Final Exam Exercise 1 1. let L>0, 1>0. The- $\mathbb{E} \left[\bigcup_{k}^{\lambda_{c}} \mathcal{A}_{E_{L}} \right] \leq \mathbb{E} \left[\sum_{\substack{v \in \mathcal{N}_{k} \\ v \in \mathcal{N}_{k}}} e^{\lambda_{c} X_{v}(k) - \left(m + \frac{\lambda_{c}^{2}}{2}\right) k} \mathcal{I}_{\max X_{v}(s) - \lambda_{c} s \leq L} \right]$ $\max_{\substack{v \in [0,k] \\ v \in \mathcal{N}_{k}}} \sum_{\substack{v \in \mathcal{N}_{k} \\ v \in \mathcal{N}_{k}}} \mathcal{I}_{\max X_{v}(s) - \lambda_{c} s \leq L} \right]$ $\max_{\substack{v \in [0,k] \\ v \in [0,k] \\ v \in [0,k]}} \mathbb{E} \left[e^{\lambda_{c} B_{k} - \left(m + \frac{\lambda_{c}^{2}}{2}\right) k} \mathcal{I}_{\max X_{v}(s) - \lambda_{c} s \leq L} \right]$ 2. Let $\varepsilon > 0$. For any L > 0 and l > 0, we have $P(JF W_{L}^{\lambda_{c}} > \gamma_{c}) \leq P(E_{c}^{c}) + P(JF W_{L}^{\lambda_{c}} \perp_{E_{c}} > \gamma_{c})$ < E[Wic 1 E] by Tashar's y/JE by Tashar's megrality $\leq \frac{L}{2}$ by grestion 1. We can choose L large enough such that $P(E_L^c) \leq \frac{\varepsilon}{Z}$, and then $y = \frac{L}{2\Sigma}$ and then, for any $L \ge 0$, $P(JFW_{L}^{1c} \ge ry) \le \Sigma$. 3 It follows from the previous question that When I and O (for any $\delta, \Sigma > 0$, for t large enough $P(W_t^{A_c} > \delta) \leq \Sigma$). But $W_t^{A_c} \xrightarrow{\alpha s} W_{\infty}^{A_c}$ so $W_t^{A_c} \xrightarrow{P} W_{\infty}^{A_c}$ This implies Was = O a.s. (by unicity of the limit in probability)

Exercise 2
1.] $\mathbb{E}[K_{L}] = e^{-k} \mathbb{P}(B_{L} \ge \lambda L)$ by the many-to-one lemma.
$= e^{mt} P(B_1 > ATT)$
$\sim e^{-(\lambda \sqrt{F})/2} = \frac{e^{-(\lambda \sqrt{F})/2}}{\lambda \sqrt{2\pi F}}$
2 P(T4 > 24) = P(K1>1) ≤ E(K1) by Marhov inequality
By question 1, for t large enough, $P(5l_t > \lambda t) \leq \frac{1}{\lambda J t} e^{(m - \frac{\lambda^2}{2})t} (using \frac{1}{\lambda Z t} < 1)$
$3 \rightarrow P(B_{r}^{\circ} + B_{t-r}^{1} \ge \Delta t), B_{r}^{\circ} + B_{t-r}^{2} \ge \Delta t) = E[P(B_{t-r}^{1} \ge \Delta t - B_{r}^{\circ} B_{r}^{\circ})^{2}]$
$= \int_{\mathbb{R}} P(B_{k-r}^{\dagger} \ge \lambda k - \alpha) ^{2} \frac{e^{-\alpha \frac{2}{2}r}}{\sqrt{2\pi r}} d\alpha$
$\leq \left\langle e^{-(\lambda l - z)^{2}/2(l - r)} \right\rangle f = \lambda l - z > 0 \iff z < \lambda l$
$ \Lambda = \frac{1}{272} \left(\frac{1}{2} - \frac{1}{272} \right) \left(\frac{1}{2} - \frac{1}{272} \right) \left(\frac{1}{2} - \frac{1}{272} \right) \left(\frac{1}{272} - 1$
$\leq \int_{\lambda t} \frac{e}{\sqrt{2\pi r}} dx + \int_{-\infty}^{\infty} e^{\gamma} \left(-\frac{(\lambda t-z)}{t-r} - \frac{z}{2r} \right) \frac{dx}{\sqrt{2\pi r}}$
$= i P(B_r > \lambda L) = i P(B_{\lambda} > \frac{\lambda L}{\sqrt{r}}) \leq \frac{\sqrt{r}}{\lambda L} \exp\left(-\frac{(\lambda L)^2}{r}\right)$
For the 2nd subgral, we rewrite
$eqp\left(-\frac{(\Delta l-z)^2}{l-r}-\frac{z^2}{2r}\right) = eqp\left(-z^2\left(\frac{1}{l-r}+\frac{1}{2r}\right)+\frac{2\Delta lz}{l-r}-\frac{(\Delta l)^2}{l-r}\right)$
$= \overline{z_r(l-r)}$
$= 2\gamma \left(-\frac{1}{2r(t-r)} \left(\frac{1}{2r(t-r)} - \frac{1}{t+r} \right) - \frac{1}{t-r} \right)$
$= \operatorname{ap}\left(-\frac{k+r}{2r(k+r)}\left(z-\frac{\lambda}{k+r}\right) + \frac{k+r}{2r(k-r)}\left(\frac{\lambda}{k+r}\right)^{2} - \frac{(\lambda r)}{k+r}\right)$
$=\frac{(\lambda L)^2}{(L-r)} \cdot \left(\frac{2r}{L+r} - \lambda\right) = \frac{(\lambda L)^2}{(L-r)} \cdot \frac{r-L}{L+r} = -\frac{(\lambda L)^2}{L+r}$
$\int_{-\infty}^{\Delta L} e^{\gamma r} \left(-\frac{(\Delta L-z)^2}{L-r} - \frac{z^2}{2r} \right) \frac{dz}{\sqrt{2\pi r}} \leq e^{\gamma r} \left(-\frac{(\Delta L)^2}{L+r} \right) \int_{R} e^{\gamma r} \left(-\frac{L+r}{2r(L-r)} \left(z - \Delta L \frac{2r}{L+r} \right)^2 \right) \frac{dz}{\sqrt{2\pi r}}$
$= \exp\left(-\frac{(\lambda k)^2}{k+r}\right)\sqrt{\frac{k-r}{k+r}}$
So $P\left(B_{+}^{A,r} \ge \lambda L, B_{+}^{2,r} \ge \lambda L\right) \le \frac{\sqrt{r}}{\lambda L} \exp\left(-\frac{\lambda^{2}L^{2}}{r}\right) + \exp\left(-\frac{(\lambda L)^{2}}{L+r}\right)\sqrt{\frac{L-r}{L+r}}$

$$\leq \underbrace{A_{\overline{1}\overline{1}}}_{\overline{1}} \exp\left(-\frac{(41)^{k}}{1+r}\right) + \exp\left(-\frac{(41)^{k}}{1+r}\right) \left\{ \underbrace{V_{\overline{1}}}_{\overline{1}} = \underbrace{A_{\overline{1}}}_{\overline{1}} \left(\underbrace{A}_{\overline{1}} + \overline{V_{1r}} \right) \exp\left(-\frac{(41)^{k}}{1+r}\right) \right\}$$

$$\leq \underbrace{C_{1} + \underbrace{V_{1}}_{\overline{1}\overline{1}\overline{1}}}_{\overline{1}\overline{1}\overline{1}} \quad \text{for } 1 \text{ loge arough by product } A.$$

$$B_{1} \text{ He array for lows,}$$

$$E[K_{1}(K_{1} - A)] = E[L(L - A)] \int_{\overline{1}}^{L} e^{2AL - \alpha r} P(B_{1}^{(\mu)} > \lambda L, B_{2}^{(\mu)} > \lambda L, B_{2}^{(\mu)} > \lambda L) \\ = \frac{P(B_{1}^{(\mu)} > \lambda L, B_{2}^{(\mu)} > \lambda L, B_{2}^{(\mu)} > \lambda L) \\ = \frac{P(B_{1}^{(\mu)} > \lambda L, B_{2}^{(\mu)} > \lambda L, B_{2}^{(\mu)} > \lambda L) \\ = \frac{P(B_{1}^{(\mu)} > \lambda L, B_{2}^{(\mu)} > \lambda L, B_{2}^{(\mu)} > \lambda L) \\ = \frac{P(B_{1}^{(\mu)} > \lambda L, B_{2}^{(\mu)} > \lambda L, B_{2}^{(\mu)} > \lambda L) \\ = \frac{P(B_{1}^{(\mu)} > \lambda L, B_{2}^{(\mu)} > \lambda L, B_{2}^{(\mu)} > \lambda L) \\ = \frac{P(B_{1}^{(\mu)} > \lambda L, B_{2}^{(\mu)} > \lambda L, B_{2}^{(\mu)} > \lambda L) \\ = \frac{P(B_{1}^{(\mu)} > \lambda L, B_{2}^{(\mu)} > \lambda L, B_{2}^{(\mu)} > \lambda L) \\ = \frac{P(B_{1}^{(\mu)} > \lambda L, B_{2}^{(\mu)} > \lambda L, B_{2}^{(\mu)} > \lambda L) \\ = \frac{P(B_{1}^{(\mu)} > \lambda L, B_{2}^{(\mu)} > \lambda L, B_{2}^{(\mu)} > \lambda L) \\ = \frac{P(B_{1}^{(\mu)} > \lambda L, B_{2}^{(\mu)} > \lambda L) \\ = \frac{P(B_{1}^{(\mu)} > \lambda L, B_{2}^{(\mu)} > \lambda L) \\ = \frac{P(B_{1}^{(\mu)} > \lambda L, B_{2}^{(\mu)} > \lambda L) \\ = \frac{P(B_{1}^{(\mu)} > \lambda L, B_{2}^{(\mu)} > \lambda L) \\ = \frac{P(B_{1}^{(\mu)} > \mu_{1}^{(\mu)} > \mu_{1}^{(\mu)} > \mu_{1}^{(\mu)} > \mu_{1}^{(\mu)} \\ = \frac{P(B_{1}^{(\mu)} > \mu_{1}^{(\mu)} > \mu_{1}^{(\mu)} > \mu_{1}^{(\mu)} > \mu_{1}^{(\mu)} \\ = \frac{P(B_{1}^{(\mu)} > \mu_{1}^{(\mu)} > \mu_{1}^{(\mu)} > \mu_{1}^{(\mu)} > \mu_{1}^{(\mu)} \\ = \frac{P(B_{1}^{(\mu)} > \mu_{1}^{(\mu)} > \mu_{1}^{(\mu)} > \mu_{1}^{(\mu)} \\ = \frac{P(B_{1}^{(\mu)} > \mu_{1}^{(\mu)} > \mu_{1}^{(\mu)} > \mu_{1}^{(\mu)} \\ = \frac{P(B_{1}^{(\mu)} > \mu_{1}^{(\mu)} > \mu_{1}^{(\mu)} > \mu_{1}^{(\mu)} > \mu_{1}^{(\mu)} \\ = \frac{P(B_{1}^{(\mu)} > \mu_{1}^{(\mu)} > \mu_{1}^{(\mu)} + \mu_{1}^{(\mu)} \\ = \frac{P(B_{1}^{(\mu)} > \mu_{1}^{(\mu)} > \mu_{1}^{(\mu)} + \mu_{1}^{(\mu)}$$

Exercise 3 $= \sum_{v \in \mathcal{N}_{bl}} \lambda X_{v}^{\dagger}(bl) - (m + \frac{\lambda^{2}}{z}\sigma_{1}^{z})bl \sum_{v \in \mathcal{N}_{l}} \lambda (X_{v}^{\dagger}(l) - X_{v}^{\dagger}(bl)) - (m + \frac{(\lambda\sigma_{2})^{2}}{z})(1-b)l$ =: W⁴⁰²(1-6)} By the branching property, given \overline{F}_{L} , $(W_{(1-6)L}^{L\sigma_{z}}(nr), nr \in \mathbb{N}_{bL})$ are independent with the same law as $\sum_{\substack{\nu \in \mathbb{N}_{(1-6)L}}} e^{L\sigma_{z}} X_{\nu}((1-b)L) - (m \cdot (\frac{L\sigma_{z}}{2})^{2})(1-b)L = W_{(1-6)L}^{L\sigma_{z}}$ where we used that the BBTT born at particle or at time by has variance of until time to so it can be written like oz x usual BBT7. 2.] It follows that $\mathbb{E}\left[V_{L}^{\lambda} \mid \mathcal{F}_{6L}\right] = \sum_{v \in \partial \mathcal{V}_{6L}} \sum_{v \in \partial \mathcal{V$ If we choose $p \in (\Lambda, \frac{\lambda_c}{(\lambda \sigma_z)^2})$ (we use here $|\lambda| \leq \frac{\lambda_c}{\sigma_z}$) then $(W_s^{\lambda \sigma_z})_{s \geq 0}$ is bounded in L^P, so $Z \models \left[|W_{(\Lambda-\lambda)\downarrow}^{\lambda \sigma_z} - \Lambda|^P \right] \leq C$ for some constant $C = C(\lambda, \sigma_z, p)$. Also $\sum_{v \in \mathcal{N}_{bl}} e^{p X_v^{L}(bl) - p(m + (\frac{\lambda \sigma_i}{2})^2)bl} = \sum_{v \in \mathcal{N}_{bl}} e^{p \lambda \sigma_i X_v(bl) - p(m + (\frac{\lambda \sigma_i}{2})^2)bl}$ $= \mathcal{W}_{bl}^{p \perp \sigma_1} \exp\left(\left(m + \left(\frac{p \perp \sigma_1}{2}\right)^2\right) bl - p\left(m + \left(\frac{\perp \sigma_1}{2}\right)^2\right) bl \right)$

· · ·	· ·	· · ·	· · ·	· · ·	· · ·	· · · · ·	= b f (m()	$(1-p) + (\frac{4\sigma_4}{z})^2 (p^2 - p)$	· · ·
BJL	۰۰۰۰ ۱۰۰۰ ۱۰ ۱۰۰۰ ۱۰	- choose	- p <	2 <u>~</u> (Jo ₄) ²	$=\frac{(\gamma \alpha^{\prime})_{s}}{\tau_{s}}$	(becau	$= b \left(p - 1 \right)$ $s \left \lambda \right < \frac{\lambda_c}{\sigma_\lambda}$	$\frac{\left(\frac{\pi \sqrt{4}}{2} p - m\right)}{\left(\frac{4}{2} \left(\frac{2}{\sqrt{2}}\right)^2} > 1\right)$	· · · ·
E[V _k -	$\mathbb{E}[V_{\mu}^{\lambda}]$	∓ ₆₁] [[]			W ^{br}]	egp (bt (p-	$\frac{1}{2}\left(\frac{(\lambda \sigma_{4})^{2}}{2}p-m\right) = \frac{1}{4}$	
I. w	partice e get	lar, Vi ²						o <o< th=""><th>- 2 , . </th></o<>	- 2 , .
· · · ·		· · · ·	· · ·	· · ·	· · · ·	· · · · ·	· · · · ·	· · · · · · · · ·	· · ·
· · · ·	· · ·	· · · ·	· · · ·	· · · ·	· · · ·			· · · · · · · · · ·	· · · ·
· · ·	· ·	· · · ·	· · ·	· · ·	· · · ·	· · · · ·	· · · · ·	· · · · · · · · · ·	· · ·
· · · ·	· ·	 	 	· · · ·	· · · ·	· · · · ·	· · · · ·	· · · · · · · · ·	
· · · ·	· ·	· · · ·	· · ·	· · · ·	· · · ·	· · · · ·	· · · · ·	· · · · · · · · ·	· · · ·
· · · ·	· · ·	· · · ·	· · · ·	· · · ·	· · · ·	· · · · ·	· · · · ·	· · · · · · · · · ·	· · · ·
· · ·	· ·	· · · ·	· · ·	· · ·	· · · ·	· · · · ·	· · · · ·	· · · · · · · · · ·	· · ·
· · ·	· ·	· · · ·	· · · ·	· · · ·	· · · ·	 	 	· · · · · · · · ·	· · · ·