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Log-correlated fields

. Continuous log-correlated Gaussian field (X(x))x∈D: centered Gaussian field
with covariances

E[X(x)X(y)] = −c · log|x − y|+ bounded function.

X is defined as a random distribution (not defined pointwise).

. Regularization or discrete approximation (XN(x))x∈D of a log-correlated field:
asymptotically Gaussian with covariances

E[XN(x)XN(y)] = −c · log
(
|x − y| ∨ 1

N

)
+ bounded function.

They have many properties in common.
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Examples of log-correlated fields

. Discretization of continuous log-correlated fields, in particular discrete
Gaussian free field in dimension 2.

. Riemann ζ function on a short interval on the critical line:

log ζ
(
1
2 + i(x + τ)

)
, x ∈ [0, 1],

where τ is a uniform random variable in [T, 2T].
Selberg ’46, Bourgade ’10: log-correlated Gaussian behavior with N = log T .

. Random unitary matrix UN of size N:

log det
(
I− e−ixUN

)
=

∞∑
k=1

Tr(UkN)
k e−ikx, x ∈ [0, 2π].

Log-correlated Gaussian behavior follows from Diaconis–Shahshahani ’94 (see
Bourgade ’10).

. Logarithm of the characteristic polynomial of other random matrix models.
Gustavsson ’05, O’Rourke ’10, Tao-Vu ’11, Bourgade-Mody ’19,. . .
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The case of general β-ensembles in dimension 1

The model: N particles λ1 ≤ · · · ≤ λN on the real line chosen according to∏
1≤i<j≤N

|λi − λj|βe−
βN
2

∑N
k=1 V(λk) dλ1 · · ·dλN,

for β > 0 and a potential V : R → R smooth and with sufficient growth at infinity.

→ Includes Gaussian β-ensembles with V(x) = x2/2.

Logarithm of the characteristic polynomial:

XN(x) =
N∑
k=1

log(x − λk)− N
∫
log(x − λ)µeq(dλ).

Theorem (Bourgade–Mody–P. ’20): For x, y in the bulk of the spectrum such that
− log|x − y|/ logN→ α,√

β

logN (Re XN(x),Re XN(y))
(law)−−−→
N→∞

N

(
0,
(

1 α ∨ 1
α ∨ 1 1

))
.

The same result holds for Im XN, which is asymptotically independent of Re XN.

See also related results for Gaussian β-ensembles by Lambert-Paquette ’20,
Augeri-Butez-Zeitouni ’20.
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A toy model for log-correlated fields

Branching random walk:

. Start with one particle at 0.

. At each step, each particle has two
children.

. Each child jumps from the position
of its parent with law N (0, 1).

X(u) = position of particle u.

Why is it log-correlated?

. Embed particles of generation n in [0, 1].

. X(u) ∼ N (0, log2 N), N = 2n

. Blue particles:
E[X(u)X(v)] = − log2 d(u, v).

. Orange particles u and v:
E[X(u)X(v)] = 0. 0 1

2
12−k

k
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Universal properties

Some common properties of log-correlated fields universality class:

. Phase transition of the free energy:

F(β) = lim
N→∞

1
logN log

∫
D
eβXN(x) dx

Freezing phenomenon in disordered systems.
β

F(β)

βc

. Convergence of the measure eβXN(x) dx after renormalization to the Gaussian
multiplicative chaos.

. Maximum of the field:

max
x∈D

XN(x) = cste · logN− 3
2βc

log logN+ YN

and Yn converges in distribution to a randomly shifted Gumbel.
Conjectured by Fyodorov–Hiary–Keating for the logarithm of ζ and of the
characteristic polynomial of UN.
For UN, the limit should be a sum of two independent Gumbel random variables.
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Maximum of the branching random walk

For the binary BRW with jumps N (0, 1): βc =
√
2 log(2) and

max
|u|=n

X(u) = βcn− 3
2βc

logn+ shifted Gumbel.

Proved by Bramson ’78-’83 and Lalley–Sellke ’87 for branching Brownian motion
and Aïdékon ’13 for general BRW.

n

βcn
βcn− 3

2βc logn

To be compared with 2n i.i.d. random variables Xi with law N (0,n):

max
1≤i≤2n

Xi = βcn− 1
2βc

logn+ Gumbel.
7/12
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Maximum of the BRW: upper bound, 1st and 2nd orders

Proof based on first moment calculations for the number of particles satisfying a
certain property.

. For the 1st order: E
[ ∑

|u|=n

1X(u)>βcn

]
= 2n · P(N (0,n) > βcn) → 0.

. For the 2nd order: need to remove some
particles before taking the first moment.

First prove that with high probability,
for any `, max

|u|=`
X(u) ≤ βc`+ K .

Then, the first moment of the number of
particles u at generation n such that
X(u) ≥ βcn− 3

2βc logn+ · · ·
and whose trajectory stays below the
barrier tends to zero.

n

βcn

βcn+ K
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Maximum of the BRW: upper bound, 3rd order

Goal: P
(
max
|u|=n

X(u) ≥ βcn− 3
2βc

logn+ a
)

≤ Cae−βca

. Keep the barrier at level βc`+ K at any time `.

. Distinguish according to the time where the trajectory of the particle u is the
closest from the barrier between times n/2 and n.

. Annoying particles: those getting too close to the barrier at the time close to n.
→ Deal with them in probability, before taking the first moment.

nn/2

βcn+ K
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Maximum of the BRW: lower bound

Goal: Prove max
|u|=n

X(u) ≥ βcn− 3
2βc

logn− a with high probability.

. Step 1: Prove max
|u|=n

X(u) ≥ βcn− 3
2βc

logn with positive probability.

→ First and second moments calculation on the number of such particles whose
trajectory stays below the following barrier:

`
nn/2

βc`+ 1

βc`− 3
2βc logn+ 1

. Step 2: Use the branching property to conclude.
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Maximum of log-correlated fields: known results

. Discrete Gaussian log-correlated fields: the whole convergence is known.
◦ 2D Gaussian free field: Bramson–Ding–Zeitouni ’16, Biskup–Louidor ’16.
◦ Lattice approximations of general fields: Ding–Roy–Zeitouni ’17.
◦ Regularization of some continuous fields: Madaule ’15.

. Random unitary matrices:
◦ 1st order: Arguin–Bourgade–Belius ’15.
◦ 2nd order: Paquette–Zeitouni ’16.
◦ 3rd order: Chhaibi–Madaule–Najnudel ’16 (for all circular β-ensembles).
The 1st order has been obtained for other random matrix models: Ginibre
(Lambert ’19), unitarily invariant Hermitian ensembles (Lambert–Paquette ’19),
permutation matrices (Cook–Zeitouni ’20).

. Cover times in 2D: Dembo–Peres–Rosen–Zeitouni ’04, Belius–Kistler ’17,
Belius–Rosen–Zeitouni ’20.

. Height of weighted recursive trees and preferential attachment trees:
P.–Sénizergues ’20.

. Riemann ζ function: Arguin–Belius–Bourgade–Radziwiłł–Soundararajan ’19,
Najnudel ’18, Harper ’19, Arguin–Bourgade–Radziwiłł ’20 → see next talk.
Random model for ζ: Arguin–Belius–Harper ’19.

11/12



Maximum of log-correlated fields: known results

. Discrete Gaussian log-correlated fields: the whole convergence is known.
◦ 2D Gaussian free field: Bramson–Ding–Zeitouni ’16, Biskup–Louidor ’16.
◦ Lattice approximations of general fields: Ding–Roy–Zeitouni ’17.
◦ Regularization of some continuous fields: Madaule ’15.

. Random unitary matrices:
◦ 1st order: Arguin–Bourgade–Belius ’15.
◦ 2nd order: Paquette–Zeitouni ’16.
◦ 3rd order: Chhaibi–Madaule–Najnudel ’16 (for all circular β-ensembles).
The 1st order has been obtained for other random matrix models: Ginibre
(Lambert ’19), unitarily invariant Hermitian ensembles (Lambert–Paquette ’19),
permutation matrices (Cook–Zeitouni ’20).

. Cover times in 2D: Dembo–Peres–Rosen–Zeitouni ’04, Belius–Kistler ’17,
Belius–Rosen–Zeitouni ’20.

. Height of weighted recursive trees and preferential attachment trees:
P.–Sénizergues ’20.

. Riemann ζ function: Arguin–Belius–Bourgade–Radziwiłł–Soundararajan ’19,
Najnudel ’18, Harper ’19, Arguin–Bourgade–Radziwiłł ’20 → see next talk.
Random model for ζ: Arguin–Belius–Harper ’19.

11/12



Maximum of log-correlated fields: known results

. Discrete Gaussian log-correlated fields: the whole convergence is known.
◦ 2D Gaussian free field: Bramson–Ding–Zeitouni ’16, Biskup–Louidor ’16.
◦ Lattice approximations of general fields: Ding–Roy–Zeitouni ’17.
◦ Regularization of some continuous fields: Madaule ’15.

. Random unitary matrices:
◦ 1st order: Arguin–Bourgade–Belius ’15.
◦ 2nd order: Paquette–Zeitouni ’16.
◦ 3rd order: Chhaibi–Madaule–Najnudel ’16 (for all circular β-ensembles).
The 1st order has been obtained for other random matrix models: Ginibre
(Lambert ’19), unitarily invariant Hermitian ensembles (Lambert–Paquette ’19),
permutation matrices (Cook–Zeitouni ’20).

. Cover times in 2D: Dembo–Peres–Rosen–Zeitouni ’04, Belius–Kistler ’17,
Belius–Rosen–Zeitouni ’20.

. Height of weighted recursive trees and preferential attachment trees:
P.–Sénizergues ’20.

. Riemann ζ function: Arguin–Belius–Bourgade–Radziwiłł–Soundararajan ’19,
Najnudel ’18, Harper ’19, Arguin–Bourgade–Radziwiłł ’20 → see next talk.
Random model for ζ: Arguin–Belius–Harper ’19. 11/12



Thanks

12/12




