

Exercise: The derivative martingale

1.1 Definition

Let $Z_t = \sum_{u \in \mathcal{N}_t} (\lambda_{ct} - \bar{\lambda}t) e^{\lambda_c(X_u(t) - \lambda_{ct})}$ for $t \geq 0$.

1.a] For $x \in \mathbb{R}$, prove that $((\lambda_{ct} + L - B_t) e^{\lambda_c B_t - \frac{\lambda_c^2 t}{2}})_{t \geq 0}$ is a martingale under P_x .

1.b] Prove that $(Z_t)_{t \geq 0}$ is a martingale.

2.1 A new martingale

Let $L > 0$. For $t \geq 0$, let $Z_t^{(L)} = \sum_{u \in \mathcal{N}_t} (\lambda_{ct} + L - X_u(t)) e^{\lambda_c(X_u(t) - \lambda_{ct})} \mathbf{1}_{\max_{s \in [0,t]} X_u(s) - \lambda_c s \leq L}$.

2.a] Prove that $((\lambda_{ct} + L - B_t) e^{\lambda_c B_t - \frac{\lambda_c^2 t}{2}} \mathbf{1}_{\max_{s \in [0,t]} B_s - \lambda_c s \leq L})_{t \geq 0}$ is a martingale under P_x .

Hint: see this process as a stopped version of the martingale in question 1.a.

2.b] Prove that $(Z_t^{(L)})_{t \geq 0}$ is a martingale.

2.c] Deduce that $(Z_t^{(L)})_{t \geq 0}$ converges a.s. to a limit $Z_\infty^{(L)}$.

3.1 Convergence a.s. of $(Z_t)_{t \geq 0}$

3.a] Prove that $Z_t + L W_t^{\lambda_c} = Z_t^{(L)}$ on $E_L = \{ \forall s \geq 0, \forall s \leq \lambda_c s + L \}$

3.b] Deduce that $Z_t \xrightarrow[t \rightarrow \infty]{\text{a.s.}} Z_\infty^{(L)}$ on E_L .

3.c] Conclude that $(Z_t)_{t \geq 0}$ converges a.s. to a limit $Z_\infty \geq 0$ and that $Z_\infty = Z_\infty^{(L)}$ a.s. on E_L for any $L > 0$. Hint: Recall $P(E_L) \xrightarrow[L \rightarrow \infty]{} 1$

4.1 The limit is non-trivial

4.a] Prove $(Z_t^{(L)})_{t \geq 0}$ is bounded in L^2 .

Hint: This relies on the many-to-one. Try it on your own first! Some help if you are stuck: if $f_t(x) = (\lambda_{ct} + L - x) e^{\lambda_c x - \frac{\lambda_c^2 t}{2}}$ you should have to compute $\mathbb{E}[f_t(B_t^{1,r}) \mathbf{1}_{\max_{s \in [0,t]} B_s - \lambda_c s \leq L} f_t(B_t^{2,r}) \mathbf{1}_{\max_{s \in [0,t]} B_s - \lambda_c s \leq L}]$.

Show this equals $\mathbb{E}[\mathbf{1}_{\max_{s \in [0,t]} B_s - \lambda_c s \leq L} f_t(B_t)^2]$ using question 1.b.

Then show it is $\leq C(L) \left(\frac{1}{r^{3/2}} \wedge 1 \right)$ by following the argument used for the bound of $\mathbb{E}[K_t^2]$ in Lecture 9 and conclude.

3.b.] Deduce that $P(Z_\infty^{(4)} > 0) > 0$.

3.c.] Prove that $Z_\infty > 0$ a.s. on the survival event.

Hint: follow the same strategy as for W_∞^1 .

4.] $Z_\infty \notin L^1$

4.a.] Prove that $E[Z_\infty^{(4)}] = L$.

4.b.] Deduce that $E[Z_\infty] = +\infty$.