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Objective of the talk

t

X(t)

critical Gibbs measure

At first order, the density of particles in the front is deterministic up to a
random non-universal factor Z∞.

Goal: beyond this, universal fluctuations appear.
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The front of branching Brownian motion



Definition of branching Brownian motion

Branching Brownian motion (BBM):
. Starts with a particle at 0.

. Particles move as a Brownian mo-
tion with drift ρ during a lifetime
Exp(λ).

. When it dies, a particle has a ran-
dom number of children, accord-
ing to the distribution of a r.v. L.

time

space

Notation:

. N (t) = set of particles alive at time t.

. Xu(t) = position of particle u at time t.

But: is it even a spin glass model? Yes, it belongs to the family of models
with an explicit hierarchical structure such as the REM, GREM and CREM.
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Choice of parameters

Our parameters:
. drift ρ = 1.
. branching rate

λ =
1

2E[L− 1]
.

Simplifying assumption:

E
[
L2
]
< ∞.

t

X(t)

Comments:

. E[L] > 1: supercritical Galton–Watson tree.

. Minimal velocity: 1
t
min
u∈N (t)

Xu(t)
a.s.−−−→
t→∞

0.
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Additive martingales

For β ≥ 0,
Wt(β) :=

∑
u∈N (t)

e−βXu(t)− (β−1)2
2 t, t ≥ 0.

It is a nonnegative martingale, so

Wt(β)
a.s.−−−→
t→∞

W∞(β).

Theorem (Kahane–Peyrière 1976, Biggins 1977): The following phase
transition occurs:{

W∞(β) > 0 a.s. on the survival if β < βc = 1,
W∞(β) = 0 a.s. if β ≥ βc = 1.

4/14



Additive martingales

For β ≥ 0,
Wt(β) :=

∑
u∈N (t)

e−βXu(t)− (β−1)2
2 t, t ≥ 0.

It is a nonnegative martingale, so

Wt(β)
a.s.−−−→
t→∞

W∞(β).

Theorem (Kahane–Peyrière 1976, Biggins 1977): The following phase
transition occurs:{

W∞(β) > 0 a.s. on the survival if β < βc = 1,
W∞(β) = 0 a.s. if β ≥ βc = 1.

4/14



Additive martingales

For β ≥ 0,
Wt(β) :=

∑
u∈N (t)

e−βXu(t)− (β−1)2
2 t, t ≥ 0.

It is a nonnegative martingale, so

Wt(β)
a.s.−−−→
t→∞

W∞(β).

Theorem (Kahane–Peyrière 1976, Biggins 1977): The following phase
transition occurs:{

W∞(β) > 0 a.s. on the survival if β < βc = 1,
W∞(β) = 0 a.s. if β ≥ βc = 1.

4/14



Support of the Gibbs measures

Recall that Wt(β) :=
∑

u∈N (t)

e−βXu(t)− (β−1)2
2 t.

For β < 1, Wt(β) describes the size of BBM around (1− β)t + O(
√
t).

t

X(t)

subcritical: β > 1

(1− β)t + O(
√
t)

subcritical: β > 1

The critical Gibbs measure is supported by particles that are at a distance
of order

√
t from the minimum.
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The derivative martingale

From now on, we work at criticality with β = 1:

Wt :=
∑

u∈N (t)

e−Xu(t) a.s.−−−→
t→∞

0.

The derivative martingale is

Zt :=
∑

u∈N (t)

Xu(t)e−Xu(t), t ≥ 0.

Theorem (Lalley–Sellke 1987): Zt −→ Z∞ a.s. and Z∞ > 0 a.s. on the
survival event.

6/14



The derivative martingale

From now on, we work at criticality with β = 1:

Wt :=
∑

u∈N (t)

e−Xu(t) a.s.−−−→
t→∞

0.

The derivative martingale is

Zt :=
∑

u∈N (t)

Xu(t)e−Xu(t), t ≥ 0.

Theorem (Lalley–Sellke 1987): Zt −→ Z∞ a.s. and Z∞ > 0 a.s. on the
survival event.

6/14



The derivative martingale

From now on, we work at criticality with β = 1:

Wt :=
∑

u∈N (t)

e−Xu(t) a.s.−−−→
t→∞

0.

The derivative martingale is

Zt :=
∑

u∈N (t)

Xu(t)e−Xu(t), t ≥ 0.

Theorem (Lalley–Sellke 1987): Zt −→ Z∞ a.s. and Z∞ > 0 a.s. on the
survival event.

6/14



Importance of the derivative martingale

. Minimal position (Bramson 1983, Lalley–Sellke 1987):

min
u∈N (t)

Xu(t)−
3
2
log t law−−−→

t→∞
−G− log Z∞,

with G a Gumbel independent of Z∞.

. Scaling of the critical additive martingale (Aïdékon–Shi 2014):
√
tWt

probability−−−−−−→
t→∞

√
2
π
Z∞.

. For f : R → R continuous bounded,

Zt(f ) :=
∑

u∈N (t)

Xu(t)e−Xu(t)f
(
Xu(t)√
t

)
.

Convergence of the front (Madaule 2016):

Zt(f )
probability−−−−−−→
t→∞

µ(f )Z∞,

where µ(dx) := 1x>0

√
2
π
x2e−x

2/2 dx.
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Our results



Questions

What are the rates of convergence and the fluctuations in the following
convergences ?

Zt
a.s.−−−→
t→∞

Z∞,

√
tWt

probability−−−−−−→
t→∞

√
2
π
Z∞,

Zt(f )
probability−−−−−−→
t→∞

µ(f )Z∞.

Motivation: Beyond the non-universal quantity Z∞, universal fluctuations
should appear.

→ Link with the conjecture of Ebert–van Saarloos (2000) for the position
of the front of solutions of reaction-diffusion equations.
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Fluctuations of the derivative martingale

Conjecture in the physics literature (Mueller–Munier 2014):

Zt = Z∞ +

log t√
2πt

Z∞ + O
(
1√
t

)
︸ ︷︷ ︸
fluctuations

.

Theorem (Maillard–P. 2018): There exists a spectrally positive 1-stable
Lévy process (Sr)r≥1 independent of Z∞ such that(√

t
(
Z∞
(
1+ log t√

2πat

)
− Zat

))
a≥1

law−−−→
t→∞

(SZ∞/
√
a)a≥1,

in finite-dimensional distributions.
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Fluctuations of the derivative Gibbs measure

Recall that

Zt(f ) :=
∑

u∈N (t)

Xu(t)e−Xu(t)f
(
Xu(t)√
t

)
probability−−−−−−→
t→∞

µ(f )Z∞.

Theorem (Maillard–P. 2019): If f is C2 on (0,∞) and (xf (x))′′ ≤ CeCx for
x > 0, then, there exists a 1-stable Lévy process (Sfr)r≥1 independent of Z∞
such that

√
t
(
Z∞
(
µ(f ) + c(f ) log t√

t

)
− Zt(f )

)
law−−−→
t→∞

SfZ∞ .

Corollary: Applying this with f (x) = 1/x, it follows:

√
t
(√

2
π
Z∞ −

√
tWt

)
law−−−→
t→∞

S′Z∞ ,

where (S′r)r≥1 is a Cauchy process independent of Z∞.
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Particles contributing to the fluctuations

Recall that
1

log t
min
u∈N (t)

Xu(t)
probability−−−−−−→
t→∞

3
2
.

t

X(t)

3
2 log t

t

X(t)

3
2 log t

1
2 log t

But, some particles come to a much lower position (Hu–Shi 2009):

lim inf
t→∞

1
log t

min
u∈N (t)

Xu(t) =
1
2
a.s.

Particles contributing to the fluctuations are those coming down to
1
2 log t + O(1) at a time of order t.
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Ideas of proof



Proof for the derivative martingale

Goal:
√
t
(
Z∞
(
1+ log t√

2πt

)
− Zt

)
−→ SZ∞

. We introduce a killing barrier from
time t at level γt = 1

2 log t + βt,
where βt → ∞ slowly.

. We work instead with

Zts :=
∑

u∈N (s)

(Xu(s)− γt)e−Xu(s).
0

γt

t

•• • •

. With the barrier: Zts does not vary too much on [t,∞).

. Contributions of killed particles to Z∞: sum of i.i.d. copies of e−γtZ∞,
with approximately eβt

√
tWt terms.

And Z∞ is in the domain of attraction of a 1-stable law (Berestycki–
Berestycki–Schweinsberg 2013).
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Proof for the derivative Gibbs measure

Goal:
√
t
(
Zt(f )− µ(f )Z∞ − c(f ) log t√

t
Z∞
)

→ −SfZ∞ .

. We can replace Z∞ by Zt.

. We introduce the killing barrier at
level γt, but between times tα and
t for some α ∈ (0, 1).

0

γt

tα t

•• • •

. With the barrier: Zt(f )− µ(f )Zt = o
(
1√
t

)
(after shifting by γt).

. Contributions of killed particles: their distribution depends on the time
at which the particle hits the barrier.
→ we want to approach them by their limit: for this we need a
concentration result for Zt(f ) aroud its limit!
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Thank you for your attention!
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