Extrema of branching random walks and log-correlated fields

Michel Pain (Courant Institute, NYU) CMS Winter Meeting December 6, 2020

▷ **Continuous log-correlated Gaussian field** $(X(x))_{x \in D}$: centered Gaussian field with covariances

 $\mathbb{E}[X(x)X(y)] = -c \cdot \log|x - y| + \text{bounded function.}$

X is defined as a random distribution (not defined pointwise).

▷ Regularization or discrete approximation (X_N(x))_{x∈D} of a log-correlated field: asymptotically Gaussian with covariances

$$\mathbb{E}[X_N(x)X_N(y)] = -c \cdot \log\left(|x-y| \lor \frac{1}{N}\right) + \text{bounded function.}$$

They have many properties in common.

 Discretization of continuous log-correlated fields, in particular discrete Gaussian free field in dimension 2.

- Discretization of continuous log-correlated fields, in particular discrete Gaussian free field in dimension 2.
- \triangleright **Riemann** ζ **function** on a short interval on the critical line:

$$\log \zeta \left(\frac{1}{2} + i(x+\tau)\right), \qquad x \in [0,1],$$

where τ is a uniform random variable in [T, 2T].

Selberg '46, Bourgade '10: log-correlated Gaussian behavior with $N = \log T$.

- Discretization of continuous log-correlated fields, in particular discrete Gaussian free field in dimension 2.
- \triangleright **Riemann** ζ **function** on a short interval on the critical line:

$$\log \zeta \left(\frac{1}{2} + i(x+\tau)\right), \qquad x \in [0,1],$$

where τ is a uniform random variable in [T, 2T].

Selberg '46, Bourgade '10: log-correlated Gaussian behavior with $N = \log T$.

 \triangleright Random unitary matrix U_N of size N:

$$\log \det \left(I - \mathrm{e}^{-\mathrm{i} x} U_N \right) = \sum_{k=1}^{\infty} \frac{\mathrm{Tr}(U_N^k)}{k} \mathrm{e}^{-\mathrm{i} k x}, \qquad x \in [0, 2\pi].$$

Log-correlated Gaussian behavior follows from Diaconis–Shahshahani '94 (see Bourgade '10).

▷ Logarithm of the characteristic polynomial of other random matrix models. Gustavsson '05, O'Rourke '10, Tao-Vu '11, Bourgade-Mody '19,...

The case of general β -ensembles in dimension 1

The model: N particles $\lambda_1 \leq \cdots \leq \lambda_N$ on the real line chosen according to $\prod_{1 \leq i < j \leq N} |\lambda_i - \lambda_j|^{\beta} e^{-\frac{\beta N}{2} \sum_{k=1}^N V(\lambda_k)} d\lambda_1 \cdots d\lambda_N,$

for $\beta > 0$ and a potential $V \colon \mathbb{R} \to \mathbb{R}$ smooth and with sufficient growth at infinity.

 \rightarrow Includes Gaussian β -ensembles with $V(x) = x^2/2$.

Logarithm of the characteristic polynomial:

$$X_N(x) = \sum_{k=1}^{N} \log(x - \lambda_k) - N \int \log(x - \lambda) \mu_{eq}(d\lambda).$$

The case of general β -ensembles in dimension 1

The model: N particles $\lambda_1 \leq \cdots \leq \lambda_N$ on the real line chosen according to $\prod_{1 \leq i < j \leq N} |\lambda_i - \lambda_j|^{\beta} e^{-\frac{\beta N}{2} \sum_{k=1}^N V(\lambda_k)} d\lambda_1 \cdots d\lambda_N,$

for $\beta > 0$ and a potential $V \colon \mathbb{R} \to \mathbb{R}$ smooth and with sufficient growth at infinity.

 \rightarrow Includes Gaussian β -ensembles with $V(x) = x^2/2$.

Logarithm of the characteristic polynomial:

$$X_N(x) = \sum_{k=1}^N \log(x - \lambda_k) - N \int \log(x - \lambda) \mu_{eq}(d\lambda).$$

Imaginary part

The case of general β -ensembles in dimension 1

The model: N particles $\lambda_1 \leq \cdots \leq \lambda_N$ on the real line chosen according to $\prod_{1 \leq i < j \leq N} |\lambda_i - \lambda_j|^{\beta} e^{-\frac{\beta N}{2} \sum_{k=1}^N V(\lambda_k)} d\lambda_1 \cdots d\lambda_N,$

for $\beta > 0$ and a potential $V \colon \mathbb{R} \to \mathbb{R}$ smooth and with sufficient growth at infinity.

 \rightarrow Includes Gaussian β -ensembles with $V(x) = x^2/2$.

Logarithm of the characteristic polynomial:

$$X_N(x) = \sum_{k=1}^N \log(x - \lambda_k) - N \int \log(x - \lambda) \mu_{eq}(d\lambda).$$

Theorem (Bourgade–Mody–P. '20): For x, y in the bulk of the spectrum such that $-\log|x-y|/\log N \rightarrow \alpha$,

$$\sqrt{\frac{\beta}{\log N}}(\operatorname{Re} X_N(x), \operatorname{Re} X_N(y)) \xrightarrow[N \to \infty]{(law)} \mathcal{N}\left(0, \begin{pmatrix} 1 & \alpha \wedge 1 \\ \alpha \wedge 1 & 1 \end{pmatrix}\right).$$

The same result holds for $Im X_N$, which is asymptotically independent of $Re X_N$.

See also related results for Gaussian β -ensembles by Lambert-Paquette '20, Augeri-Butez-Zeitouni '20.

A toy model for log-correlated fields

Branching random walk:

- ▷ Start with one particle at 0.
- At each step, each particle has two children.
- \triangleright Each child jumps from the position of its parent with law $\mathcal{N}(0, 1)$.
- X(u) =position of particle u.

A toy model for log-correlated fields

Branching random walk:

- ▷ Start with one particle at 0.
- At each step, each particle has two children.
- \triangleright Each child jumps from the position of its parent with law $\mathcal{N}(0, 1)$.

X(u) =position of particle u.

Why is it log-correlated?

- \triangleright Embed particles of generation *n* in [0, 1].
- $\triangleright X(u) \sim \mathcal{N}(0, \log_2 N), \quad N = 2^n$

▷ Blue particles:

 $\mathbb{E}[X(u)X(v)] = -\log_2 d(u,v).$

▷ Orange particles u and v: $\mathbb{E}[X(u)X(v)] = 0.$

Universal properties

Some common properties of log-correlated fields universality class:

▷ Phase transition of the **free energy**:

$$F(\beta) = \lim_{N \to \infty} \frac{1}{\log N} \log \int_D e^{\beta X_N(x)} dx$$

Freezing phenomenon in disordered systems.

Universal properties

Some common properties of log-correlated fields universality class:

▷ Phase transition of the **free energy**:

$$F(\beta) = \lim_{N \to \infty} \frac{1}{\log N} \log \int_D e^{\beta X_N(x)} dx$$

Freezing phenomenon in disordered systems.

▷ Convergence of the measure $e^{\beta X_N(x)} dx$ after renormalization to the **Gaussian multiplicative chaos**.

Universal properties

Some common properties of log-correlated fields universality class:

▷ Phase transition of the **free energy**:

$$F(\beta) = \lim_{N \to \infty} \frac{1}{\log N} \log \int_D e^{\beta X_N(x)} dx$$

Freezing phenomenon in disordered systems.

- ▷ Convergence of the measure $e^{\beta X_N(x)} dx$ after renormalization to the Gaussian multiplicative chaos.
- ▷ **Maximum** of the field:

$$\max_{x \in D} X_N(x) = \operatorname{cste} \cdot \log N - \frac{3}{2\beta_c} \log \log N + Y_N$$

and Y_n converges in distribution to a randomly shifted Gumbel.

Conjectured by Fyodorov–Hiary–Keating for the logarithm of ζ and of the characteristic polynomial of U_N .

For U_N , the limit should be a sum of two independent Gumbel random variables.

Maximum of the branching random walk

For the binary **BRW** with jumps $\mathcal{N}(0, 1)$: $\beta_c = \sqrt{2 \log(2)}$ and

Proved by Bramson '78-'83 and Lalley–Sellke '87 for branching Brownian motion and Aïdékon '13 for general BRW.

To be compared with 2^n i.i.d. random variables X_i with law $\mathcal{N}(0, n)$:

$$\max_{1 \le i \le 2^n} X_i = \beta_c n - \frac{1}{2\beta_c} \log n + \text{Gumbel}$$

Maximum of the BRW: upper bound, 1st and 2nd orders

Proof based on **first moment calculations** for the number of particles satisfying a certain property.

▷ For the 1st order:
$$\mathbb{E}\left[\sum_{|u|=n} \mathbb{1}_{X(u)>\beta_c n}\right] = 2^n \cdot \mathbb{P}(\mathcal{N}(0,n)>\beta_c n) \to 0.$$

Maximum of the BRW: upper bound, 1st and 2nd orders

Proof based on **first moment calculations** for the number of particles satisfying a certain property.

▷ For the 1st order:
$$\mathbb{E}\left[\sum_{|u|=n} \mathbb{1}_{X(u)>\beta_c n}\right] = 2^n \cdot \mathbb{P}(\mathcal{N}(0,n) > \beta_c n) \to 0.$$

▷ For the 2nd order: need to remove some particles before taking the first moment.

Maximum of the BRW: upper bound, 1st and 2nd orders

Proof based on **first moment calculations** for the number of particles satisfying a certain property.

▷ For the 1st order:
$$\mathbb{E}\left[\sum_{|u|=n} \mathbb{1}_{X(u)>\beta_c n}\right] = 2^n \cdot \mathbb{P}(\mathcal{N}(0,n) > \beta_c n) \to 0.$$

▷ For the 2nd order: need to remove some particles before taking the first moment.

First prove that with high probability, for any ℓ , $\max_{|u|=\ell} X(u) \le \beta_c \ell + K$.

Maximum of the BRW: upper bound, 1st and 2nd orders

Proof based on **first moment calculations** for the number of particles satisfying a certain property.

$$\triangleright \text{ For the 1}^{\text{st}} \text{ order: } \mathbb{E}\bigg[\sum_{|u|=n} \mathbb{1}_{X(u)>\beta_c n}\bigg] = 2^n \cdot \mathbb{P}(\mathcal{N}(0,n)>\beta_c n) \to 0.$$

For the 2nd order: need to remove some particles before taking the first moment.

First prove that with high probability, for any ℓ , $\max_{|u|=\ell} X(u) \leq \beta_c \ell + K$.

Then, the first moment of the number of particles *u* at generation *n* such that $X(u) \ge \beta_c n - \frac{3}{2\beta_c} \log n + \bigcirc \frac{2}{p_c} \log n$ and whose trajectory stays below the barrier tends to zero.

Maximum of the BRW: upper bound, 3rd order

Goal:
$$\mathbb{P}\left(\max_{|u|=n} X(u) \ge \beta_c n - \frac{3}{2\beta_c} \log n + a\right) \le Cae^{-\beta_c a}$$

- ▷ Keep the barrier at level $\beta_c \ell + K$ at any time ℓ .
- \triangleright Distinguish according to the time where the trajectory of the particle *u* is the closest from the barrier between times *n*/2 and *n*.
- ▷ Annoying particles: those getting too close to the barrier at the time close to n.
 → Deal with them in probability, before taking the first moment.

Goal: Prove
$$\max_{|u|=n} X(u) \ge \beta_c n - \frac{3}{2\beta_c} \log n - a$$
 with high probability.

- ▷ **Step 1:** Prove $\max_{|u|=n} X(u) \ge \beta_c n \frac{3}{2\beta_c} \log n$ with positive probability.
 - \rightarrow First and second moments calculation on the number of such particles whose trajectory stays below the following barrier:

▷ **Step 2:** Use the branching property to conclude.

- ▷ Discrete Gaussian log-correlated fields: the whole convergence is known.
 - 2D Gaussian free field: Bramson–Ding–Zeitouni '16, Biskup–Louidor '16.
 - Lattice approximations of general fields: Ding–Roy–Zeitouni '17.
 - Regularization of some continuous fields: Madaule '15.

- ▷ Discrete Gaussian log-correlated fields: the whole convergence is known.
 - 2D Gaussian free field: Bramson–Ding–Zeitouni '16, Biskup–Louidor '16.
 - Lattice approximations of general fields: Ding-Roy-Zeitouni '17.
 - Regularization of some continuous fields: Madaule '15.
- Random unitary matrices:
 - 1st order: Arguin-Bourgade-Belius '15.
 - 2nd order: Paquette–Zeitouni '16.
 - \circ 3rd order: Chhaibi–Madaule–Najnudel '16 (for all circular β -ensembles).

The 1st order has been obtained for **other random matrix models**: Ginibre (Lambert '19), unitarily invariant Hermitian ensembles (Lambert–Paquette '19), permutation matrices (Cook–Zeitouni '20).

- ▷ Discrete Gaussian log-correlated fields: the whole convergence is known.
 - 2D Gaussian free field: Bramson–Ding–Zeitouni '16, Biskup–Louidor '16.
 - Lattice approximations of general fields: Ding–Roy–Zeitouni '17.
 - Regularization of some continuous fields: Madaule '15.
- Random unitary matrices:
 - 1st order: Arguin-Bourgade-Belius '15.
 - 2nd order: Paquette–Zeitouni '16.
 - 3rd order: Chhaibi–Madaule–Najnudel '16 (for all circular β-ensembles).
 The 1st order has been obtained for **other random matrix models**: Ginibre (Lambert '19), unitarily invariant Hermitian ensembles (Lambert–Paquette '19), permutation matrices (Cook–Zeitouni '20).
- Cover times in 2D: Dembo-Peres-Rosen-Zeitouni '04, Belius-Kistler '17, Belius-Rosen-Zeitouni '20.
- Height of weighted recursive trees and preferential attachment trees:
 P.-Sénizergues '20.
- ▶ Riemann ζ function: Arguin-Belius-Bourgade-Radziwiłł-Soundararajan '19, Najnudel '18, Harper '19, Arguin-Bourgade-Radziwiłł '20 → see next talk.
 Random model for ζ: Arguin-Belius-Harper '19.

