Lecture 10. Two-speed BBT (2⁻⁴ pm¹)
II 3.2) Oper two-1 (are
$$\sigma_{1,5}\sigma_{2,5}$$
)
As for the read BBT, we prove a worker version of the reall, which is
 $\overline{T}_{1} \leq \overline{w}_{1} + O(tylegt)$.
Pool shaday is swille:
Arrow that there is a barrier bouched by no policle with high probability.
No a first mean calculation on the number of provides giving above
 $\overline{m}_{1} + Clylegt$ while daying below the barrier.
Lemma: For L 150, we half a $f_{1}^{L} :s \in [0,1] \longrightarrow \{\lambda_{0,1} \in L \}$
 $a \in T_{1}^{L} = \{\lambda_{0} \in M \}$, $\forall s \in [0,1] \longrightarrow \{\lambda_{0,1} \in L \}$, $\forall s \in L \}$
 $Then P((T_{2}^{L})^{C}) \leq e^{-\lambda_{1}L/\sigma_{2}}$.
Pool: We introduce a matrixed analogous to W^{L} .
For $s \in [0,1]$, let $V_{5} = \{\sum_{i=0,1}^{\infty} e_{ii}(w_{ii}^{L} \times L^{i}(w_{ii}) - (m - \frac{N^{2}}{2})s)\}$ if $s > L$
Then $(V_{1})_{se(0,1]}$ is a matrixed. (Example cluster i).
Let $T = i \land \{s \in [0,1] : \exists u \in M \}$, $N^{L}(b) = f_{1}^{L}(s)\}$ (= two if early cet).
Note that $P((T_{1}^{L})^{C}) = P(T \leq L)$.
Since $T \approx a$ dryping then a to be optional stopping theorem,
 $E[V_{TM}] = E[V_{0}] = A$.
Now we argue that when $T \leq L$, V_{T} is lower:
 $: if T \leq kh$, then $V_{T}(3) eop((\frac{1}{2}, f_{1}^{L}(T) - (m, \frac{N^{2}}{2})T) = e^{\lambda_{1}L/\sigma_{1}}$ (recall $\lambda_{1} = I_{2}^{T})$
 $\lim_{m_{1}} m_{1}^{L} m_{1}^{L}(T) + \lim_{m_{2}} (m_{2}^{L} m_{1}^{L}(T) - (m, \frac{N^{2}}{2})T) = e^{\lambda_{1}L/\sigma_{1}}$ (recall $\lambda_{1} = I_{2}^{T})$
 $\lim_{m_{1}} m_{1}^{L} m_{1}^{L} m_{1}^{L} m_{2}^{L}(T) + \lim_{m_{2}} M^{2}(T) = (m T T)$.
Now we argue that when $T \leq L$, V_{T} is lower:
 $: if T \leq kh$, then $V_{T}(3) eop((\frac{1}{2}, f_{1}^{L}(T) - (m, \frac{N^{2}}{2})T)) = e^{\lambda_{1}L/\sigma_{1}}$ (recall $\lambda_{1} = I_{2}^{T}$).
 $\lim_{m_{1}} m_{1}^{L} m_{1}^{L} m_{1}^{L} m_{2}^{L}(T) + m_{1}^{L} m_{2}^{L}(T) = m_{1}^{L}(T)$.
 $\lim_{m_{1}} m_{2}^{L}(T) + m_{1}^{L}(T) = m_{1}^{L}(T)$ (read) the large T is here T is the point to the large T is the large T is the large T is the point to the large T is the large T is the large T is the point to the large T is the large T .

$$\begin{array}{l} = \overset{-1}{=} P\left(\begin{array}{c} \sigma_{x} B_{kl} + \sigma_{z} B_{(x,kl)}^{l} > \overline{\sigma_{x}} + v_{k} \\ V_{k} \in \left[kl \cdot l \right], \sigma_{x} B_{kl} + \sigma_{z} B_{k-kl}^{l} \leq \lambda_{k} \sigma_{z} kl + \lambda_{k} \sigma_{z} \left(s - kl \right) + l \\ \sigma_{x} B_{kl}^{l} \leq \sigma_{x} \left(m_{kl} + \frac{3}{2} l_{k} l_{k} l_{k} l_{k} \right) \\ \end{array} \right) \\ \begin{array}{c} s \cdot h = \left[\begin{array}{c} d \\ v_{k} \in [k, l] \\ v_{k} = v_{k} \\ \end{array} \right] \\ \end{array} \right) \\ \begin{array}{c} s \cdot v_{k} = \left[\begin{array}{c} d \\ v_{k} \in [k, l] \\ v_{k} = v_{k} \\ v_{k} (v_{k} + v_{k} \\ v_{k} = v_{k} \\ v_{k} \\ v_{k} = v_{k} \\ v_{k} \\$$

$\begin{aligned} & \qquad $
$\leq \frac{C''}{\mu^{3/2}} = \frac{-\lambda_{c}q_{f}}{e} = \frac{\lambda_{c}\frac{\sigma_{f}}{\sigma_{z}} \times \frac{3}{\lambda_{c}}\log\log h}{e} = \frac{\lambda_{c}\frac{\sigma_{f}}{\sigma_{z}} \times \frac{3}{\lambda_{c}}\log\log h}{e} = \frac{\lambda_{c}(h - q_{c})^{3}}{e} = \frac{\lambda_{c}(h - q_{c})^{3}}{e$
$\leq C'' e^{-m b t} (b)^{s(\frac{r}{r_2}-1)} \times (b)^{s}$
Finally, we get $\mathbb{P}\left(\left\langle \overline{\Pi}_{L} \geqslant \overline{m}_{L} + \varkappa_{L}\right\rangle \cap F_{L}^{+} \cap G^{+}\right) \leq C''' \left(\log L\right)^{3\frac{\sigma_{1}}{\sigma_{2}} + 2 - \frac{1}{\sigma_{2}}} \xrightarrow{1}{1-\infty} 0$ by choosing $a > \frac{1}{\lambda_{c}} (3\sigma_{1} + 2\sigma_{2})$.
$\overline{IV}.4$) The case $\sigma_a < \sigma_z$ $\overline{IV}.4.1$) Upper bound
Here the upper bound is easy because the maximum behaves like my, which is the behavior in the ::d. So it could be deduced from Slepian's lemma or from the
following direct proof: for $y > 0$, $P(\overline{n}_{1} \ge \overline{m}_{1} + y) \le I[\sum_{u \in N_{1}} \mathbb{1}_{X_{u}^{1}(u) \ge \overline{m}_{u} + y}]$
$= e^{mL} P(B_{L}^{L} > m_{L}^{L} + m_{L}^{M}) = \frac{mL}{L} P(\mathcal{B}_{L}^{L} > m_{L}^{L} + m_{L}^{M})$
~ m^{1} 1 \sqrt{F} $e_{T} O\left(-1\left(\frac{m_{1}}{r}+\eta\right)^{2}\right)$ $m_{1}^{2} = \lambda_{c}t - \frac{1}{r} \log t$
$L_{c}^{2} = 2m \left(= \frac{e^{-\lambda_{c}g}}{\lambda_{c}\sqrt{2\pi}} \right)^{2\pi} \left(\frac{1}{2\tau} \left(\frac{1}{2$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
· · · · · · · · · · · · · · · · · · ·

IV. 4.2) Lower bound

We use a strategy similar to the one for the usual BBJ7 but with different constraints on trajectories. Here the 1st moment calculation gives the correct. behavior without truncation (see upper bound), so we truncate only so that the 2nd moment does not explode. We choose $K_{L} = \sum_{u \in A_{L}} \frac{1}{X_{u}^{L}(L)} \approx_{L} \sqrt{V_{u}(s)} \leq g_{z}^{z}(s)$ where $g_{\Sigma}^{\downarrow}(s) = \begin{cases} \lambda_{c}(\sigma_{A}^{2} + \Sigma)s + 1 & \text{if } s \leq b \\ m_{b}^{c} + 1 - \lambda_{c}(\sigma_{z}^{2} - \Sigma)(L - s) & \text{if } s \in (bL, L] \end{cases}$ with 2>0 to be chosen small enough later. I dea behind this choice: We argued in Lecture 3 that a brajectory going above my at time to hypically has a drift derift derift and de of an [bt, t]. We choose the barrier get to be slightly above this typical behavior with slope $\lambda_{c}(\sigma_{z}^{2}, \varepsilon)$ slope $\lambda_{c}(\sigma_{z}^{2}, \varepsilon)$ slope $\lambda_{c}(\sigma_{z}^{2}, \varepsilon)$ \int_{z}^{z} \int_{z}^{z slopes different by a bern S. The fact that the slope is different slope $\lambda_c \sigma_a^2$ difference between m_b and $\lambda_c t$ (not very important compared to the bt t distance of order t between the trajectory and the barrier at time bt) (even by a small berm) ensures that adding this barrier is not changing . the order of magnifiede of the 1st moment. $\frac{\text{Lemma 1}}{1}: \text{ For any } \Sigma > 0, \quad 0 < \lim_{k \to \infty} \mathbb{E}[K_k] \leq \lim_{k \to \infty} \mathbb{E}[K_k] \leq \frac{1}{\frac{1}{1 + \frac{1}{2\pi}}}$ Proof: For the upper bound : E[K_] ≤ E] Z K_1(h) > m_1] + - m 1/2 Lor by the calculation dans previously. (and of previous page). tor the lower bound: by the many-to-one lemma, $\mathbb{E}[K_{t}] = e^{t} \mathbb{P}\left(\mathsf{B}_{t}^{t} \ge \widetilde{\mathsf{m}}_{t}, \forall s \in [0, t], \mathsf{B}_{s}^{t} \le \mathsf{q}_{\varepsilon}^{t}(s)\right) = \operatorname{ccall}\left(\mathsf{B}_{s}^{t}\right)_{s \in [0, t]} \stackrel{(4)}{=} \left(\mathsf{B}_{q(s)}\right)_{s \in [0, t]} = \operatorname{ccall}\left(\mathsf{B}_{s}^{t}\right)_{s \in [0, t]} \stackrel{(4)}{=} \left(\mathsf{B}_{q(s)}\right)_{s \in [0, t]} = \operatorname{ccall}\left(\mathsf{B}_{s}^{t}\right)_{s \in [0, t]} \stackrel{(4)}{=} \left(\mathsf{B}_{q(s)}\right)_{s \in [0, t]} = \operatorname{ccall}\left(\mathsf{B}_{s}^{t}\right)_{s \in [0, t]} \stackrel{(4)}{=} \operatorname{ccall}\left(\mathsf{B}_{s}^{t}\right)$ $\varphi(s) = \int \sigma_{a}^{2} s \qquad \text{if } s \leq b \text{if } s \geq b \text{if }$ $= e^{-t} P(B_{t} \ge \widetilde{m}_{t}, \forall s \in [0, t], B_{y(s)} \le g_{\varepsilon}^{t}(s))$ $= e^{int} \mathbb{E} \left[\underbrace{e^{-\lambda_{c}}B_{L} - \frac{\lambda_{c}}{2}t}_{B_{L} + \lambda_{c}} \mathbb{I} \ge \widetilde{m_{L}}, \forall s \in [0, L], B_{\varphi(s)} + \lambda_{c} \varphi(s) \le g_{z}^{\pm}(s) \right]$

> e they - he $\implies B_{l} + \lambda_{c} l \leq \widetilde{m}_{l} + 1 \iff B_{l} \leq -\frac{1}{z\lambda_{c}} \lfloor u_{l} \rfloor + 1$ $\geq \sqrt{1} e^{-\lambda_c} P(B_1 \geq -\frac{1}{z\lambda_c} \log t, \forall s \in [0, t], B_{\varphi(s)} \leq g_{\Sigma}^{+}(s) - \lambda_c \varphi(s))$ $(=) \begin{cases} \forall s \in [0, bl], & B_{\sigma_{4}^{2}s} \leq \lambda_{c} (\sigma_{4}^{\mathcal{X}} + \Sigma) s + 1 - \lambda_{c} \sigma_{4}^{\mathcal{T}} s \\ \forall s \in (bl, b], & B_{l-\sigma_{2}^{2}(l-s)} \leq m_{l} + 1 - \lambda_{c} (\sigma_{2}^{\mathcal{X}} - \Sigma)(l-s) - \lambda_{c} (l-\sigma_{2}^{2}(l-s)) \end{cases}$ setting $r = \sigma_r^2 s$ in the 1st case and $r = 1 - \sigma_z^2 (t-s)$ in the 2nd. $= -\frac{1}{Z\lambda_c} \log + \lambda + \Sigma \lambda_c (1-s)$ $(=) \quad \forall r \in [0, \sigma_{A}^{2}b^{L}], \quad B_{r} \leq \Lambda + \frac{\lambda_{c}\Sigma}{\sigma_{A}^{2}}r$ $(\forall r \in (\sigma_{A}^{2}b^{L}, k], \quad B_{r} \leq -\frac{\Lambda}{2\lambda_{c}}b^{L} + \Lambda + \frac{\lambda_{c}\Sigma}{\sigma_{z}^{2}}(k-r)$ The event we consider for B: $\frac{1}{\nabla_{a}^{2}bl}$ We have $\lim_{t\to\infty} f = IP(B_1 > -\frac{1}{zL_0} \log L, \forall s \in [0, L], B_{\varphi(s)} \leq g_2^{\pm}(s) - L_2^{-1}(s)) > 0$. This is a bit bechnical to prove so we admit it! Heuristically, we have $P(B_t \in \left[-\frac{1}{z\lambda_c}, -\frac{1}{z\lambda_c}, -\frac{1}{z\lambda_$ and then the burrier has an effect only for times s of the form S=O(1) or s= t-O(1) because it grows linearly whereas Bs = O(JS). So adding the barrier to the event only reduces the probability by a constant $factor c(\varepsilon) > 0.$ With this fact in hand, we get the desired result. Ų Lemma 2: There exists E, C>O such that linsup $\mathbb{E}[K_{t}^{2}] \leq C$ <u>Proof</u>: We write $\mathbb{E}[K_{\ell}^{2}] = \mathbb{E}[K_{\ell}(K_{\ell}-1)] + \mathbb{E}[K_{\ell}]$. By lemma 1, $\mathbb{E}[K_{\ell}]$ is OK. $\mathbb{E}\left[K_{L}(K_{L}-1)\right] = \mathbb{E}\left[\sum_{\substack{v,v \in A_{L}\\v\neq v}} \mathbb{I}_{X_{v}^{L}(L) \geq \widetilde{m}_{L}}, \forall s \in [0, L], X_{v}^{L}(s) \leq g_{\Sigma}^{L}(s) \leq g_{\Sigma}^{L}(s)\right] \mathbb{I}_{X_{v}^{L}(L) \geq \widetilde{m}_{L}}, \forall s \in [0, L], X_{v}^{L}(s) \leq g_{\Sigma}^{L}(s)\right]$ $= \mathbb{E}[L(L-1)] \int_{0}^{L} e^{2mL-mr} \mathbb{P}\left(\bigcap_{s=1}^{2} \left\{\overline{B}_{L}^{L,s,r} > \widetilde{m}_{L,s} \; \forall s \in [0,L], \; \overline{B}_{s}^{L,s,r} \leq g_{2}^{L}(s)\right\}\right) dr$ we keep the information of $= \leq P(\bigcap_{i=1}^{2} \{\overline{B}_{t}^{t,i,r} > \widetilde{m}_{t}, \overline{B}_{r}^{t,i,r} \leq g_{\epsilon}^{t}(r)\}$ $\overline{B}_{r}^{k,2,r} = \overline{B}_{r}^{k,A,r} \longleftrightarrow = P\left(\overline{B}_{r}^{k,A,r} \leq g_{z}^{k}(r), (\overline{B}_{r}^{k,A,r} - \overline{B}_{r}^{k,A,r}) + \overline{B}_{r}^{k,A,r} \geq m_{k}^{*}, (\overline{B}_{r}^{k,2,r} - \overline{B}_{r}^{k,A,r}) + \overline{B}_{r}^{k,A,r} \geq m_{k}^{*}\right)$

$$\begin{split} \text{Now recall High ($\overline{\mathsf{R}}^{k,dr}, $\overline{\mathsf{R}}^{k,dr}, $\overline{\mathsf{R}}^{k,dr},$$

$$\begin{split} & \text{Th} \quad r \in [o, \text{II}], \quad \text{urbuy} \quad r = u, \quad \text{use have} \quad \sum_{a}^{b} = e^{z} u^{b} \quad \text{and} \\ & \approx \frac{2\pi^{2}}{2\pi^{2}t^{2}t^{2}} - \frac{1}{2}(r) = (\lambda_{a}^{b} - \frac{1}{2\lambda_{a}^{b}} |_{a}^{b} \frac{2\pi^{2}u^{2}}{e^{z}t^{2}u^{2}} - \lambda_{a}(e^{z} + z))u^{b} - A = \lambda_{a}u^{b} \left(\frac{2\pi^{2}}{e^{z}t^{2}u^{2}} - e^{z}^{2} - \Sigma + O\left(\frac{(u_{b}^{b})}{e^{z}}\right)\right) \\ & = \frac{e^{z}(2-e^{z}t^{2}u)}{e^{z}t^{2}+4} - \frac{1}{2}(r) = (\lambda_{a}^{b} - \frac{1}{2\lambda_{a}^{b}} |_{a}^{b} \frac{2\pi^{2}u^{2}}{e^{z}t^{2}} - \lambda_{a}(e^{z} + z))u^{b} - A = \lambda_{a}u^{b} \left(\frac{2\pi^{2}}{e^{z}} - e^{z}^{2} - \Sigma + O\left(\frac{(u_{b}^{b})}{e^{z}}\right)\right) \\ & = \frac{e^{z}(2-e^{z}t^{2}u)}{e^{z}t^{2}+4} - \frac{1}{2}(r) = (\lambda_{a}^{b} - \frac{1}{2\lambda_{a}^{b}} |_{a}^{b} \frac{2(24-e^{z}t^{2}u)}{2-e^{z}t^{2}u^{2}} - A) + \lambda_{a}(e^{z} - \Sigma)u^{b} - A = \lambda_{a}u^{b} \left(\frac{e^{z}}{e^{z}} - e^{z}^{2} - \Sigma + O\left(\frac{(u_{b}^{b})}{e^{z}}\right)\right) \\ & = \frac{e^{z}(4-e^{z}t^{2}u)}{2e^{z}t^{2}} - \frac{1}{2}(r) = (\lambda_{a}^{b} - \frac{1}{2\lambda_{a}^{b}} |_{a}^{b} \frac{2(4-e^{z}t^{2}u)}{2-e^{z}t^{2}u^{2}} - A) + \lambda_{a}(e^{z} - \Sigma)u^{b} - A = \lambda_{a}u^{b} \left(\frac{e^{z}}{e^{z}} - e^{z}^{2} - \Sigma + O\left(\frac{(u_{b}^{b})}{e^{z}}\right)\right) \\ & = \frac{e^{z}(4-e^{z}t^{2}u)}{2e^{z}t^{2}} - \frac{1}{2}(r) = (\lambda_{a}^{b} - \frac{1}{2\lambda_{a}^{b}} |_{a}^{b} \frac{2(4-e^{z}t^{2}u)}{2-e^{z}t^{2}u^{2}} - 2\frac{e^{z}}{2}(4-e^{z}t^{2}u)}\right) \\ & = \frac{e^{z}(4-e^{z}t^{2}u)}{2e^{z}t^{2}} - \frac{1}{2}(r) = \lambda_{a}(e^{z} - e^{z}) + O\left(\frac{1}{2}e^{z}\right) \\ & = \frac{e^{z}(4-e^{z})}{2e^{z}t^{2}} - \frac{1}{2}(r) = \lambda_{a}(e^{z} - e^{z}) + \frac{1}{2}(e^{z}) + \frac{1$$

Part r E (1 - 2, 1]: For this part we proceed differently from the beginning by bounding $P\left(\bigcap_{i=1}^{n} \left\{ \overline{B}_{L}^{+,i,r} \ge \widetilde{m}_{L}, \forall s \in [0, h], \overline{B}_{s}^{+,i,r} \le g_{\Sigma}^{+}(s) \right\} \right) \le P\left(\overline{B}_{L}^{+,i,r} \ge \widetilde{m}_{L}\right) = P\left(\overline{B}_{L} \ge \widetilde{m}_{L}\right)$ By the calculation in IV 4.1, we have $P\left(\overline{B}_{L} \ge \widetilde{m}_{L}\right) \sim \frac{e}{A_{c}\sqrt{2\pi}}$ and so $\int_{l-\frac{2}{A_{e}}}^{t} e^{2ml-mr} P\left(\bigcap_{i=a}^{n} \left\{\overline{B}_{l}^{t,i,r} > \widetilde{m}_{l}, \forall s \in [0, h], \overline{B}_{s}^{t,i,r} \leq g_{2}^{t}(s)\right\}\right) dr \leq C \int_{l-\frac{2}{A_{e}}}^{l} e^{ml-mr} dr \leq C.$ Combining the three puts yields the desired result. troot of the lower bound: This is very similar to the proof for the usual BBT7 in Lecture 7. where we wait until time by such that there is at least a particles. with absolute value bounded by Jater, and then argue that each of them has a positive probability to reach a high level at time t. One subtelly: the BBT's sharting from particles at time to and with time horizon & are two-speed BBTTS but with a different parameter 6 instead of 6 The time horizon is now t-t, and variances are changing at trime bt-t, so $b = -\frac{bL-L_1}{L-L_1} = b + O\left(\frac{1}{L}\right) < b . .$ Sloreover, we have $\sigma_A^2 \vec{b} + \sigma_z^2 (A - \vec{b}) > A$ so we are not under our previous assumption. We can divide all positions in this BBT by $d = \sqrt{\sigma_x^2 \tilde{b} + \sigma_z^2} (1-\tilde{b})$ to get a two-speed BBT with parameters (b, or, or) where of = o /a so that $\tilde{\sigma}_{A}^{2}\tilde{b} + \tilde{\sigma}_{2}^{2}(1-\tilde{b}) = \frac{\sigma_{A}^{2}b + \sigma_{2}^{2}(1-\tilde{b})}{\alpha^{2}} = 1$. Note that $d = 1 + O\left(\frac{1}{F}\right)$ so dividing positions by a charges the maximum only up to a O(1) term which is in the order of precision we need. We can finally apply Lammas 182 to the BBT with parameters (I, T, T, T) to lower bound it's probability to reach my a positive constant c (to be precise we should check that lemmas 182 hold uniformly in (b, JA, JZ) in some compact subset of (0,1) × (0,1) × (1,00) but this is time by double checking their proofs).