

Devoir à la maison 1

à rendre avant le 4 octobre

Exercice 1. Fournir une démonstration ou un contre-exemple pour les questions suivantes.

1. Soit $(x_n)_{n\geq 1}$ une suite de réels et soit $f\colon \overline{\mathbb{R}}\to \overline{\mathbb{R}}$ une fonction continue. A-t-on alors l'égalité suivante :

 $f\left(\limsup_{n\to\infty}x_n\right) = \limsup_{n\to\infty}f(x_n)?$

2. Soit X, Y deux ensembles et $f: X \to Y$ une application. Pour $A \subset \mathcal{P}(Y)$, on note $f^{-1}(A) := \{f^{-1}(A) : A \in A\}$. A-t-on, pour tout $A \subset \mathcal{P}(Y)$, la relation suivante :

 $\sigma(f^{-1}(\mathcal{A})) = f^{-1}(\sigma(\mathcal{A})) ?$

- 3. Soit $(X \times Y, \mathcal{F})$ un espace-produit mesuré et $\pi \colon X \times Y \longrightarrow X$ la projection canonique. L'ensemble $\mathcal{F}_X := \{\pi(F) \colon F \in \mathcal{F}\}$ est-il une tribu?
- 4. Soit (E, A) un espace mesurable. Soit C une famille de parties de E, et soit $B \in \sigma(C)$. Existe-t-il forcément une famille dénombrable $D \subset C$ telle que $B \in \sigma(D)$?

Exercice 2. ("Cardinal" d'une tribu) Soit (E, A) un espace mesurable. On définit, pour tout $x \in E$, l'atome de la tribu A engendré par x par

$$\dot{x} := \bigcap_{A \in \mathcal{A} \text{ tel que } x \in A} A.$$

- 1. Montrer que les atomes de A forment une partition de E.
- 2. Montrer que si \mathcal{A} est au plus dénombrable alors \mathcal{A} contient ses atomes et que chaque élément de \mathcal{A} s'écrit comme une réunion au plus dénombrable d'atomes.
- 3. En déduire qu'il n'existe pas de tribu infinie dénombrable.

Exercice 3. Soit (Ω, A) un espace mesurable tel que $\{\omega\} \in A$ pour tout $\omega \in \Omega$. Soit μ une mesure positive sur A. On dit que μ est *portée* par $S \in A$ si $\mu(S^c) = 0$, que $\omega \in \Omega$ est un *atome ponctuel* pour μ si $\mu(\{\omega\}) > 0$, que μ est *diffuse* si elle n'a pas d'atomes ponctuels, et que μ est *purement atomique* si elle est portée par l'ensemble de ses atomes ponctuels.

- 1. Que peut-on dire d'une mesure qui est diffuse et purement atomique?
- 2. Montrer que l'ensemble des atomes ponctuels d'une mesure finie μ est dénombrable.
- 3. Soit μ une mesure finie sur \mathcal{A} . Montrer qu'il existe un unique couple de mesures (μ_d, μ_a) sur \mathcal{A} , avec μ_d diffuse et μ_a purement atomique, tel que $\mu = \mu_d + \mu_a$.

Le DM est à rendre pendant le TD, ou à déposer dans mon casier à l'entrée de l'espace Cartan. Pour toute question, n'hésitez pas à m'envoyer un mail à michel.pain@ens.fr, ou bien à venir me voir au bureau V2.

Exercice 4. (Produit de tribus boréliennes)

1. Soit (X, d_X) et (Y, d_Y) des espaces métriques séparables (c'est-à-dire admettant une suite dense). L'objectif de cette question est de montrer que $\mathcal{B}(X \times Y) = \mathcal{B}(X) \otimes \mathcal{B}(Y)$, où $X \times Y$ est muni de la topologie produit. On rappelle que la topologie produit sur $X \times Y$ est engendrée par la distance $d_{X \times Y}$ définie par

$$\forall (x, y), (x', y') \in X \times Y, \quad d_{X \times Y}((x, y), (x', y')) := \max(d_X(x, x'), d_Y(y, y')).$$

- (a) Montrer que, pour tout $A \in \mathcal{B}(X)$, $A \times Y \in \mathcal{B}(X \times Y)$.
- (b) En déduire que $\mathcal{B}(X) \otimes \mathcal{B}(Y) \subset \mathcal{B}(X \times Y)$.
- (c) Montrer que, pour tout ouvert non vide U de $X \times Y$, il existe deux suites $(z_n)_{n \in \mathbb{N}} \in (X \times Y)^{\mathbb{N}}$ et $(r_n)_{n \in \mathbb{N}} \in (\mathbb{R}_+^*)^{\mathbb{N}}$ telles que

$$U=\bigcup_{n\in\mathbb{N}}B(z_n,r_n),$$

où B(z,r) est la boule de centre z et de rayon r pour $d_{X\times Y}$.

- (d) En déduire que $\mathcal{B}(X \times Y) \subset \mathcal{B}(X) \otimes \mathcal{B}(Y)$.
- 2. (\bigstar) Soit X un espace métrique. Dans cette question, on montre que l'on n'a pas forcément $\mathcal{B}(X^2) = \mathcal{B}(X) \otimes \mathcal{B}(X)$.
 - (a) Soit $C \in \mathcal{B}(X) \otimes \mathcal{B}(X)$. Montrer qu'il existe une suite de boréliens $(A_n)_{n \in \mathbb{N}} \in \mathcal{B}(X)^{\mathbb{N}}$ telle que

$$C \in \sigma(\{A_m \times A_n : m, n \in \mathbb{N}\}).$$

(b) Soit $(A_n)_{n\in\mathbb{N}}\in\mathcal{B}(X)^{\mathbb{N}}$ une suite de boréliens. Pour $u\in\{0,1\}^{\mathbb{N}}$, on note

$$D_n^u := \left\{ \begin{array}{ll} A_n & \text{si } u_n = 1 \\ (A_n)^c & \text{si } u_n = 0 \end{array} \right. \quad \text{et} \quad B^u := \bigcap_{n \in \mathbb{N}} D_n^u.$$

Montrer que $\mathcal{G} := \{\bigcup_{(u,v)\in I} B^u \times B^v : I \subset (\{0,1\}^{\mathbb{N}})^2\}$ est une tribu.

(c) En déduire qu'il existe deux familles de boréliens $(C_i)_{i \in \mathbb{R}}, (C_i')_{i \in \mathbb{R}} \in \mathcal{B}(X)^{\mathbb{R}}$ telles que

$$C = \bigcup_{i \in \mathbb{R}} C_i \times C_i'.$$

(d) En utilisant la question précédente, trouver un espace métrique X tel que $\mathcal{B}(X^2) \neq \mathcal{B}(X) \otimes \mathcal{B}(X)$.

