



1 – Petites questions

Soit X, X_0 , X_1 ,... des variables aléatoires réelles définies sur $(\Omega, \mathcal{A}, \mathbb{P})$ et μ , μ_0 , μ_1 ,... des mesures finies sur \mathbb{R} . On note $\mathcal{C}_c(\mathbb{R})$ l'ensemble des fonctions continues à support compact sur \mathbb{R} .

- 1. Rappeler les liens entre les différentes convergences.
- 2. Supposons que $(X_n)_{n\in\mathbb{N}}$ converge en loi vers X. Soit $f: \mathbb{R} \to \mathbb{R}$ continue. Y a-t-il convergence en loi de $(f(X_n))_{n\in\mathbb{N}}$ vers f(X)?
- 3. Supposons que $\forall f \in \mathcal{C}_c(\mathbb{R}), \int f \, d\mu_n \to \int f \, d\mu$. Y a-t-il convergence étroite de $(\mu_n)_{n \in \mathbb{N}}$ vers μ ?
- 4. Supposons que $\forall f \in \mathcal{C}_c(\mathbb{R}), \mathbb{E}[f(X_n)] \to \mathbb{E}[f(X)]$. Y a-t-il convergence en loi de $(X_n)_{n \in \mathbb{N}}$ vers X?
- 5. Supposons que $(X_n)_{n\in\mathbb{N}}$ converge en loi vers X. A-t-on $\mathbb{E}[X_n] \to \mathbb{E}[X]$?

2 – Loi des grands nombres

Exercice 1. (*Mesure empirique*) Soit μ une mesure de probabilité sur \mathbb{R} . Soit $(X_k)_{k\geq 1}$ une suite de variables aléatoires définies sur $(\Omega, \mathcal{A}, \mathbb{P})$ indépendantes de loi μ . Pour $n \in \mathbb{N}$, on définit

$$\mu_n \coloneqq \frac{1}{n} \sum_{k=1}^n \delta_{X_k},$$

qui est une mesure aléatoire appelée mesure empirique associée à l'échantillon $(X_1, ..., X_n)$. L'objectif de cet exercice est de montrer que la mesure empirique converge vers la vraie mesure, c'est-à-dire qu'à partir des observations X_k , on arrive à retrouver la loi inconnue μ .

- 1. Montrer que $C_c(\mathbb{R})$ est séparable pour la norme infini.
- 2. Soit $(\nu_n)_{n\in\mathbb{N}}$ une suite de mesures de probabilité sur \mathbb{R} et ν une mesure de probabilité sur \mathbb{R} . Soit H une partie dense de $\mathcal{C}_c(\mathbb{R})$ pour la norme infini. Montrer que ν_n converge étroitement vers ν si et seulement si

$$\forall h \in H$$
, $\int_{\mathbb{R}} h \, \mathrm{d} \nu_n \xrightarrow[n \to \infty]{} \int_{\mathbb{R}} h \, \mathrm{d} \nu$.

3. Montrer que presque sûrement, μ_n converge étroitement vers μ quand $n \to \infty$.

3 – Convergence en loi

Exercice 2. Soit $(X_n)_{n\geq 1}$ une suite de variables aléatoires réelles définies sur $(\Omega, \mathcal{A}, \mathbb{P})$ indépendantes et de loi uniforme sur [0,1]. On pose $M_n := \max(X_1,\ldots,X_n)$. Montrer que la suite $(n(1-M_n))_{n\geq 1}$ converge en loi et expliciter la loi limite.

Exercice 3. (Limite de constantes) Soient $(X_n)_{n\in\mathbb{N}}$ une suite de variables aléatoires constantes, respectivement égales p.s. à $x_n\in\mathbb{R}$, et X une variable aléatoire réelle. Montrer que $X_n\to X$ en loi quand $n\to\infty$ si et seulement s'il existe $x\in\mathbb{R}$ tel que X est de loi δ_x et $x_n\to x$ quand $x_n\to\infty$.

4 – Compléments (hors TD)

 \mathcal{E} xercice 4.

1. Soit $f: [0,1] \to \mathbb{R}$ continue. Déterminer la limite, quand $n \to \infty$, de

$$\int_{[0,1]^n} f\left(\frac{x_1+\cdots+x_n}{n}\right) \mathrm{d}x_1\cdots \mathrm{d}x_n.$$

2. Soit $f: \mathbb{R}_+ \to \mathbb{R}$ continue bornée et $\lambda > 0$. Déterminer la limite, quand $n \to \infty$, de

$$\sum_{k=0}^{\infty} e^{-\lambda n} \frac{(\lambda n)^k}{k!} f\left(\frac{k}{n}\right).$$

→0**○**0**○**0**○**

Exercice 5. (Théorème de Bernstein-Weierstrass) Soit $f:[0,1] \to \mathbb{C}$ continue. Le n^e polynôme de Bernstein de f est défini par

$$B_n(x) := \sum_{k=0}^n \binom{n}{k} x^k (1-x)^{n-k} f\left(\frac{k}{n}\right), \quad x \in \mathbb{R}.$$

- 1. Montrer sans calcul que B_n converge simplement vers f.
- 2. Montrer que B_n converge uniformément vers f.

Exercice 6. (Discrétisation de mesure)

1. Soit μ une mesure de probabilité sur $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$. Pour tout $n \geq 1$, on définit une mesure de probabilité μ_n sur $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ par :

$$\mu_n := \sum_{k \in \mathbb{Z}} \mu([k/n, (k+1)/n[)\delta_{k/n}.$$

Montrer que μ_n converge étroitement vers μ quand $n \to \infty$.

2. En déduire que si $(X_n)_{n\geq 1}$ est une suite de variables aléatoires définies sur $(\Omega, \mathcal{A}, \mathbb{P})$, respectivement de loi géométrique de paramètre $e^{-1/n}$, alors la suite $(X_n/n)_{n\geq 1}$ converge en loi vers une variable aléatoire exponentielle de paramètre 1.

Exercice 7. (Loi toujours plus forte) Soit $p \in]1,2[$ et $(X_n)_{n \in \mathbb{N}^*}$ une suite de variables aléatoires i.i.d. définies sur $(\Omega, \mathcal{A}, \mathbb{P})$. On suppose que $\mathbb{E}[X_1] = 0$ et $\mathbb{E}[X_1^p] < \infty$.

- 1.(a) Majorer $\mathbb{E}[|X_1|^2 \mathbb{1}_{|X_1| \le n^{1/p}}]$ en fonction des $\mathbb{P}(|X_1|^p \ge k)$ pour $k \in \mathbb{N}$.
 - (b) En déduire que

$$\sum_{n>0} \operatorname{Var}\left(\frac{X_n}{n^{1/p}} \mathbb{1}_{|X_n| \le n^{1/p}}\right) < \infty.$$

- 2. En utilisant le théorème des trois séries vu au TD 11, montrer que $\sum_{n\geq 0} n^{-1/p} X_n$ converge p.s.
- 3. En déduire que

$$\frac{X_1 + \dots + X_n}{n^{1/p}} \xrightarrow[n \to \infty]{} 0 \text{ p.s.}$$

Exercice 8. (Les moments ne caractérisent pas la loi) Cet exercice est motivé par la question 1.(d) de l'exercice 4 du DM 5.

1. Calculer

$$\int_0^\infty \frac{1}{x\sqrt{2\pi}} \exp\left(\frac{-\ln^2 x}{2}\right) \mathrm{d}x.$$

2. On considère la fonction $f: \mathbb{R}_+^* \to \mathbb{R}$ définie par

$$f(x) = \sin(2\pi \ln x) \frac{1}{x\sqrt{2\pi}} \exp\left(\frac{-\ln^2 x}{2}\right).$$

Calculer $\int_0^\infty x^k f(x) dx$ pour tout $k \in \mathbb{N}$.

l'exercice 2 du DM 2).

3. En déduire qu'il existe deux variables aléatoires X et Y positives telles que, pour tout $n \in \mathbb{N}$, on ait $\mathbb{E}[X^n] = \mathbb{E}[Y^n] < \infty$, mais n'ayant pas la même loi.

Exercice 9. (Une partie du théorème de Prokhorov sur \mathbb{R}) Soit $(\mu_n)_{n\in\mathbb{N}}$ une suite de mesures de probabilité sur \mathbb{R} . On note F_n la fonction de répartition de μ_n . La suite $(\mu_n)_{n\in\mathbb{N}}$ est dite tendue si

$$\forall \varepsilon > 0, \exists K \text{ compact} : \forall n \in \mathbb{N}, \mu_n(K) \ge 1 - \varepsilon.$$

L'objectif de cet exercice est de montrer que, si la suite $(\mu_n)_{n\in\mathbb{N}}$ est tendue, alors elle admet une sous-suite qui converge étroitement. On suppose donc que $(\mu_n)_{n\in\mathbb{N}}$ est tendue.

- 1. Montrer qu'il existe une extractrice $\varphi \colon \mathbb{N} \to \mathbb{N}$ telle que, pour tout $q \in \mathbb{Q}$, $F_{\varphi(n)}(q)$ converge vers une limite G(q) quand $n \to \infty$.
- On définit, pour x ∈ ℝ, F(x) := inf{G(q) : q ∈ ℚ∩]x,∞[}. Montrer qu'il existe une mesure de probabilité μ sur ℝ telle que F soit la fonction de répartition de μ.
 Rappel. Si F: ℝ → ℝ est croissante, continue à droite et telle que F(-∞) = 0 et F(+∞) = 1, alors il existe une mesure de probabilité μ sur ℝ telle que F soit la fonction de répartition de μ (voir
- 3. Montrer que $\mu_{\varphi(n)}$ converge étroitement vers μ quand $n \to \infty$.

