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Log-correlated fields

> Continuous log-correlated Gaussian field (X(x))xep: centered Gaussian field
with covariances

E[X(x)X(y)] = —c - log|x — y| + bounded function.

X is defined as a random distribution (not defined pointwise).

> Regularization or discrete approximation (Xy(x))xep of a log-correlated field:
asymptotically Gaussian with covariances

EXn(xX)Xn(y)] = —cC- log<\x —ylV %) + bounded function.
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They have many properties in common.
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Examples of log-correlated fields

> Discretization of continuous log-correlated fields, in particular discrete
Gaussian free field in dimension 2.
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Examples of log-correlated fields

> Discretization of continuous log-correlated fields, in particular discrete
Gaussian free field in dimension 2.

> Riemann ¢ function on a short interval on the critical line:
1
logc(i—s—i(x—m—)), x € [0,1],

where 7 is a uniform random variable in [T, 2T].
Selberg '46, Bourgade "10: log-correlated Gaussian behavior with N = logT.
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Examples of log-correlated fields

> Discretization of continuous log-correlated fields, in particular discrete
Gaussian free field in dimension 2.

> Riemann ¢ function on a short interval on the critical line:
1
logc(i—s—i(x—m—)), x € [0,1],

where 7 is a uniform random variable in [T, 2T].
Selberg '46, Bourgade "10: log-correlated Gaussian behavior with N = logT.

> Random unitary matrix Uy of size N:

log det(l = e*‘XUN> = Z LUf’)e*””, x € [0, 2x].

k=1

Log-correlated Gaussian behavior follows from Diaconis-Shahshahani '94 (see
Bourgade "10).

> Logarithm of the characteristic polynomial of other random matrix models.
Gustavsson ‘05, O'Rourke 10, Tao-Vu "11, Bourgade-Mody "19,. ..
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The case of general 5-ensembles in dimension 1

The model: N particles \; < --- < Ay on the real line chosen according to
IT - NlPe T Ea v g, dw,

1<i<j<N

for 8 > 0 and a potential V: R — R smooth and with sufficient growth at infinity.
— Includes Gaussian -ensembles with V(x) = x?/2.
Logarithm of the characteristic polynomial:

Z log(x — Aw) — /log X = N)pig(dN).

= UlulLr ‘U wtaSu e
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The case of general 5-ensembles in dimension 1

The model: N particles \; < --- < Ay on the real line chosen according to
[T 1N —ylPe TER 0 dx, . day,

1<i<j<N
for 8 > 0 and a potential V: R — R smooth and with sufficient growth at infinity.
— Includes Gaussian -ensembles with V(x) = x?/2.

Logarithm of the characteristic polynomial:
Z log(x — Aw) — /log X = Apteq(d).

Theorem (Bourgade-Mody-P. '20): For x,y in the bulk of the spectrum such that
—log|x —y|/logN — ¢,

B (law) L Gl
Tog v (ReXu(x), ReXu(y)) == N( (aM 1 >>

The same result holds for Im Xy, which is asymptotically independent of Re Xy.

See also related results for Gaussian 8-ensembles by Lambert-Paquette '20,

Augeri-Butez-Zeitouni '20. oI
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A toy model for log-correlated fields

Branching random walk:

> Start with one particle at 0.

> At each step, each particle has two
children.

> Each child jumps from the position
of its parent with law A/(0,1).

X(u) = position of particle u.
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A toy model for log-correlated fields

Branching random walk:

> Start with one particle at 0. .
> At each step, each particle has two 2
children. o
> Each child jumps from the position -
of its parent with law A(0, 1). -
X(u) = position of particle u. -

Why is it log-correlated?

[ ‘
> Embed particles of generation nin [0, 1]. XeA
n k
> X(u) ~ N(0,log, N), N=2 XloA

> Blue particles:
EX(u)X(v)] = — log, d(u, ).

EX(u)X(V)] = o. 0

r\)\4\+
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Universal properties

Some common properties of log-correlated fields universality class:

F(B)

> Phase transition of the free energy:

_ Pnx)
F(B) = fim, log N lOg/ ox

Freezing phenomenon in disordered systems.
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Universal properties

Some common properties of log-correlated fields universality class:

F
> Phase transition of the free energy: ()
_ BXn(X)
F(B) = AHmoo logN log/ e dx

Freezing phenomenon in disordered systems.

-

|
l
Be
> Convergence of the measure e®%®) dx after renormalization to the Gaussian
multiplicative chaos.
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Some common properties of log-correlated fields universality class:

F(B)

> Phase transition of the free energy:

_ Pnx)
F(B) = fim, log N lOg/ ox

Freezing phenomenon in disordered systems.

|
l
Be
> Convergence of the measure e®%®) dx after renormalization to the Gaussian
multiplicative chaos.

> Maximum of the field:

még(XN(X) = cste - logN — loglogN + Yy

3
2Bc
and Y, converges in distribution to a randomly shifted Gumbel.

Conjectured by Fyodorov-Hiary—Keating for the logarithm of ¢ and of the
characteristic polynomial of Uy.
For Uy, the limit should be a sum of two independent Gumbel random variables
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Maximum of the branching random walk

For the binary BRW with jumps A/(0,1): Bc = /2 log(2) and

dusrabion of o max X(U) = Bch — 2 log n + shifted Gumbel.
J NN 2B
Proved by Bramson '78-'83 and Lalley-Sellke '87 for branching Brownian motion
and Aidékon "13 for general BRW.
Ben

> Ben — ﬁ logn

To be compared with 2" i.i.d. random variables X; with law N(0, n):

1
max X; = Bcn — — logn + Gumbel.
1<i<an 28¢ -
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Maximum of the BRW: upper bound, 1t and 2"¢ orders

Proof based on first moment calculations for the number of particles satisfying a
certain property.

> For the 1 order: IE[ > 1X(u)>ﬁcn:| =2" . P(N(0,n) > Bcn) — 0.

|ul=n
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> For the 2" order: need to remove some
particles before taking the first moment.
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Maximum of the BRW: upper bound, 1t and 2"¢ orders

Proof based on first moment calculations for the number of particles satisfying a
certain property.

> For the 1 order: IE[ > 1X(u)>ﬁcn:| =2" . P(N(0,n) > Bcn) — 0.

|ul=n

> For the 2" order: need to remove some

particles before taking the first moment.
A Ben + K
First prove that with high probability,

forany ¢, ‘r11‘a>2)<(u) < Bl + K.
ul=
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Maximum of the BRW: upper bound, 1t and 2"¢ orders

Proof based on first moment calculations for the number of particles satisfying a
certain property.

> For the 1 order: IE[ > ]]-X(u)>ﬁcn:| =2" . P(N(0,n) > Bcn) — 0.

|ul=n

> For the 2" order: need to remove some
particles before taking the first moment.

A Ben + K
First prove that with high probability, 2 pen-2 b
for any ¢, ‘m‘aéx(u) < B+ K. lf“
u|l=~£

Then, the first moment of the number of
particles u at generation n such that n
X(u) > Ben — 35 logn + €D élﬂljn
and whose trajectory stays below the
barrier tends to zero.
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Maximum of the BRW: upper bound, 3 order

Goal: P(maxx(u) > Ben — 3 logn + a) < Cae Pl
|ul=n 28

> Keep the barrier at level 3£ + K at any time £.

> Distinguish according to the time where the trajectory of the particle u is the
closest from the barrier between times n/2 and n.

> Annoying particles: those getting too close to the barrier at the time close to n.
— Deal with them in probability, before taking the first moment.

y Ben + K
(| 3Ln
'— I'\—Z—-= “ + o
! o,
|
|
|

v : =

nj/2 n
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Maximum of the BRW: lower bound

Goal: Prove maxx(u) > Bcn — % logn — a with high probability.
ul=n €

> Step 1: Prove maxx(u) > Ben — % log n with positive probability.
ul=n c

— First and second moments calculation on the number of such particles whose
trajectory stays below the following barrier:

Bel — 55~ logn +1

ﬂcél‘i“ 1 / e Zs_fcl.jq

A | > ¢
Wﬂ/z n

> Step 2: Use the branching property to conclude.
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Maximum of log-correlated fields: known results

> Discrete Gaussian log-correlated fields: the whole convergence is known.
o 2D Gaussian free field: Bramson-Ding-Zeitouni 16, Biskup—-Louidor "16.
o Lattice approximations of general fields: Ding-Roy-Zeitouni "17.
o Regularization of some continuous fields: Madaule "15.
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> Discrete Gaussian log-correlated fields: the whole convergence is known.
o 2D Gaussian free field: Bramson-Ding-Zeitouni 16, Biskup—-Louidor "16.
o Lattice approximations of general fields: Ding-Roy-Zeitouni "17.
o Regularization of some continuous fields: Madaule "15.

> Random unitary matrices:
o 1% order: Arguin-Bourgade-Belius 15.
o 2" order: Paquette-Zeitouni '16.
o 3% order: Chhaibi-Madaule-Najnudel "16 (for all circular B-ensembles).
The 1% order has been obtained for other random matrix models: Ginibre
(Lambert "19), unitarily invariant Hermitian ensembles (Lambert-Paquette "19),
permutation matrices (Cook-Zeitouni '20).
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Maximum of log-correlated fields: known results

> Discrete Gaussian log-correlated fields: the whole convergence is known.
o 2D Gaussian free field: Bramson-Ding-Zeitouni 16, Biskup—-Louidor "16.
o Lattice approximations of general fields: Ding-Roy-Zeitouni "17.
o Regularization of some continuous fields: Madaule "15.

> Random unitary matrices:
o 1% order: Arguin-Bourgade-Belius 15.
o 2" order: Paquette-Zeitouni '16.
o 3% order: Chhaibi-Madaule-Najnudel "16 (for all circular B-ensembles).
The 1°* order has been obtained for other random matrix models: Ginibre
(Lambert "19), unitarily invariant Hermitian ensembles (Lambert-Paquette "19),
permutation matrices (Cook-Zeitouni '20).

> Cover times in 2D: Dembo-Peres-Rosen-Zeitouni '04, Belius—Kistler '17,
Belius-Rosen-Zeitouni 20.

> Height of weighted recursive trees and preferential attachment trees:
P-Sénizergues '20.

> Riemann ¢ function: Arguin-Belius-Bourgade—Radziwitt-Soundararajan '19,
Najnudel 18, Harper '19, Arguin-Bourgade-Radziwitt 20 —  see next talk.
Random model for ¢: Arguin-Belius-Harper "19. /12



" '4;\\4/
Mi“ =
- - \‘~~'.'I :
» 4, =N N
\_/// L
-l e

-
e





