda_c^2 t}{2}} (L - B_t)^2 e^{2\lambda_c B_t} \mathbb{1}_{\max_{s \in [0,t]} B_s \leq L} \right] \quad \text{Girsanov} \\
& = \mathbb{E} \left[(L - B_t)^2 e^{2\lambda_c B_t} \mathbb{1}_{\max_{s \in [0,t]} B_s \leq L} \right] \\
& \leq \sum_{k \geq 1} k^2 e^{\lambda_c(L-k+1)} \mathbb{P}(B_t \in [L-k, L-k+1], \max_{s \in [0,t]} B_s \leq L) \\
& \leq \left(\frac{L}{t^{3/2}} \wedge 1 \right) e^{\lambda_c(L+1)} \sum_{k \geq 1} k^4 e^{-\lambda_c k} \leq \mathbb{P}(B_t \geq L-k, \max_{s \in [0,t]} B_s \leq L) \leq \frac{L}{t^{3/2}} \wedge 1 \quad \text{by Corollary 2} \\
& \qquad \qquad \qquad \leq \left(\frac{L}{t^{3/2}} \wedge 1 \right) k^2 \quad \text{by Lecture 6}
\end{aligned}$$

So this is bounded.

- We now deal with the 2nd term. By the many-to-two lemma,

$$\mathbb{E} \left[\sum_{\substack{u,v \in \mathcal{N}_t \\ u \neq v}} f_t^{(L)}(X_u(t)) \mathbb{1}_{\max_{s \in [0,t]} X_u(s) - \lambda_c s \leq L} f_t^{(L)}(X_v(t)) \mathbb{1}_{\max_{s \in [0,t]} X_v(s) - \lambda_c s \leq L} \right]$$

$$= \mathbb{E} [L(L-1)] \int_0^t e^{2\lambda_c t - mr} \mathbb{E} \left[f_t^{(L)}(B_t^{1,r}) \mathbb{1}_{\max_{s \in [0,t]} B_s^{1,r} - \lambda_c s \leq L} f_t^{(L)}(B_t^{2,r}) \mathbb{1}_{\max_{s \in [0,t]} B_s^{2,r} - \lambda_c s \leq L} \right] dr$$

We first focus on the expectation in the integral:

$$\mathbb{E} \left[f_t^{(L)}(B_t^{1,r}) \mathbb{1}_{\max_{s \in [0,t]} B_s^{1,r} - \lambda_c s \leq L} f_t^{(L)}(B_t^{2,r}) \mathbb{1}_{\max_{s \in [0,t]} B_s^{2,r} - \lambda_c s \leq L} \right]$$

$$= \mathbb{E} \left[\mathbb{1}_{\max_{s \in [0,r]} B_s^0 - \lambda_c s \leq L} f_t^{(L)}(B_r^0 + B_{t-r}^1) \mathbb{1}_{\max_{s \in [0,t-r]} B_r^0 + B_s^1 - \lambda_c(r+s) \leq L} f_t^{(L)}(B_r^0 + B_{t-r}^2) \mathbb{1}_{\max_{s \in [0,t-r]} B_r^0 + B_s^2 - \lambda_c(r+s) \leq L} \right]$$

$$= \mathbb{E} \left[\mathbb{1}_{\max_{s \in [0,r]} B_s^0 - \lambda_c s \leq L} \Psi(B_r^0)^2 \right]$$

$$\text{with } \Psi(x) = \mathbb{E} \left[f_t^{(L)}(x + B_{t-r}^1) \mathbb{1}_{\max_{s \in [0,t-r]} x + B_s^1 - \lambda_c(r+s) \leq L} \right]$$

$$= \mathbb{E} \left[(\lambda_c t + L - B_{t-r} - x) e^{\lambda_c (B_{t-r} + x - \lambda_c t)} \mathbb{1}_{\max_{s \in [0,t-r]} B_s + x - \lambda_c r - \lambda_c s \leq L} \right]$$

$$= \mathbb{E}_{x-\lambda_c r} \left[(\lambda_c(t-r) + L - B_{t-r}) e^{\lambda_c (B_{t-r} - \lambda_c(t-r))} \mathbb{1}_{\max_{s \in [0,t-r]} B_s - \lambda_c s \leq L} \right] \quad \text{markov}$$

$$= e^{-\frac{\lambda_c^2}{2}(t-r)} \cdot \mathbb{E}_{x-\lambda_c r} \left[(\lambda_c \cdot 0 + L - B_0) e^{\lambda_c B_0 - \frac{\lambda_c^2}{2} \cdot 0} \mathbb{1}_{\max_{s \in [0,0]} B_s - \lambda_c s \leq L} \right] \quad (1.6)$$

$$= e^{-\frac{\lambda_c^2}{2}(t-r)} \mathbb{E} \left[\mathbb{1}_{\max_{s \in [0,r]} B_s - \lambda_c s \leq L} (\lambda_c r + L - B_r)^2 e^{2\lambda_c (B_r - \lambda_c r)} \right]$$

$$\begin{aligned}
& \leq e^{-2\lambda_c t + mr} \left(\frac{L}{r^{3/2}} \wedge 1 \right) \leq e^{-mr} \left(\frac{L}{r^{3/2}} \wedge 1 \right) C \quad \text{with } C \text{ depending on } L \text{ and } \lambda_c \text{ by the} \\
& \qquad \qquad \qquad \text{calculation for the 1st term}
\end{aligned}$$

So finally we get

$$\mathbb{E} \left[\sum_{\substack{u, v \in \mathcal{N}_t \\ u \neq v}} f_t^{(u)}(X_u(t)) \mathbb{1}_{\max_{s \in [0, t]} X_u(s) - \lambda_c s \leq L} f_t^{(v)}(X_v(t)) \mathbb{1}_{\max_{s \in [0, t]} X_v(s) - \lambda_c s \leq L} \right] \\ \leq \mathbb{E}[L(L-1)] \int_0^t C \left(\frac{L}{r^{3/2}} \wedge 1 \right) dr \leq C'.$$

So $(Z_t^{(u)})_{t \geq 0}$ is bounded in L^2 . □

Proof of the theorem (2nd part): We prove that $Z_\infty > 0$ a.s. on survival.

By the previous lemma, $(Z_t^{(u)})_{t \geq 0}$ converges in L^1 so $\mathbb{E}[Z_\infty^{(u)}] = \mathbb{E}[Z_0^{(u)}] = L$ and therefore $\mathbb{P}(Z_\infty^{(u)} > 0) > 0$.

Since $Z_\infty = \lim_{t \rightarrow \infty} Z_t^{(u)}$ (see Remark above) we get $\mathbb{P}(Z_\infty > 0) > 0$.

We have $\{Z_\infty > 0\} \subset \{\text{survival}\}$ so it is enough to prove $\mathbb{P}(Z_\infty > 0) = \mathbb{P}(\text{survival})$.

Recall the function $f(s) = \mathbb{E}[s^L]$ has two fixed points, 1 and $\mathbb{P}(\text{extinction})$, so it is enough to prove $\mathbb{P}(Z_\infty = 0)$ is a fixed point of f .

We decompose Z_∞ at the first branching line: on $\{\tau_\phi \leq t\}$, we have

$$Z_t = \sum_{i=1}^{L_\phi} \sum_{\substack{u \in \mathcal{N}_t \\ u \geq i}} (\lambda_c t - X_u(t)) e^{\lambda_c (X_u(t) - \lambda_c t)} \quad \begin{aligned} \lambda_c t - X_u(t) &= \lambda_c \tau_\phi - X_\phi(\tau_\phi) \\ &\quad + \lambda_c (t - \tau_\phi) - (X_u(t) - X_\phi(\tau_\phi)) \end{aligned}$$

$$= (\lambda_c \tau_\phi - X_\phi(\tau_\phi)) e^{\lambda_c (X_\phi(\tau_\phi) - \lambda_c \tau_\phi)} \sum_{i=1}^{L_\phi} \sum_{\substack{u \in \mathcal{N}_t \\ u \geq i}} e^{\lambda_c (X_u(t) - X_\phi(\tau_\phi) - \lambda_c (t - \tau_\phi))}$$

This is the critical additive martingale at time $t - \tau_\phi$ of the BBT rooted at i : tends to 0 a.s. as $t \rightarrow \infty$.

$$+ e^{\lambda_c (X_\phi(\tau_\phi) - \lambda_c \tau_\phi)} \sum_{i=1}^{L_\phi} \sum_{\substack{u \in \mathcal{N}_t \\ u \geq i}} (\lambda_c (t - \tau_\phi) - (X_u(t) - X_\phi(\tau_\phi))) e^{\lambda_c (X_u(t) - X_\phi(\tau_\phi) - \lambda_c (t - \tau_\phi))}$$

This is the derivative martingale at time $t - \tau_\phi$ of the BBT rooted at i : tends to Z_∞^i a.s. as $t \rightarrow \infty$ where $(Z_\infty^i)_{i \geq 1}$ are iid $\stackrel{(d)}{=} Z_\infty$ and indep. of \mathcal{F}_{τ_ϕ}

So letting $t \rightarrow \infty$, we get $Z_\infty = e^{\lambda_c (X_\phi(\tau_\phi) - \lambda_c \tau_\phi)} \sum_{i=1}^{L_\phi} Z_\infty^i$

$$\text{in particular } \mathbb{P}(Z_\infty = 0) = \mathbb{P}(\forall i \in \{1, \dots, L_\phi\}, Z_\infty^i = 0)$$

$$= \mathbb{E}[\mathbb{P}(Z_\infty = 0)^{L_\phi}]$$

$$= f(\mathbb{P}(Z_\infty = 0)) \text{ so we are done!} \quad \blacksquare$$

Remark: We have seen in the proof that $E[Z_\infty^{(t)}] = L$, but also in the previous remark that $Z_\infty = \lim_{t \rightarrow \infty} Z_\infty^{(t)}$. By the monotone convergence theorem, we get $E[Z_\infty] = \lim_{t \rightarrow \infty} E[Z_\infty^{(t)}] = +\infty$.

III.8) Probabilistic description of the limit of the maximum (Not covered in class)

The limit Z_∞ is the right quantity to describe various quantities of the BBT in the direction of the max and in particular the limit of Π_{t-m_t} :

Theorem (Lalley-Sellke 1987): $\Pi_{t-m_t} \xrightarrow{(d)} \frac{1}{\lambda_c} \log Z_\infty + G$ where G is a Gumbel($c, \frac{1}{\lambda_c}$) r.v. independent of G , for some $c \in \mathbb{R}$.

More precisely, we have almost surely

$$\lim_{s \rightarrow \infty} \lim_{t \rightarrow \infty} P(\Pi_{t-m_t} \leq x | \mathcal{F}_s) = P\left(\frac{1}{\lambda_c} \log Z_\infty + G \leq x | Z_\infty\right)$$

by definition of the Gumbel $\text{Gumbel}(c, \frac{1}{\lambda_c}) = \exp(-Z_\infty e^{-\lambda_c(x-c)})$

Remark: Note that in this convergence, Π_t is centered but not normalized so it feels the effect of the following behaviors, which play a role in the limit in distribution:

- If the first particle goes very high or has a large number of children, this has an ever-lasting positive influence on Π_{t-m_t} .
- If the highest particle at time $t-1$ goes up, then Π_{t-m_t} will be larger than $\Pi_{t-1-m_{t-1}}$.

So the limit distribution is influenced by events happening at the beginning but also at larger times (in particular at times close to t).

The convergence $\lim_{s \rightarrow \infty} \lim_{t \rightarrow \infty} P(\Pi_{t-m_t} \leq x | \mathcal{F}_s) = P\left(\frac{1}{\lambda_c} \log Z_\infty + G \leq x | Z_\infty\right)$ shows that Z_∞ contains the information of the influence of the beginning of the BBT (things happening before some large fixed s when $t \rightarrow \infty$) whereas G corresponds to later fluctuations.

Proof: We take the result of Bramson in 1983 for granted and show how to deduce this theorem from it. Recall he proved that, for any $x \in \mathbb{R}$,

$P(\eta_t - m_t \leq x) \xrightarrow[t \rightarrow \infty]{} w(x)$ where w is a C^2 function satisfying

$$1 - w(x) \sim C_w x e^{-\lambda_c x} \text{ as } x \rightarrow \infty.$$

Write $u(t, x) = P(\eta_t \leq x)$.

The previous convergence can be rewritten as $u(t, m_t + x) \xrightarrow[t \rightarrow \infty]{} w(x)$.

By monotonicity and continuity of w , this implies that, if $x_t \xrightarrow[t \rightarrow \infty]{} x$, then $u(t, m_t + x_t) \xrightarrow[t \rightarrow \infty]{} w(x)$.

Let $t > s > 0$.

$$\begin{aligned} \{\eta_t \leq x\} &= \left\{ \forall v \in \mathcal{N}_s, \max_{\substack{u \in \mathcal{N}_s \\ u \geq v}} X_u(t) \leq x \right\} \\ &= \bigcap_{v \in \mathcal{N}_s} \left\{ \max_{\substack{u \in \mathcal{N}_s \\ u \geq v}} (X_u(t) - X_v(s)) \leq x - X_v(s) \right\} \end{aligned}$$

by the branching property, conditionally on \mathcal{F}_s , these r.v. for $v \in \mathcal{N}_s$ are independent of each other and have the same law as η_{t-s} .

$$\text{So } P(\eta_t \leq x | \mathcal{F}_s) = \prod_{v \in \mathcal{N}_s} u(t-s, x - X_v(s))$$

$$\text{and } P(\eta_t - m_t \leq x | \mathcal{F}_s) = \prod_{v \in \mathcal{N}_s} u(t-s, x + m_t - X_v(s))$$

$$\begin{aligned} \text{If } x_t \xrightarrow[t \rightarrow \infty]{} x \text{ then } u(t, m_t + x_t) &\xrightarrow[t \rightarrow \infty]{} w(x) \\ &= \prod_{v \in \mathcal{N}_s} u(t-s, m_{t-s} + x + m_t - m_{t-s} - X_v(s)) \\ &= \lambda_c s - \frac{3}{2\sqrt{2}} \log \frac{t}{t-s} \xrightarrow[t \rightarrow \infty]{} \lambda_c s \\ &\xrightarrow[t \rightarrow \infty]{} \prod_{v \in \mathcal{N}_s} w(x + \lambda_c s - X_v(s)). \\ &= \exp \left(\sum_{v \in \mathcal{N}_s} \log w(x + \lambda_c s - X_v(s)) \right). \end{aligned}$$

We have seen in Lecture 7 that $\lambda_c s - \eta_s \xrightarrow[s \rightarrow \infty]{} \infty$

so $\lambda_c s - X_v(s) \xrightarrow[s \rightarrow \infty]{} \infty$ uniformly in $v \in \mathcal{N}_s$, a.s.

and so $\log w(x + \lambda_c s - X_v(s)) = -(\lambda + o(1)) C_w (x + \lambda_c s - X_v(s)) e^{-\lambda_c (x + \lambda_c s - X_v(s))}$

where $o(1)$ holds as $s \rightarrow \infty$, uniformly in $v \in \mathcal{N}_s$, a.s.

$$\text{We get } P(\tau_{t_w} - w \leq x \mid \mathcal{F}_s) = \exp \left(- (1+o(1)) C_w e^{-\lambda_c x} \sum_{v \in \mathcal{U}_s} (x + \lambda_c s - X_v(s)) e^{\lambda_c X_v(s) - \lambda_c^2 s} \right)$$

$$\xrightarrow[s \rightarrow \infty]{\text{a.s.}} \exp \left(- C_w e^{-\lambda_c x} Z_\infty \right) = x W_s + Z_s \xrightarrow[s \rightarrow \infty]{\text{a.s.}} Z_\infty$$

So the constant c in the statement is given by $c = \frac{1}{\lambda_c} \log C_w$. ■