Fluctuations of branching Brownian motion at criticality

Michel Pain (ENS Paris/Sorbonne Université) joint work with Pascal Maillard (Université Paris Sud)

41st SPA conference Northwestern University 9 July 2019

At first order, the density of particles in the front is **deterministic** up to a random **non-universal** factor Z_{∞} .

At first order, the density of particles in the front is **deterministic** up to a random **non-universal** factor Z_{∞} .

Goal: beyond this, universal fluctuations appear.

The front of branching Brownian motion

Branching Brownian motion (BBM):

 \triangleright Starts with a particle at 0.

Branching Brownian motion (BBM):

- ▷ Starts with a particle at 0.
- Particles move as a Brownian motion with drift ρ during a lifetime Exp(λ).

Branching Brownian motion (BBM):

- \triangleright Starts with a particle at 0.
- Particles move as a Brownian motion with drift ρ during a lifetime Exp(λ).
- When it dies, a particle has a random number of children, according to the distribution of a r.v. L.

Branching Brownian motion (BBM):

- \triangleright Starts with a particle at 0.
- Particles move as a Brownian motion with drift ρ during a lifetime Exp(λ).
- When it dies, a particle has a random number of children, according to the distribution of a r.v. L.

Branching Brownian motion (BBM):

- \triangleright Starts with a particle at 0.
- Particles move as a Brownian motion with drift ρ during a lifetime Exp(λ).
- When it dies, a particle has a random number of children, according to the distribution of a r.v. L.

Notation:

 $\triangleright \mathcal{N}(t) = \text{set of particles alive at time } t.$

Branching Brownian motion (BBM):

- \triangleright Starts with a particle at 0.
- Particles move as a Brownian motion with drift ρ during a lifetime Exp(λ).
- ▷ When it dies, a particle has a random number of children, according to the distribution of a r.v. L.

Notation:

 $\triangleright \mathcal{N}(t) = \text{set of particles alive at time } t.$ $\triangleright X_u(t) = \text{position of particle } u \text{ at time } t.$

Branching Brownian motion (BBM):

- \triangleright Starts with a particle at 0.
- Particles move as a Brownian motion with drift ρ during a lifetime Exp(λ).
- ▷ When it dies, a particle has a random number of children, according to the distribution of a r.v. L.

Notation:

 $\triangleright \mathcal{N}(t) = \text{set of particles alive at time } t.$ $\triangleright X_u(t) = \text{position of particle } u \text{ at time } t.$

But: is it even a spin glass model?

Branching Brownian motion (BBM):

- \triangleright Starts with a particle at 0.
- Particles move as a Brownian motion with drift ρ during a lifetime Exp(λ).
- ▷ When it dies, a particle has a random number of children, according to the distribution of a r.v. L.

Notation:

- $\triangleright \mathcal{N}(t) = \text{set of particles alive at time } t.$
- $\triangleright X_u(t) = \text{position of particle } u \text{ at time } t.$

But: is it even a spin glass model? Yes, it belongs to the family of models with an explicit hierarchical structure such as the REM, GREM and CREM.

Our parameters:

 $\triangleright \ {\rm drift} \ \rho = {\rm 1}.$

▷ branching rate

$$\lambda = \frac{1}{2\mathbb{E}[L-1]}.$$

Our parameters:

 $\triangleright \ {\rm drift} \ \rho = {\rm 1}.$

▷ branching rate

$$\lambda = \frac{1}{2\mathbb{E}[L-1]}.$$

Simplifying assumption:

 $\mathbb{E}\big[L^2\big] < \infty.$

Comments:

 $\triangleright \mathbb{E}[L] > 1$: supercritical Galton–Watson tree.

Our parameters: X(t) \triangleright drift $\rho = 1$. \flat branching rate $\lambda = \frac{1}{2\mathbb{E}[L-1]}$. Simplifying assumption: $\mathbb{E}[L^2] < \infty$.

Comments:

 $\succ \mathbb{E}[L] > 1: \text{ supercritical Galton-Watson tree.}$ $\succ \text{ Minimal velocity: } \frac{1}{t} \min_{u \in \mathcal{N}(t)} X_u(t) \xrightarrow[t \to \infty]{a.s.} 0.$

Additive martingales

For $\beta \ge 0$, $W_t(\beta) \coloneqq \sum_{u \in \mathcal{N}(t)} e^{-\beta X_u(t) - \frac{(\beta - 1)^2}{2}t}, \qquad t \ge 0.$

Additive martingales

For $\beta \geq 0$,

$$W_t(\beta) \coloneqq \sum_{u \in \mathcal{N}(t)} e^{-\beta X_u(t) - \frac{(\beta-1)^2}{2}t}, \qquad t \ge 0.$$

It is a nonnegative martingale, so

$$W_t(\beta) \xrightarrow[t \to \infty]{a.s.} W_\infty(\beta).$$

Additive martingales

For $\beta \geq 0$,

$$W_t(\beta) := \sum_{u \in \mathcal{N}(t)} e^{-\beta X_u(t) - \frac{(\beta-1)^2}{2}t}, \qquad t \ge 0.$$

It is a nonnegative martingale, so

$$W_t(\beta) \xrightarrow[t \to \infty]{a.s.} W_\infty(\beta).$$

Theorem (Kahane–Peyrière 1976, Biggins 1977): The following phase transition occurs:

$$\begin{cases} W_{\infty}(\beta) > 0 \text{ a.s. on the survival} & \text{if } \beta < \beta_{c} = 1, \\ W_{\infty}(\beta) = 0 \text{ a.s.} & \text{if } \beta \geq \beta_{c} = 1. \end{cases}$$

Support of the Gibbs measures

Recall that
$$W_t(\beta) := \sum_{u \in \mathcal{N}(t)} e^{-\beta X_u(t) - \frac{(\beta-1)^2}{2}t}.$$

For $\beta < 1$, $W_t(\beta)$ describes the size of BBM around $(1 - \beta)t + O(\sqrt{t})$.

Support of the Gibbs measures

Recall that
$$W_t(\beta) := \sum_{u \in \mathcal{N}(t)} e^{-\beta X_u(t) - \frac{(\beta-1)^2}{2}t}.$$

For $\beta < 1$, $W_t(\beta)$ describes the size of BBM around $(1 - \beta)t + O(\sqrt{t})$.

The **critical** Gibbs measure is supported by particles that are at a distance of order \sqrt{t} from the minimum.

From now on, we work at criticality with $\beta = 1$:

$$W_t := \sum_{u \in \mathcal{N}(t)} e^{-X_u(t)} \xrightarrow[t \to \infty]{a.s.} 0.$$

From now on, we work at criticality with $\beta = 1$:

$$W_t := \sum_{u \in \mathcal{N}(t)} e^{-X_u(t)} \xrightarrow[t \to \infty]{a.s.} 0.$$

The derivative martingale is

$$Z_t := \sum_{u \in \mathcal{N}(t)} X_u(t) e^{-X_u(t)}, \qquad t \ge 0.$$

From now on, we work at criticality with $\beta = 1$:

$$W_t \coloneqq \sum_{u \in \mathcal{N}(t)} e^{-X_u(t)} \xrightarrow[t \to \infty]{a.s.} 0.$$

The derivative martingale is

$$Z_t := \sum_{u \in \mathcal{N}(t)} X_u(t) e^{-X_u(t)}, \qquad t \ge 0.$$

Theorem (Lalley–Sellke 1987): $Z_t \longrightarrow Z_\infty$ a.s. and $Z_\infty > 0$ a.s. on the survival event.

▷ Minimal position (Bramson 1983, Lalley–Sellke 1987):

$$\min_{u\in\mathcal{N}(t)}X_u(t)-\frac{3}{2}\log t\xrightarrow[t\to\infty]{} -G-\log Z_{\infty},$$

with G a Gumbel independent of Z_{∞} .

▷ Minimal position (Bramson 1983, Lalley–Sellke 1987):

$$\min_{u \in \mathcal{N}(t)} X_u(t) - \frac{3}{2} \log t \xrightarrow[t \to \infty]{} -G - \log Z_{\infty},$$

with G a Gumbel independent of Z_{∞} .

▷ Scaling of the critical additive martingale (Aïdékon–Shi 2014):

$$\sqrt{t}W_t \xrightarrow[t \to \infty]{\text{probability}} \sqrt{\frac{2}{\pi}} Z_{\infty}.$$

▷ Minimal position (Bramson 1983, Lalley–Sellke 1987):

$$\min_{u\in\mathcal{N}(t)}X_u(t)-\frac{3}{2}\log t\xrightarrow[t\to\infty]{} -G-\log Z_{\infty},$$

with G a Gumbel independent of Z_{∞} .

▷ Scaling of the critical additive martingale (Aïdékon–Shi 2014):

$$\sqrt{t}W_t \xrightarrow[t \to \infty]{\text{probability}} \sqrt{\frac{2}{\pi}} Z_{\infty}.$$

 \triangleright For $f \colon \mathbb{R} \to \mathbb{R}$ continuous bounded,

$$Z_t(f) := \sum_{u \in \mathcal{N}(t)} X_u(t) e^{-X_u(t)} f\left(\frac{X_u(t)}{\sqrt{t}}\right).$$

▷ Minimal position (Bramson 1983, Lalley–Sellke 1987):

$$\min_{u \in \mathcal{N}(t)} X_u(t) - \frac{3}{2} \log t \xrightarrow[t \to \infty]{} -G - \log Z_{\infty},$$

with G a Gumbel independent of Z_{∞} .

Scaling of the critical additive martingale (Aïdékon-Shi 2014):

$$\sqrt{t}W_t \xrightarrow[t \to \infty]{\text{probability}} \sqrt{\frac{2}{\pi}} Z_{\infty}.$$

 \triangleright For $f \colon \mathbb{R} \to \mathbb{R}$ continuous bounded,

$$Z_t(f) := \sum_{u \in \mathcal{N}(t)} X_u(t) e^{-X_u(t)} f\left(\frac{X_u(t)}{\sqrt{t}}\right).$$

Convergence of the front (Madaule 2016):

$$Z_t(f) \xrightarrow[t \to \infty]{\text{probability}} \mu(f) Z_{\infty},$$

where $\mu(dx) := \mathbbm{1}_{x>0} \sqrt{\frac{2}{\pi}} x^2 e^{-x^2/2} dx.$

Our results

What are the rates of convergence and the fluctuations in the following convergences ?

$$Z_t \xrightarrow[t \to \infty]{\text{a.s.}} Z_{\infty},$$

$$\sqrt{t}W_t \xrightarrow[t \to \infty]{\text{probability}} \sqrt{\frac{2}{\pi}} Z_{\infty},$$

$$Z_t(f) \xrightarrow[t \to \infty]{\text{probability}} \mu(f) Z_{\infty}.$$

What are the rates of convergence and the fluctuations in the following convergences ?

$$Z_t \xrightarrow{\text{a.s.}} Z_{\infty},$$

$$\sqrt{t}W_t \xrightarrow{\text{probability}}_{t \to \infty} \sqrt{\frac{2}{\pi}} Z_{\infty},$$

$$Z_t(f) \xrightarrow{\text{probability}}_{t \to \infty} \mu(f) Z_{\infty}.$$

Motivation: Beyond the non-universal quantity Z_{∞} , universal fluctuations should appear.

What are the rates of convergence and the fluctuations in the following convergences ?

$$Z_t \xrightarrow{\text{a.s.}} Z_{\infty},$$

$$\sqrt{t}W_t \xrightarrow{\text{probability}} \sqrt{\frac{2}{\pi}} Z_{\infty},$$

$$Z_t(f) \xrightarrow{\text{probability}} \mu(f) Z_{\infty}.$$

Motivation: Beyond the non-universal quantity Z_{∞} , universal fluctuations should appear.

 \rightarrow Link with the conjecture of Ebert–van Saarloos (2000) for the position of the front of solutions of reaction-diffusion equations.

$$Z_t = Z_\infty +$$

$$Z_t = Z_\infty + \frac{\log t}{\sqrt{2\pi t}} Z_\infty +$$

$$Z_t = Z_{\infty} + \frac{\log t}{\sqrt{2\pi t}} Z_{\infty} + \underbrace{O\left(\frac{1}{\sqrt{t}}\right)}_{\text{fluctuations}}.$$

$$Z_t = Z_{\infty} + \frac{\log t}{\sqrt{2\pi t}} Z_{\infty} + \underbrace{O\left(\frac{1}{\sqrt{t}}\right)}_{\text{fluctuations}}.$$

Theorem (Maillard–P. 2018): There exists a spectrally positive 1-stable Lévy process $(S_r)_{r \ge 1}$ independent of Z_{∞} such that

$$\left(\sqrt{t}\left(Z_{\infty}\left(1+\frac{\log t}{\sqrt{2\pi at}}\right)-Z_{at}\right)\right)_{a\geq 1}\xrightarrow[t\to\infty]{law} (S_{Z_{\infty}/\sqrt{a}})_{a\geq 1},$$

in finite-dimensional distributions.

Fluctuations of the derivative Gibbs measure

Recall that

$$Z_t(f) := \sum_{u \in \mathcal{N}(t)} X_u(t) e^{-X_u(t)} f\left(\frac{X_u(t)}{\sqrt{t}}\right) \xrightarrow{\text{probability}} \mu(f) Z_{\infty}.$$

Fluctuations of the derivative Gibbs measure

Recall that

$$Z_t(f) := \sum_{u \in \mathcal{N}(t)} X_u(t) e^{-X_u(t)} f\left(\frac{X_u(t)}{\sqrt{t}}\right) \xrightarrow[t \to \infty]{\text{probability}} \mu(f) Z_{\infty}.$$

Theorem (Maillard–P. 2019): If f is C^2 on $(0, \infty)$ and $(xf(x))'' \leq Ce^{Cx}$ for x > 0, then, there exists a 1-stable Lévy process $(S_r^f)_{r \geq 1}$ independent of Z_∞ such that

$$\sqrt{t}\left(Z_{\infty}\left(\mu(f)+c(f)\frac{\log t}{\sqrt{t}}\right)-Z_{t}(f)\right)\xrightarrow{law}{t\to\infty}S^{f}_{Z_{\infty}}$$

Fluctuations of the derivative Gibbs measure

Recall that

$$Z_t(f) := \sum_{u \in \mathcal{N}(t)} X_u(t) e^{-X_u(t)} f\left(\frac{X_u(t)}{\sqrt{t}}\right) \xrightarrow[t \to \infty]{\text{probability}} \mu(f) Z_{\infty}.$$

Theorem (Maillard–P. 2019): If f is C^2 on $(0, \infty)$ and $(xf(x))'' \leq Ce^{Cx}$ for x > 0, then, there exists a 1-stable Lévy process $(S_r^f)_{r \geq 1}$ independent of Z_∞ such that

$$\sqrt{t}\left(Z_{\infty}\left(\mu(f)+c(f)\frac{\log t}{\sqrt{t}}\right)-Z_{t}(f)\right)\xrightarrow{law}{t\to\infty}S^{f}_{Z_{\infty}}$$

Corollary: Applying this with f(x) = 1/x, it follows:

$$\sqrt{t}\left(\sqrt{\frac{2}{\pi}}Z_{\infty}-\sqrt{t}W_{t}\right)\xrightarrow[t\to\infty]{law}S'_{Z_{\infty}},$$

where $(S'_r)_{r\geq 1}$ is a Cauchy process independent of Z_{∞} .

Particles contributing to the fluctuations

Particles contributing to the fluctuations

But, some particles come to a much lower position (Hu–Shi 2009):

$$\liminf_{t\to\infty}\frac{1}{\log t}\min_{u\in\mathcal{N}(t)}X_u(t)=\frac{1}{2}\text{ a.s.}$$

Particles contributing to the fluctuations

But, some particles come to a much lower position (Hu-Shi 2009):

$$\liminf_{t\to\infty}\frac{1}{\log t}\min_{u\in\mathcal{N}(t)}X_u(t)=\frac{1}{2}\text{ a.s.}$$

Particles contributing to the fluctuations are those coming down to $\frac{1}{2}\log t + O(1)$ at a time of order *t*.

Ideas of proof

Goal:
$$\sqrt{t}\left(Z_{\infty}\left(1+\frac{\log t}{\sqrt{2\pi t}}\right)-Z_{t}\right)\longrightarrow S_{Z_{\infty}}$$

Goal:
$$\sqrt{t}\left(Z_{\infty}\left(1+\frac{\log t}{\sqrt{2\pi t}}\right)-Z_{t}\right)\longrightarrow S_{Z_{\infty}}$$

▷ We introduce a killing barrier from time t at level $\gamma_t = \frac{1}{2}\log t + \beta_t$, where $\beta_t \rightarrow \infty$ slowly.

Goal:
$$\sqrt{t}\left(Z_{\infty}\left(1+\frac{\log t}{\sqrt{2\pi t}}\right)-Z_{t}\right)\longrightarrow S_{Z_{\infty}}$$

- ▷ We introduce a killing barrier from time t at level $\gamma_t = \frac{1}{2}\log t + \beta_t$, where $\beta_t \rightarrow \infty$ slowly.
- ▷ We work instead with

$$Z_{s}^{t} := \sum_{u \in \mathcal{N}(s)} (X_{u}(s) - \gamma_{t}) e^{-X_{u}(s)}$$

Goal:
$$\sqrt{t}\left(Z_{\infty}\left(1+\frac{\log t}{\sqrt{2\pi t}}\right)-Z_{t}\right)\longrightarrow S_{Z_{\infty}}$$

▷ With the barrier: Z_s^t does not vary too much on $[t, \infty)$.

Goal:
$$\sqrt{t}\left(Z_{\infty}\left(1+\frac{\log t}{\sqrt{2\pi t}}\right)-Z_{t}\right)\longrightarrow S_{Z_{\infty}}$$

- ▷ With the barrier: Z_s^t does not vary too much on $[t, \infty)$.
- ▷ Contributions of killed particles to Z_{∞} : sum of i.i.d. copies of $e^{-\gamma_t}Z_{\infty}$, with approximately $e^{\beta_t}\sqrt{t}W_t$ terms.

Goal:
$$\sqrt{t}\left(Z_{\infty}\left(1+\frac{\log t}{\sqrt{2\pi t}}\right)-Z_{t}\right)\longrightarrow S_{Z_{\infty}}$$

- ▷ With the barrier: Z_s^t does not vary too much on $[t, \infty)$.
- ▷ Contributions of killed particles to Z_{∞} : sum of i.i.d. copies of $e^{-\gamma_t}Z_{\infty}$, with approximately $e^{\beta_t}\sqrt{t}W_t$ terms. And Z_{∞} is in the domain of attraction of a 1-stable law (Berestycki– Berestycki–Schweinsberg 2013).

Goal:
$$\sqrt{t}\left(Z_t(f) - \mu(f)Z_\infty - c(f)\frac{\log t}{\sqrt{t}}Z_\infty\right) \to -S^f_{Z_\infty}.$$

Goal:
$$\sqrt{t}\left(Z_t(f) - \mu(f)Z_\infty - c(f)\frac{\log t}{\sqrt{t}}Z_\infty\right) \to -S^f_{Z_\infty}.$$

 \triangleright We can replace Z_{∞} by Z_t .

Goal:
$$\sqrt{t}\left(Z_t(f) - \mu(f)Z_t - \tilde{c}(f)\frac{\log t}{\sqrt{t}}Z_t\right) \to -\tilde{S}^f_{Z_{\infty}}.$$

 \triangleright We can replace Z_{∞} by Z_t .

Goal:
$$\sqrt{t}\left(Z_t(f) - \mu(f)Z_t - \tilde{c}(f)\frac{\log t}{\sqrt{t}}Z_t\right) \to -\tilde{S}^f_{Z_{\infty}}.$$

Goal:
$$\sqrt{t}\left(Z_t(f) - \mu(f)Z_t - \tilde{c}(f)\frac{\log t}{\sqrt{t}}Z_t\right) \to -\tilde{S}^f_{Z_{\infty}}.$$

▷ With the barrier: $Z_t(f) - \mu(f)Z_t = o\left(\frac{1}{\sqrt{t}}\right)$ (after shifting by γ_t).

Goal:
$$\sqrt{t}\left(Z_t(f) - \mu(f)Z_t - \tilde{c}(f)\frac{\log t}{\sqrt{t}}Z_t\right) \to -\tilde{S}^f_{Z_{\infty}}.$$

▷ We can replace Z_∞ by Z_t.
▷ We introduce the killing barrier at level γ_t, but between times t^α and t for some α ∈ (0, 1).
0
t^α

▷ With the barrier:
$$Z_t(f) - \mu(f)Z_t = o\left(\frac{1}{\sqrt{t}}\right)$$
 (after shifting by γ_t).

Contributions of killed particles: their distribution depends on the time at which the particle hits the barrier.

Goal:
$$\sqrt{t}\left(Z_t(f) - \mu(f)Z_t - \tilde{c}(f)\frac{\log t}{\sqrt{t}}Z_t\right) \to -\tilde{S}^f_{Z_{\infty}}.$$

▷ We can replace Z_{∞} by Z_t . ▷ We introduce the killing barrier at γ_t level γ_t , but between times t^{α} and t for some $\alpha \in (0, 1)$.

- ▷ With the barrier: $Z_t(f) \mu(f)Z_t = o\left(\frac{1}{\sqrt{t}}\right)$ (after shifting by γ_t).
- Contributions of killed particles: their distribution depends on the time at which the particle hits the barrier.

 \rightarrow we want to approach them by their limit: for this we need a concentration result for $Z_t(f)$ aroud its limit!

Thank you for your attention!

