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At first order, the density of particles in the front is deterministic up to a
random non-universal factor Z..

Goal: beyond this, universal fluctuations appear.
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_ . space
> Starts with a particle at 0. N ()

> Particles move as a Brownian mo-
tion with drift p during a lifetime %
Exp(A) " ! time

> When it dies, a particle has a ran- w
dom number of children, accord- Xu(t)1---- W ””” u

ing to the distribution of a rv. L.

Notation:

> N(t) = set of particles alive at time t.
> X,(t) = position of particle u at time t.

But: is it even a spin glass model? Yes, it belongs to the family of models

with an explicit hierarchical structure such as the REM, GREM and CREM.
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Choice of parameters

Our parameters: X(t),
> drift p=1.
> branching rate

1

’\ZzE[L—w]'

3/14



Choice of parameters

Our parameters: X(t),
> drift p=1.
> branching rate

1

AzzEU—ﬂ'

Simplifying assumption:

E[L?] < oco.

3/14



Choice of parameters

Our parameters: X(t),
> drift p=1.
> branching rate

1

’\ZzE[L—w]'

Simplifying assumption:

E[L?] < oco.

Comments:

> E[L] > 1: supercritical Galton-Watson tree.

3/14



Choice of parameters

Our parameters: X(t),
> drift p=1.
> branching rate

1

’\ZzE[L—w]'

Simplifying assumption:
E[L?] < oco.

Comments:

> E[L] > 1: supercritical Galton-Watson tree.

1
> N\lmmalveloaty - mln Xu(t) =2 0.
N (1) t—00
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Additive martingales

For 5 > 0,

_B=
= Y e MOS0 >0

UEN(t)

It is a nonnegative martingale, so
Wy(8) === Weo(B)-
t—o0
Theorem (Kahane-Peyriére 1976, Biggins 1977): The following phase
transition occurs:

Woo(8) > 0 a.s. on the survival if B < . =1,
Woo(/B):OG-S- if 82> pBc=1.

414



Support of the Gibbs measures
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Support of the Gibbs measures

Recall that W,(3 Z a—BXu(H)— 3Lt
UEN(t)
For B < 1, Wy(B) describes the size of BBM around (1 — 3)t + O(V/t).
X(t) 4

The critical Gibbs measure is supported by particles that are at a distance
of order v/t from the minimum. S
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From now on, we work at criticality with 8 = 1:

Z e_XU(t t—><>o 0.

UEN ()

The derivative martingale is

Zi = Z Xu(t)eixu(t), t>0.

UEN ()

Theorem (Lalley-Sellke 1987): Z; — Z., a.s. and Zo, > 0 a.s. on the
survival event.
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Importance of the derivative martingale
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> Minimal position (Bramson 1983, Lalley-Sellke 1987):

3 law
min X,(t) — = logt —— —G — logZ,
UEN(t) u(?) 2 g t—o0 S

with G a Gumbel independent of Z.
> Scaling of the critical additive martingale (Aidékon-Shi 2014):

\/EVVt probability 7.

t—o0 T

> For f: R — R continuous bounded,

_ Xu(t))
= > Xy(t)e ( :
UEN(t) \/f
Convergence of the front (Madaule 2016):

Ze(f) 22, ()7,

t—o0

2
where p(dx) = ]1X>M/—><2e‘xz/2 dx.
s
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Questions

What are the rates of convergence and the fluctuations in the following
convergences ?

\[tVVt probability \/52007
t—o0 s

Zi(F) T, () o

t—o0

Motivation: Beyond the non-universal quantity Z., universal fluctuations
should appear.

— Link with the conjecture of Ebert-van Saarloos (2000) for the position
of the front of solutions of reaction-diffusion equations.
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Fluctuations of the derivative martingale

Conjecture in the physics literature (Mueller-Munier 2014):

logt (1 )
2t =Zoo + —Zs+ O — | .
! V2xt NG

fluctuations

Theorem (Maillard-P. 2018): There exists a spectrally positive 1-stable
Levy process (S;)r>1 independent of Z., such that

logt la
(o) -2) 2 e

in finite-dimensional distributions.
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Fluctuations of the derivative Gibbs measure

Recall that

Z X, (et (Xi/(ft)> probability () 2o

t—o0
UEN(t)

Theorem (Maillard-P. 2019): If f is C? on (0, 00) and (xf(x))"” < Ce™ for
X > 0, then, there exists a 1-stable Lévy process (S];)@ independent of Z
such that

V(2o () + B ) - 209) 2,

Corollary: Applying this with f(x) = 1/x, it follows:

ﬁ(\/?zoo - \/EWE> 10_W> SZ )
s

where (S;),>1 is a Cauchy process independent of Z.
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Particles contributing to the fluctuations

Recall that
min (t) probability §
logt uven() " tsoo | 2
X(t)

But, some particles come to a much lower position (Hu=Shi 2009):
L 1 . 1
liminf—— min X,(t) = = a.s.
t—oo  lOgt ueN(t) u(t) 2

Particles contributing to the fluctuations are those coming down to

1 logt+ O(1) at a time of order t. /
/M4
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Proof for the derivative martingale

logt
Goal:\/f(Zoo<1+ )z) S
Vart t) T Ve

> We introduce a killing barrier from M
time t at level ¢ = %logt + B, /<
where $; — oo slowly. m

> We work instead with Y- = o o o o

Zi= ) (Xu(s) = w)e 0.
UEN(S) ¢ t ;

> Zt does not vary too much on [t, 00).

> Contributions of killed particles to Z..: sum of i.i.d. copies of e™" 7,
with approximately e®t\/tW, terms.
And Z. is in the domain of attraction of a 1-stable law (Berestycki-
Berestycki-Schweinsberg 2013). o
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Proof for the derivative Gibbs measure

Goal: ﬁ(zt(f) — )z - 6(f)l°j;zt) — -3

A

> We can replace Z., by Z;.

> We introduce the killing barrier at o S sl N
level ¢, but between times t* and
t for some « € (0,1).

tll

> Zi(f) — w(f)Ze = o(%) (after shifting by ;).

> Contributions of killed particles: their distribution depends on the time
at which the particle hits the barrier.
— we want to approach them by their limit: for this we need a

concentration result for Zi(f) aroud its limit! -
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