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Definitions

. Sequence of nonnegative weigths w1,w2, . . . and Wn :=
n∑
i=1

wi.

. The weighted recursive tree Tn is built from Tn−1 by attaching the vertex
un to a vertex ui chosen randomly, proportionally to its weight wi:
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. An affine preferential attachment tree can be seen as a weighted
recursive tree with random weights (Sénizergues 2020).
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Height of weighted recursive trees

Assumptions: . Wn = cst · nγ + O(nγ−ε) for some γ, ε > 0,

.

∞∑
i=n

(
wi
Wi

)2

= O
(
1
n

)
.

Sénizergues (2020) proved that height(Tn)
logn

a.s.−−−→
n→∞

γeθ , where θ = θ(γ).

Theorem (P. – Sénizergues 2020): As n→ ∞,

height(Tn) = γeθ log n− 3
2θ
log log n+ O(1),

where O(1) denotes a tight sequence of random variables.

. Same result for WRT with wi = 1 for i large enough: Addario-Berry – Ford
2013, Leckey – Neininger 2013, Hiesmayr – Işlak 2020.

. Behavior similar to the maximum of branching random walks (Aïdékon
2013).



Height of weighted recursive trees

Assumptions: . Wn = cst · nγ + O(nγ−ε) for some γ, ε > 0,

.

∞∑
i=n

(
wi
Wi

)2

= O
(
1
n

)
.

Sénizergues (2020) proved that height(Tn)
logn

a.s.−−−→
n→∞

γeθ , where θ = θ(γ).

Theorem (P. – Sénizergues 2020): As n→ ∞,

height(Tn) = γeθ log n− 3
2θ
log log n+ O(1),

where O(1) denotes a tight sequence of random variables.

. Same result for WRT with wi = 1 for i large enough: Addario-Berry – Ford
2013, Leckey – Neininger 2013, Hiesmayr – Işlak 2020.

. Behavior similar to the maximum of branching random walks (Aïdékon
2013).



Height of weighted recursive trees

Assumptions: . Wn = cst · nγ + O(nγ−ε) for some γ, ε > 0,

.

∞∑
i=n

(
wi
Wi

)2

= O
(
1
n

)
.

Sénizergues (2020) proved that height(Tn)
logn

a.s.−−−→
n→∞

γeθ , where θ = θ(γ).

Theorem (P. – Sénizergues 2020): As n→ ∞,

height(Tn) = γeθ log n− 3
2θ
log log n+ O(1),

where O(1) denotes a tight sequence of random variables.

. Same result for WRT with wi = 1 for i large enough: Addario-Berry – Ford
2013, Leckey – Neininger 2013, Hiesmayr – Işlak 2020.

. Behavior similar to the maximum of branching random walks (Aïdékon
2013).



Height of weighted recursive trees

Assumptions: . Wn = cst · nγ + O(nγ−ε) for some γ, ε > 0,

.

∞∑
i=n

(
wi
Wi

)2

= O
(
1
n

)
.

Sénizergues (2020) proved that height(Tn)
logn

a.s.−−−→
n→∞

γeθ , where θ = θ(γ).

Theorem (P. – Sénizergues 2020): As n→ ∞,

height(Tn) = γeθ log n− 3
2θ
log log n+ O(1),

where O(1) denotes a tight sequence of random variables.

. Same result for WRT with wi = 1 for i large enough: Addario-Berry – Ford
2013, Leckey – Neininger 2013, Hiesmayr – Işlak 2020.

. Behavior similar to the maximum of branching random walks (Aïdékon
2013).



Height of weighted recursive trees

Assumptions: . Wn = cst · nγ + O(nγ−ε) for some γ, ε > 0,

.

∞∑
i=n

(
wi
Wi

)2

= O
(
1
n

)
.

Sénizergues (2020) proved that height(Tn)
logn

a.s.−−−→
n→∞

γeθ , where θ = θ(γ).

Theorem (P. – Sénizergues 2020): As n→ ∞,

height(Tn) = γeθ log n− 3
2θ
log log n+ O(1),

where O(1) denotes a tight sequence of random variables.

. Same result for WRT with wi = 1 for i large enough: Addario-Berry – Ford
2013, Leckey – Neininger 2013, Hiesmayr – Işlak 2020.

. Behavior similar to the maximum of branching random walks (Aïdékon
2013).



Height of weighted recursive trees

Assumptions: . Wn = cst · nγ + O(nγ−ε) for some γ, ε > 0,

.

∞∑
i=n

(
wi
Wi

)2

= O
(
1
n

)
.

Sénizergues (2020) proved that height(Tn)
logn

a.s.−−−→
n→∞

γeθ , where θ = θ(γ).

Theorem (P. – Sénizergues 2020): As n→ ∞,

height(Tn) = γeθ log n− 3
2θ
log log n+ O(1),

where O(1) denotes a tight sequence of random variables.

. Same result for WRT with wi = 1 for i large enough: Addario-Berry – Ford
2013, Leckey – Neininger 2013, Hiesmayr – Işlak 2020.

. Behavior similar to the maximum of branching random walks (Aïdékon
2013).



Tools

Many-to-few lemmas relying on a result by Mailler – Uribe Bravo (2019).

. Let ui(k) denote the most recent ancestor of ui in Tk.

. Many-to-one: the first moment of

n∑
i=1

wi
Wn

F(height(ui(1)), . . . ,height(ui(n))

can be expressed in terms of a time-inhomogeneous random walk.

. Many-to-two: the second moment can be expressed in terms of two
time-inhomogeneous random walks, coinciding up to a random time
and weakly interacting afterwards.

. Difficulties: no branching property and inhomogeneity.
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Ideas of the proof

Similar to the argument for branching random walks.

Upper bound: First moment calculations with the introduction of an
upper barrier.

Lower bound:
. First and second moment calculation on the right quantity Qn: the total
weight of vertices at a given height, with heights along the ancestral
line that stay below an appropriate barrier.

. This shows
P(such a vertex exists in Tn) ≥

E[Qn]2

E[Q2n]
≥ c > 0.

. For the BRW: Conclusion with the branching property.

. Here: We create a new WRT by merging u1, . . . ,uN. For this new tree, we
have directly E[Qn]2

E[Q2n]
' 1.
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