
Precise height asymptotics of weighted recursive trees

(and affine preferential attachment trees)

Michel Pain (Courant Institute, NYU)
joint work with Delphin Sénizergues (University of British Columbia)
available soon on arXiv

Bernoulli-IMS One World Symposium 2020
August 2020



Definitions

. Sequence of nonnegative weigths w1,w2, . . . and Wn :=
n∑
i=1

wi.

. The weighted recursive tree Tn is built from Tn−1 by attaching the vertex
un to a vertex ui chosen randomly, proportionally to its weight wi:

u1

T1

u1

u2

T2

u1

u2

u3

probability w1W2

probability w2W2

u1

u2 u3

T3

u1

u2 u3

u4

w1
W3

w2
W3

w3
W3

u1

u2 u3

u4

T4

. . .

. An affine preferential attachment tree can be seen as a weighted
recursive tree with random weights (Sénizergues 2020).



Definitions

. Sequence of nonnegative weigths w1,w2, . . . and Wn :=
n∑
i=1

wi.

. The weighted recursive tree Tn is built from Tn−1 by attaching the vertex
un to a vertex ui chosen randomly, proportionally to its weight wi:

u1

T1

u1

u2

T2

u1

u2

u3

probability w1W2

probability w2W2

u1

u2 u3

T3

u1

u2 u3

u4

w1
W3

w2
W3

w3
W3

u1

u2 u3

u4

T4

. . .

. An affine preferential attachment tree can be seen as a weighted
recursive tree with random weights (Sénizergues 2020).



Definitions

. Sequence of nonnegative weigths w1,w2, . . . and Wn :=
n∑
i=1

wi.

. The weighted recursive tree Tn is built from Tn−1 by attaching the vertex
un to a vertex ui chosen randomly, proportionally to its weight wi:

u1

T1

u1

u2

T2

u1

u2

u3

probability w1W2

probability w2W2

u1

u2 u3

T3

u1

u2 u3

u4

w1
W3

w2
W3

w3
W3

u1

u2 u3

u4

T4

. . .

. An affine preferential attachment tree can be seen as a weighted
recursive tree with random weights (Sénizergues 2020).



Definitions

. Sequence of nonnegative weigths w1,w2, . . . and Wn :=
n∑
i=1

wi.

. The weighted recursive tree Tn is built from Tn−1 by attaching the vertex
un to a vertex ui chosen randomly, proportionally to its weight wi:

u1

T1

u1

u2

T2

u1

u2

u3

probability w1W2

probability w2W2

u1

u2 u3

T3

u1

u2 u3

u4

w1
W3

w2
W3

w3
W3

u1

u2 u3

u4

T4

. . .

. An affine preferential attachment tree can be seen as a weighted
recursive tree with random weights (Sénizergues 2020).



Definitions

. Sequence of nonnegative weigths w1,w2, . . . and Wn :=
n∑
i=1

wi.

. The weighted recursive tree Tn is built from Tn−1 by attaching the vertex
un to a vertex ui chosen randomly, proportionally to its weight wi:

u1

T1

u1

u2

T2

u1

u2

u3

probability w1W2

probability w2W2

u1

u2 u3

T3

u1

u2 u3

u4

w1
W3

w2
W3

w3
W3

u1

u2 u3

u4

T4

. . .

. An affine preferential attachment tree can be seen as a weighted
recursive tree with random weights (Sénizergues 2020).



Definitions

. Sequence of nonnegative weigths w1,w2, . . . and Wn :=
n∑
i=1

wi.

. The weighted recursive tree Tn is built from Tn−1 by attaching the vertex
un to a vertex ui chosen randomly, proportionally to its weight wi:

u1

T1

u1

u2

T2

u1

u2

u3

probability w1W2

probability w2W2

u1

u2 u3

T3

u1

u2 u3

u4

w1
W3

w2
W3

w3
W3

u1

u2 u3

u4

T4

. . .

. An affine preferential attachment tree can be seen as a weighted
recursive tree with random weights (Sénizergues 2020).



Definitions

. Sequence of nonnegative weigths w1,w2, . . . and Wn :=
n∑
i=1

wi.

. The weighted recursive tree Tn is built from Tn−1 by attaching the vertex
un to a vertex ui chosen randomly, proportionally to its weight wi:

u1

T1

u1

u2

T2

u1

u2

u3

probability w1W2

probability w2W2

u1

u2 u3

T3

u1

u2 u3

u4

w1
W3

w2
W3

w3
W3

u1

u2 u3

u4

T4

. . .

. An affine preferential attachment tree can be seen as a weighted
recursive tree with random weights (Sénizergues 2020).



Definitions

. Sequence of nonnegative weigths w1,w2, . . . and Wn :=
n∑
i=1

wi.

. The weighted recursive tree Tn is built from Tn−1 by attaching the vertex
un to a vertex ui chosen randomly, proportionally to its weight wi:

u1

T1

u1

u2

T2

u1

u2

u3

probability w1W2

probability w2W2

u1

u2 u3

T3

u1

u2 u3

u4

w1
W3

w2
W3

w3
W3

u1

u2 u3

u4

T4

. . .

. An affine preferential attachment tree can be seen as a weighted
recursive tree with random weights (Sénizergues 2020).



Definitions

. Sequence of nonnegative weigths w1,w2, . . . and Wn :=
n∑
i=1

wi.

. The weighted recursive tree Tn is built from Tn−1 by attaching the vertex
un to a vertex ui chosen randomly, proportionally to its weight wi:

u1

T1

u1

u2

T2

u1

u2

u3

probability w1W2

probability w2W2

u1

u2 u3

T3

u1

u2 u3

u4

w1
W3

w2
W3

w3
W3

u1

u2 u3

u4

T4

. . .

. An affine preferential attachment tree can be seen as a weighted
recursive tree with random weights (Sénizergues 2020).



Height of weighted recursive trees

Assumptions: . Wn = cst · nγ + O(nγ−ε) for some γ, ε > 0,

.

∞∑
i=n

(
wi
Wi

)2

= O
(
1
n

)
.

Sénizergues (2020) proved that height(Tn)
logn

a.s.−−−→
n→∞

γeθ , where θ = θ(γ).

Theorem (P. – Sénizergues 2020): As n→ ∞,

height(Tn) = γeθ log n− 3
2θ
log log n+ O(1),

where O(1) denotes a tight sequence of random variables.

. Same result for WRT with wi = 1 for i large enough: Addario-Berry – Ford
2013, Leckey – Neininger 2013, Hiesmayr – Işlak 2020.

. Behavior similar to the maximum of branching random walks (Aïdékon
2013).



Height of weighted recursive trees

Assumptions: . Wn = cst · nγ + O(nγ−ε) for some γ, ε > 0,

.

∞∑
i=n

(
wi
Wi

)2

= O
(
1
n

)
.

Sénizergues (2020) proved that height(Tn)
logn

a.s.−−−→
n→∞

γeθ , where θ = θ(γ).

Theorem (P. – Sénizergues 2020): As n→ ∞,

height(Tn) = γeθ log n− 3
2θ
log log n+ O(1),

where O(1) denotes a tight sequence of random variables.

. Same result for WRT with wi = 1 for i large enough: Addario-Berry – Ford
2013, Leckey – Neininger 2013, Hiesmayr – Işlak 2020.

. Behavior similar to the maximum of branching random walks (Aïdékon
2013).



Height of weighted recursive trees

Assumptions: . Wn = cst · nγ + O(nγ−ε) for some γ, ε > 0,

.

∞∑
i=n

(
wi
Wi

)2

= O
(
1
n

)
.

Sénizergues (2020) proved that height(Tn)
logn

a.s.−−−→
n→∞

γeθ , where θ = θ(γ).

Theorem (P. – Sénizergues 2020): As n→ ∞,

height(Tn) = γeθ log n− 3
2θ
log log n+ O(1),

where O(1) denotes a tight sequence of random variables.

. Same result for WRT with wi = 1 for i large enough: Addario-Berry – Ford
2013, Leckey – Neininger 2013, Hiesmayr – Işlak 2020.

. Behavior similar to the maximum of branching random walks (Aïdékon
2013).



Height of weighted recursive trees

Assumptions: . Wn = cst · nγ + O(nγ−ε) for some γ, ε > 0,

.

∞∑
i=n

(
wi
Wi

)2

= O
(
1
n

)
.

Sénizergues (2020) proved that height(Tn)
logn

a.s.−−−→
n→∞

γeθ , where θ = θ(γ).

Theorem (P. – Sénizergues 2020): As n→ ∞,

height(Tn) = γeθ log n− 3
2θ
log log n+ O(1),

where O(1) denotes a tight sequence of random variables.

. Same result for WRT with wi = 1 for i large enough: Addario-Berry – Ford
2013, Leckey – Neininger 2013, Hiesmayr – Işlak 2020.

. Behavior similar to the maximum of branching random walks (Aïdékon
2013).



Height of weighted recursive trees

Assumptions: . Wn = cst · nγ + O(nγ−ε) for some γ, ε > 0,

.

∞∑
i=n

(
wi
Wi

)2

= O
(
1
n

)
.

Sénizergues (2020) proved that height(Tn)
logn

a.s.−−−→
n→∞

γeθ , where θ = θ(γ).

Theorem (P. – Sénizergues 2020): As n→ ∞,

height(Tn) = γeθ log n− 3
2θ
log log n+ O(1),

where O(1) denotes a tight sequence of random variables.

. Same result for WRT with wi = 1 for i large enough: Addario-Berry – Ford
2013, Leckey – Neininger 2013, Hiesmayr – Işlak 2020.

. Behavior similar to the maximum of branching random walks (Aïdékon
2013).



Height of weighted recursive trees

Assumptions: . Wn = cst · nγ + O(nγ−ε) for some γ, ε > 0,

.

∞∑
i=n

(
wi
Wi

)2

= O
(
1
n

)
.

Sénizergues (2020) proved that height(Tn)
logn

a.s.−−−→
n→∞

γeθ , where θ = θ(γ).

Theorem (P. – Sénizergues 2020): As n→ ∞,

height(Tn) = γeθ log n− 3
2θ
log log n+ O(1),

where O(1) denotes a tight sequence of random variables.

. Same result for WRT with wi = 1 for i large enough: Addario-Berry – Ford
2013, Leckey – Neininger 2013, Hiesmayr – Işlak 2020.

. Behavior similar to the maximum of branching random walks (Aïdékon
2013).



Tools

Many-to-few lemmas relying on a result by Mailler – Uribe Bravo (2019).

. Let ui(k) denote the most recent ancestor of ui in Tk.

. Many-to-one: the first moment of

n∑
i=1

wi
Wn

F(height(ui(1)), . . . ,height(ui(n))

can be expressed in terms of a time-inhomogeneous random walk.

. Many-to-two: the second moment can be expressed in terms of two
time-inhomogeneous random walks, coinciding up to a random time
and weakly interacting afterwards.

. Difficulties: no branching property and inhomogeneity.



Tools

Many-to-few lemmas relying on a result by Mailler – Uribe Bravo (2019).

. Let ui(k) denote the most recent ancestor of ui in Tk.

. Many-to-one: the first moment of

n∑
i=1

wi
Wn

F(height(ui(1)), . . . ,height(ui(n))

can be expressed in terms of a time-inhomogeneous random walk.

. Many-to-two: the second moment can be expressed in terms of two
time-inhomogeneous random walks, coinciding up to a random time
and weakly interacting afterwards.

. Difficulties: no branching property and inhomogeneity.



Tools

Many-to-few lemmas relying on a result by Mailler – Uribe Bravo (2019).

. Let ui(k) denote the most recent ancestor of ui in Tk.

. Many-to-one: the first moment of

n∑
i=1

wi
Wn

F(height(ui(1)), . . . ,height(ui(n))

can be expressed in terms of a time-inhomogeneous random walk.

. Many-to-two: the second moment can be expressed in terms of two
time-inhomogeneous random walks, coinciding up to a random time
and weakly interacting afterwards.

. Difficulties: no branching property and inhomogeneity.



Tools

Many-to-few lemmas relying on a result by Mailler – Uribe Bravo (2019).

. Let ui(k) denote the most recent ancestor of ui in Tk.

. Many-to-one: the first moment of

n∑
i=1

wi
Wn

F(height(ui(1)), . . . ,height(ui(n))

can be expressed in terms of a time-inhomogeneous random walk.

. Many-to-two: the second moment can be expressed in terms of two
time-inhomogeneous random walks, coinciding up to a random time
and weakly interacting afterwards.

. Difficulties: no branching property and inhomogeneity.



Tools

Many-to-few lemmas relying on a result by Mailler – Uribe Bravo (2019).

. Let ui(k) denote the most recent ancestor of ui in Tk.

. Many-to-one: the first moment of

n∑
i=1

wi
Wn

F(height(ui(1)), . . . ,height(ui(n))

can be expressed in terms of a time-inhomogeneous random walk.

. Many-to-two: the second moment can be expressed in terms of two
time-inhomogeneous random walks, coinciding up to a random time
and weakly interacting afterwards.

. Difficulties: no branching property and inhomogeneity.



Ideas of the proof

Similar to the argument for branching random walks.

Upper bound: First moment calculations with the introduction of an
upper barrier.

Lower bound:
. First and second moment calculation on the right quantity Qn: the total
weight of vertices at a given height, with heights along the ancestral
line that stay below an appropriate barrier.

. This shows
P(such a vertex exists in Tn) ≥

E[Qn]2

E[Q2n]
≥ c > 0.

. For the BRW: Conclusion with the branching property.

. Here: We create a new WRT by merging u1, . . . ,uN. For this new tree, we
have directly E[Qn]2

E[Q2n]
' 1.



Ideas of the proof

Similar to the argument for branching random walks.

Upper bound: First moment calculations with the introduction of an
upper barrier.

Lower bound:
. First and second moment calculation on the right quantity Qn: the total
weight of vertices at a given height, with heights along the ancestral
line that stay below an appropriate barrier.

. This shows
P(such a vertex exists in Tn) ≥

E[Qn]2

E[Q2n]
≥ c > 0.

. For the BRW: Conclusion with the branching property.

. Here: We create a new WRT by merging u1, . . . ,uN. For this new tree, we
have directly E[Qn]2

E[Q2n]
' 1.



Ideas of the proof

Similar to the argument for branching random walks.

Upper bound: First moment calculations with the introduction of an
upper barrier.

Lower bound:
. First and second moment calculation on the right quantity Qn: the total
weight of vertices at a given height, with heights along the ancestral
line that stay below an appropriate barrier.

. This shows
P(such a vertex exists in Tn) ≥

E[Qn]2

E[Q2n]
≥ c > 0.

. For the BRW: Conclusion with the branching property.

. Here: We create a new WRT by merging u1, . . . ,uN. For this new tree, we
have directly E[Qn]2

E[Q2n]
' 1.



Ideas of the proof

Similar to the argument for branching random walks.

Upper bound: First moment calculations with the introduction of an
upper barrier.

Lower bound:
. First and second moment calculation on the right quantity Qn: the total
weight of vertices at a given height, with heights along the ancestral
line that stay below an appropriate barrier.

. This shows
P(such a vertex exists in Tn) ≥

E[Qn]2

E[Q2n]
≥ c > 0.

. For the BRW: Conclusion with the branching property.

. Here: We create a new WRT by merging u1, . . . ,uN. For this new tree, we
have directly E[Qn]2

E[Q2n]
' 1.



Ideas of the proof

Similar to the argument for branching random walks.

Upper bound: First moment calculations with the introduction of an
upper barrier.

Lower bound:
. First and second moment calculation on the right quantity Qn: the total
weight of vertices at a given height, with heights along the ancestral
line that stay below an appropriate barrier.

. This shows
P(such a vertex exists in Tn) ≥

E[Qn]2

E[Q2n]
≥ c > 0.

. For the BRW: Conclusion with the branching property.

. Here: We create a new WRT by merging u1, . . . ,uN. For this new tree, we
have directly E[Qn]2

E[Q2n]
' 1.



Ideas of the proof

Similar to the argument for branching random walks.

Upper bound: First moment calculations with the introduction of an
upper barrier.

Lower bound:
. First and second moment calculation on the right quantity Qn: the total
weight of vertices at a given height, with heights along the ancestral
line that stay below an appropriate barrier.

. This shows
P(such a vertex exists in Tn) ≥

E[Qn]2

E[Q2n]
≥ c > 0.

. For the BRW: Conclusion with the branching property.

. Here: We create a new WRT by merging u1, . . . ,uN. For this new tree, we
have directly E[Qn]2

E[Q2n]
' 1.



;

Thanks


